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Design for Cost: Module-Based Mass Customization
Catherine da Cunha, Bruno Agard, and Andrew Kusiak, Member, IEEE

Abstract—The assemble-to-order (ATO) production strategy
considers a tradeoff between the size of a product portfolio and the
assembly lead time. The concept of modular design is often used
in support of the ATO strategy. Modular design impacts the as-
sembly of products and the supply chain, in particular, the storage,
transport, and production are affected by the selected modular
structure. The demand for products in a product family impacts
the cost of the supply chain. Based on the demand patterns, a mix
of modules and their stock are determined by solving an integer
programming model. This model cannot be optimally solved due
to its high computational complexity and, therefore, two heuristic
algorithms are proposed. A simulated annealing algorithm im-
proves on the previously generated solutions. The computational
results reported in this paper show that significant savings could
be realized by optimizing the composition of modules. The best
performance is obtained by a simulated annealing combined with
a heuristic approach.

Note to Practitioners—In today’s markets, companies tend to
compete with product costs and delivery times. Mass customiza-
tion principles have emerged as ways of gaining competitiveness.
To individualize offerings of products, some companies manage
options and alternatives around the same product category. Large
product portfolios allow customers to select products closely
matching their needs, however, it usually implies a larger cost to
the producer. The importance of demand for final products when
allocating assembly operations in a supply chain is emphasized.
The research reported in this paper demonstrates that for the
same level of anticipated product demand, the level and mix of
stock impact the customer delivery time. The latter implies that
the same degree of customer satisfaction could be realized with
different anticipated stock levels and costs. An assemble-to-order
(ATO) case study is presented. The ATO production strategy
considers a tradeoff between the size of a product portfolio and
the assembly lead time. The concept of modular design is often
used in support of the ATO strategy. Modular design impacts
the assembly of products and the supply chain, in particular, the
storage, transport, and production are affected by the selected
modular structure.

Index Terms—Assemble to order (ATO), demand integration,
design for cost, mass customization, supply chain, time constraint.
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I. INTRODUCTION

TODAY’s markets call for elaborate competition schemes
as a large variety of products is available to meet customer

requirements. Companies tend to compete on product costs
and delivery times. Mass production principles have emerged
as ways of gaining competitiveness. To individualize offerings
of products, some companies manage options and alternatives
around the same product category. Enlarged product portfolios
make it possible for a customer to select and purchase a product
closely matching his or her requirements.

If the manufacturing lead time of a product is longer than the
acceptable customer wait time, a company needs to anticipate
the future by producing products before the orders are received.
While any unmet product demand is not well received by the
customers, overproduction lowers profits.

The research reported in this paper demonstrates that for the
same level of anticipated product demand, the level and mix of
stock impact the customer delivery time. The latter implies that
the same degree of customer satisfaction could be realized with
different anticipated stock levels and costs.

In this paper, an assemble-to-order (ATO) case study is pre-
sented. A simulated annealing and two heuristic algorithms are
developed to determine the best stock composition to ensure sat-
isfactory product delivery time.

The importance of information about customer requirements
is highlighted. Some previous studies have used data about
physical characteristics of products. In this paper, the demand
information is used to minimize the cost induced by the diver-
sity of products.

The literature of interest to the problem discussed in the
paper is reviewed in Section II. The industrial background
supporting the problem discussed in the paper is presented in
Section III. The model developed in the paper is presented
in Section IV. Section V discusses heuristic algorithms for
solving the problem of Section IV. Computational results are
also discussed. Section VI concludes the paper.

II. LITERATURE REVIEW

The design of a product portfolio impacts the cost and de-
livery time of products. The main questions are: What product
portfolio to offer?; How to produce the products?; and How to
integrate the demand data to optimize the overall process?

A way of addressing these questions is by the design of
product families. Numerous approaches have been developed
for the design of product families. Some are based on nego-
tiation [11], other approaches distinguish stable and variable
aspects of the customer requirements [27], and some are based
on coupling between functional/technical domains [8], [13].
Martin [21] proposed a robust product family architecture to
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support the redesign of products. Agard and Tollenaere [3]
discussed a methodology for the design of a product family
based on the analysis of customer needs with data mining tools
[1].

Two main approaches that support large product diversity
are modular design and postponement (delayed product differ-
entiation). Modularity involves creating largely independent
blocks (called modules) for building different products and/or
processes. A combination of a limited number of modules
permits diversification of the product.

A limited number of modules may result in a large number of
final products. Modular design impacts the stock mix of mod-
ules (the number of modules stocked and the constitution of each
module), the delivery time (through the final assembly time), and
the production cost. The design of modular products has received
some attention in the literature (e.g., [12], [17], and [18]).

Implementation of the modularity concept can be accom-
plished by partitioning a product into semi-independent or
mutually separable elements. It permits for independent design,
manufacture, and service of the modules. Fujita [9] optimized
the content of modules and their mix in a fixed modular
architecture. Yigit et al. [26] solved a similar problem by
determining the best subsets of modules that minimize the
reconfiguration cost. Briant [4] defined modules by covering a
set of products with standardized components.

A large market diversity of products supported by a low
technical diversity reduces process diversification, thus guar-
anteeing acceptable product development and manufacturing
costs [7], [20].

Postponement relies on delaying as much as possible the mo-
ment when the product attains its uniqueness (identity). For ex-
ample, packaging postponement [25] involves delayed differen-
tiation of the product until the packaging operation takes place.

Lee and Tang [19] highlighted advantages of the product
delayed differentiation to manufacture diversified products.
Product and process standardization are highlighted as well as
process restructuring.

Some research results have been reported in the design-to-cost
and in the ATO context [3], [12]. Swaminathan and Tayur [24]
optimized production capacity using preassembly operations.

ATO is “a production environment where goods (or services)
are assembled after the receipt of a customer’s order”.1 It
enables managing a wide diversity of products with a limited
number of modules [22]. These modules are preassembled in
advance, shipped to the assembly location, and stocked. The
final assembly of the product (from the modules) is initiated
when an actual order is received.

The product demand pattern (demand volume of a specific
product) impacts a supply chain (i.e., the storage, transportation,
and production costs). Knowing the information about customer
demands and assigning the workload to different actors of the
chain could reduce this cost.

Da Cunha [7] used product demand data to design modules
minimizing the final assembly cost (by minimizing the mean as-
sembly time). The computational results showed that significant
savings could be realized when taking such data into account .

1American Production and Inventory Control Society Dictionary, 9th Edition,
Falls Church, VA, 1998.

Fig. 1. Supply chain structure in the automotive industry.

This literature review stresses three questions: 1) What
product portfolio to offer?; 2) How to produce the products?;
and 3) How to integrate the demand data to optimize the overall
process? These are often treated separately, each question
raising complex issues. A simultaneous consideration of the
three views, which would be the ideal, still seems utopian. Here,
two views are considered: the question of how to produce is
addressed while considering the information about the demand.
A design-for-cost method is chosen in order to integer notions
of the optimization of the overall process.

In this paper, the product-mix data are used to design a supply
chain in the presence of different labor costs. The proposed ap-
proach guarantees that the mean delivery time does not exceed
the delay acceptable by the customer. A cost metric is used to
evaluate performance of the designed supply chain.

III. INDUSTRIAL CASE STUDY

In this section, an industrial case study is discussed. Consider
the example of a midrange car—Peugeot 307. One of many as-
sembles used in this car to distribute power and information
within the vehicle is a wire harness. Potentially, there are seven
million different wire harnesses that could be ordered [2]. The
annual sale volume for this car model is about 350,000. Kocher
and Rolland [15] stated that 90% of the sales of this car model
constitute 20% of the portfolio.

The entire automotive supply chain faces the challenge of of-
fering growing product diversity at competitive prices, quality,
and delivery times. The classical supply chain structure in the
automotive industry is illustrated in Fig. 1, which focuses on
the automotive supplier’s structure.

Car assembly plants tend to be located near the consumer
market. The components and subassemblies of a car are pro-
duced by automotive suppliers that are contractually committed
to deliver the right parts in the sequence and time required by
the car manufacturer.

One of those components is a wire harness that has to be as-
sembled before the car interior (floor covering, seats, inner door
shells, etc.) is installed. A delay of its delivery causes a major
disruption to the production line. Therefore, a contract between
the car manufacturer and a wire harness supplier specifies penal-
ties for the delays. The wire harnesses have to meet a mean
lead-delivery time that is fixed in advance. As some deviations
around the mean lead time may occur, the car manufacturer im-
poses a delivery ratio on the contractual mean lead time.
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Fig. 2. Final assembly of wire harnesses [7].

To meet the car manufacturer’s orders, wire-harness suppliers
tend to organize their processes at multiple sites. Distant loca-
tion plants produce modules to stock and ship them for stocking
at a location near the final assembly until an actual order arrives.
The final assembly of the wire harness is performed in a rela-
tively short time to meet the arriving orders. This assembly oper-
ation (see Fig. 2) does not require highly skilled labor. A single
wire is assembled on an assembly table tended by one worker.
This type of work environment prevents simultaneous tasks on
the same subassembly. The time of the final assembly is there-
fore mostly dependent of the number of modules to be assem-
bled. The parts are uniformly easy to manipulate and the oper-
ations of connections between parts (taping, clipping, welding)
are tasks of similar duration.

Each communication function of a wire harness is performed
by a set of cables that occupy a designated space in the final
product (i.e., the car). Each option can therefore only appear,
at most, once. The information about possible incompatibility
(between options or alternatives) is included in the demand it-
self. The demand probability of a product that does not satisfy
these constraints is zero. This characteristic enables keeping the
model as general as possible.

The model discussed in this paper does not consider produc-
tion capacity. The capacity assumption has been validated on
an industrial case study. Considering the distant locations of as-
sembly facilities, capacity allocation and management are con-
trolled by a supplier (in particular, by means of workforce man-
agement). The supplier is responsible for the primal assembly
until the modules arrive to the car assembly plant.

IV. PROBLEM MODELING

The operations involved in the supply chain are shown in
Fig. 3.

The preassembly of modules from basic components is
performed at distant locations (with low labor costs). Then,
the modules are transported to the nearby location and stocked
until demand occurs. The demand launches the final assembly
process for the wire harnesses (i.e., the products are assembled
from the modules). The lead time measured at the car assembly
plant involves the final assembly and delivery time.

The goal of this paper is to determine the lowest cost compo-
sition of modules (a set of basic components) so that the mean

Fig. 3. Operations in the supply chain.

lead time does not exceed , where represents the delay that is
acceptable to the customers. It is assumed that the transportation
cost of a product from the nearby location to the car assembly
plant is fixed.

The proposed model ensures that each customer receives the
exact product she or he has ordered. This implies that the extra
components (free upgrades of the product) are not allowed.

A. Modeling

The model presented next used the data of the wire-harness
case study. It specifies that the final portfolio of products is
obtained from basic components that can be assembled as

different products. It assumes that there are no
assembly constraints between the components. This assumption
considers the worst-case scenario (i.e., the largest possible
diversity). Of course, in the presence of constraints, the number
of products is smaller. That is to be compared with the
annual production on 350,000 cars for the wire harnesses
considered.

Let be the stock mix (i.e., a set of modules in the inventory).
The stock mix is represented as a binary vector of size , the
th dimension, , stands for the presence

or absence of the module in the module inventory
at the nearby location site. The inventory levels of modules may
differ. Call the number of modules in the inventory, then

and .
The preassembly performed at a distant location produces

modules .
Note that is the number of components in module . For

example, in Fig. 3, , and ,
and .

Note that is the mean assembly time of the final
product from the set of modules .
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The model is formulated as follows:

Cost (1)

(2)

where

Cost Preassembly cost + Fixed transportation cost

Variable transportation cost Final assembly cost (3)

The solution to problem (1), (2) determines the stock compo-
sition represented by vector . Constraint (2) ensures that the
mean assembly time is acceptable to the car assembly plant.

To compute the cost in (3), the following assumptions are
made.

• A wire harnesses is principally composed of a set of cables
and connectors.

• The cost of each elementary assembly operation is iden-
tical due to the similar level of assembly difficulty.

• The preassembly cost is then proportional to the number of
components being assembled in each module present
in the stock

Preassembly cost (4)

For example, the module composed of three components ,
, and involves two assembly operations. Therefore, the cost

is double that of assembling and involving one operation
only.

The transportation cost from the distant to the nearby location
site includes fixed and variable transportation cost.

• The fixed transportation cost is assumed to be proportional
to the number of different items managed (i.e., the number
of different modules )

Fixed transportation cost (5)

• Each module is delivered in fixed intervals and quantities.
The variable transportation cost is then proportional to the
volume of a module (for simplicity, it is considered to be
proportional to the number of components in a module)

Variable transportation cost (6)

The transportation to the car assembly plant is not included
in the proposed model. Indeed, this cost depends on the demand
but it is independent of the modular design.

The final assembly cost is assumed to be proportional to the
mean final assembly time

Final assembly cost (7)

The final assembly time is assumed to be proportional
to the number of final assembly operations. This assumption

reflects the fact that the assembly of two modules involves the
same level of difficulty, whatever the modules are (see Fig. 2).

Let be the number of final assembly operations
needed to obtain product from the stock mix . To determine

, it is necessary to solve a set partitioning problem
[9] determining the minimum number of operations needed to
assemble product from the stock mix . In this paper, this
problem is solved with a greedy heuristic presented in [5].

The parameter of this model denotes the probability of
demand for product . Each year, the contractor and the sup-
plier negotiate the quantities of each product to be manufac-
tured, however, the sequence of products is not known since it
depends on the customers’ orders.

The relationship between the mean final assembly time and
the number of final assembly operations is

(8)

The objective function is hence expressed as

Cost

(9)
The cost in (9) is a linear function of four different costs.

However, the model (1), (2), with the cost function represented
by (9), is nonlinear as the final assembly time is nonlinear.

B. Problem Description

The model (1), (2) with the cost function in (9) is illustrated
with the following example. For a simple product family (31
products made from five components), the number of different
modules varies from five (make-to-order) to 31 (make-to-stock)
products. An exhaustive list of all possible configurations en-
ables determining the extreme assembly times. Fig. 4 represents
the minimum and maximum mean final assembly time ( -axis)
as a function of the number of different modules ( -axis). This
example shows that the mean assembly time varies from 0 to
1.6 time units (t.u.). A mean assembly time of 0 occurs when
all possible subassemblies are present in the stock; in this case,
whatever the product that is required by a customer, it is present
in the stock and final operation is not required.

If the acceptable mean assembly time is 0.8 t.u. (represented
by the dotted line), 16 modules or more guarantee that the av-
erage demand is met on time (the maximum mean assembly
time for 16 modules is 0.8 t.u.). Note that a “good” configu-
ration of 9 different modules satisfies the maximum time con-
straint. Different stock compositions make it possible to re-
spect the mean assembly time. Besides, all of them do not have
the same cost (9). It is then necessary to select a composition
that minimizes this cost.

For the set of modules that satisfy the time constraint (the
mean assembly time ), the extreme costs for two sets of
parameters ( , , , ) are shown in Figs. 5 and 6.

The proposed set of parameters ( , , ,
and ) is consistent with the industrial practice. The ratio
of labor cost between a distant location and a nearby location

represents the actual situation in Europe (e.g., the
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Fig. 4. Function of the min and max mean assembly time and the number of
modules.

Fig. 5. Extreme costs for � = 1,  = 2, � = 0:4, � = 10.

Fig. 6. Extreme costs for � = 1,  = 0:4, � = 0:1, � = 10.

labor cost in France is 25 Euro/h, the labor cost in Latvia is 2.4
Euro/h2).

2Labor costs in 2000, Ref: IRSOC023 INSEE, 24/12/03, Eurostat European
Community.

The parameters , , , and
represent a different transportation condition that the supplier
wishes to evaluate.

Comparing the results in Figs. 5 and 6, it appears that trans-
portation costs have a significant impact on the best stock com-
position that minimizes the cost (9). Figs. 5 and 6 are de-
termined by the computation of all possible case with five com-
ponents. Because of combinational effects, these curves are not
determined for a larger number of components.

Using the parameters selected for the case presented (Fig. 5),
it is more expensive to stock items than to process them at a
nearby location.

In this case, the worst solution (make to order) (i.e., all assem-
blies are produced at the nearby plant) is 25% more expensive
than the optimal one (stocking nine different modules). One ob-
serves that the optimal solution minimizes the cost of possessing
the modules held as the stock (called a possession stock).

Stocking the minimum number of modules (i.e., the smallest
stock that guarantees the customer accepted mean assembly
time ) does not always lead to optimum as illustrated in the
example presented next.

Consider that the labor is the main source of cost. Stocking the
minimum (i.e., nine modules) is not the optimal solution even
if it minimizes the transportation cost (6). Interestingly enough,
in this case, lower labor costs (the modules are assembled at
the distant plant and then transported to the nearby location)
is beneficial. Fig. 6 shows that the optimum is reached while
stocking 12 modules.

The two examples illustrated in Figs. 5 and 6 show that se-
lecting the right module design is a major issue.

V. SOLVING THE MODEL

What sets of modules should be considered for a product? In
fact, this question cannot be answered ex-ante as every possible
module mix that enables obtaining all final products has to be
considered.

To ensure that each final product could be assembled without
extra components (some upgrade of the product), the mix has to
include single components. It is then possible to evaluate the
number of compositions to consider. The final products
that are not the single components can be present or not in the
stock composition. In total, there are different composi-
tions to consider. This number corresponds to all combinations
of these elements.

This problem (1), (2) is computationally complex and, there-
fore, it is reasonable to generate a suboptimal solution. Two
heuristics are proposed to minimize the cost (3) under a fixed
mean assembly time. Their performance has been studied, and
simulated annealing results are provided.

A. Module–Frequency Heuristic

Consider a heuristic algorithm based on the demand fre-
quency for modules (level of demand for each module). This
heuristic minimizes the mean assembly time and uses a penalty
coefficient that penalizes the modules that are not compatible
with the selected module.

For a given number of modules , the heuristic is as follows:
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TABLE I
PRODUCT DEMAND (EXAMPLE WITH 4 COMPONENTS)

TABLE II
MODULES POTENTIAL USE (EXAMPLE WITH 4 COMPONENTS)

TABLE III
POTENTIAL MODULES AFTER SELECTION OF MODULE AB WITH PENALTY COEFFICIENT (pc = 0:05)

1) The modules composed of unique basic components are
selected.

2) For from 1 to :
a) Select a module that is most frequently used in as-

sembly.
b) The penalty coefficient ( ) is used: the frequency of

the modules sharing common components is multi-
plied by .

c) Set .
The module–frequency heuristic is illustrated with the fol-

lowing example. Consider 4 components that result in 15 final
products. The demand probability for each product is given in
Table I. In the industrial application, Table I is constructed based
on the historical commercial data and marketing projections.

Module ab can be used to obtain the following products: ab,
abc, abd, and abcd. Table II represents the usage probability of
each module for the product demand in Table I.

To make sure that a component is not used more than once in
a given product, a penalty coefficient is used. The same applies
to the modules. Assume the penalty coefficient ( ) is 0.05. For
six modules , the first iteration of the heuristic produces
the following five modules: a, b, c, d (the basic components
have to be available) and ab (highest frequency of assembly).
The modules that have components common to ab are penal-
ized. The frequency of each module containing the component
a or b is multiplied by , the frequency of each module con-
taining components a and b is multiplied by . The results are
summarized in Table III.

In the next iteration, cd is selected.
For six different stocked modules, the composition generated

by the module–frequency heuristic with is then

The computational time complexity of the algorithm depends
of the number of basic components . It requires:

• Selection of the basic components.
• For to .

• Select a module with the highest frequency of assembly
( elementary selections ).

• After the selection of one of the modules, apply
the penalty coefficient.

The total number of elementary operations is then
, which is equivalent to a computational

time complexity of .
The graphs in Fig. 7 show the total cost established with the

module–frequency heuristic with the two sets of parameters de-
scribed above (Section IV-B).

The graphs in Fig. 7 correspond to the ones in Figs. 5 and
6 (maximum and minimum costs for the two instances) and
the compositions given by the module–frequency heuristic for
two values and . The optimal (the solid
circle in Fig. 7) and the preferred compositions generated by
the module–frequency heuristic algorithm (the dotted circles in
Fig. 7) are determined as follows:

Preferred composition Result of the heuristic

The penalty coefficient impacts the results produced by the
module–frequency heuristic. The results in Fig. 7 stress the fact
that using a small value is important when the number of
modules stocked is large. The consequences of the penalty co-
efficient accumulate at each selection.

A small penalty coefficient impacts only the selection of mod-
ules after several uses (i.e., the number of different modules
that actually benefits is relatively high).

It has been demonstrated that for a large value , the fixed
transportation cost is low . Therefore, one
concludes that a small penalty coefficient works better (i.e., the
given composition will lead to smaller costs) when the relative
weight of the number of different modules is small.

Table IV provides the excess cost of this composition which
is computed as follows:

Excess cost of composition
Cost of composition Optimal cost

Optimal cost
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Fig. 7. Results produced by the module–frequency heuristic. (a)—(� = 1,
 = 2, � = 0:4, � = 10); (b)—(� = 1,  = 0:4, � = 0:1, � = 10).

TABLE IV
COSTS AND RELATIVE EXCESS COSTS WITH

THE MODULE–FREQUENCY HEURISTIC

The module–frequency heuristic determines solutions that
are better than the worst-case solution. Nevertheless, the gap
between the generated solution and the optimal one is not
negligible (about 4% for the first instance).

The module–size heuristic is discussed in the next section.

B. Module–Size Heuristic

Consider a heuristic based on the module size (the number of
components in a module). Using the size of the module as a se-
lection criterion seems logical. Of course, the size of the module

TABLE V
COST AND RELATIVE EXCESS COST WITH THE MODULE-SIZE HEURISTIC

does impact the preassembly cost and the transportation cost.
Furthermore, small modules are usually used in the assembly of
more products than the large modules (e.g., a module composed
of a unique component can potentially be used in prod-
ucts).

Given the number of different modules , the module–size
heuristic is as follows.

1) Select all modules of size , such as

is the number of ways of picking components from
the possibilities: it is the number of different products
constituted of components.

2) Sort the modules that contain components in a
descending order of frequency of assembly.

3) Select the modules that have the highest
frequency of assembly.

The computational time complexity of the algorithm is
.

For six modules, the composition provided by this heuristic
is .

Using the module–size heuristic, a composition can be
found for each . The best selection is performed as in the
module–frequency heuristic.

Table V provides the excess cost of this composition. It is
computed as explained in Section V-A.

Note in the two examples that the best composition generated
by the module–size heuristic is close to optimum.

C. Simulated Annealing

A simulated annealing algorithm was applied for solving the
problem discussed in the paper. Introduced in 1980 [14], sim-
ulated annealing has been applied successfully to many types
of problems [23]. This metaheuristic has already been used for
the design of modules. Kreng and Lee [16] integrated functional
and physical relationships.

The search space consists of all compositions allowing the
assembly of all finished products without standardization. All
compositions must contain the necessary elementary compo-
nents . In total, modules are potentially present
in the stock . All of those that meet the constraints constitute
the search space. The size of the search space is too large for an
exhaustive search and the objective function does not allow for
a gradient approach.
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Fig. 8. Simulated annealing of instance 1.

Moreover, it is not possible to determine a priori if a stock
composition that belongs to the search space respects the time
constraint (2).

The constraint represented in (2) is integrated in the evalua-
tion function as follows:

Cost
Cost, if
Cost + penalty else.

The proposed move generates only neighbors that belong to
the search space (acceptable configurations). Two configura-
tions and are considered as neighbors if they differ in one
module, i.e.

such as

and

or

The difference between the two costs C and is denoted as
Cost.

Cost = Cost Cost

A neighbor with a lower cost Cost is systematically
accepted. A neighbor with a higher cost Cost can be also
accepted. For acceptance of a higher cost neighbor, a random
value (in [0; 1]) is generated. If this random value is under

Cost , then the move is accepted. is updated after each
calculation of as follows:

Cooling coefficient

The cooling coefficient ensures that decreases to 0, so that
the simulated annealing algorithm converges.

As the efficiency of simulated annealing greatly depends of
the initial value, the value selected for starting the computation
is the best result produced by the previous heuristic. The ob-
served results are summarized in Fig. 8.

TABLE VI
COST AND RELATIVE EXCESS COST WITH SIMULATED ANNEALING

Fig. 9. Comparative analysis of the two heuristics � = 1,  = 0:4, � = 0:1,
� = 10.

For the two similar instances similar to the previous ones, the
final results with simulated annealing are presented in Table VI.

D. Performance Evaluation

The heuristics were tested on a large number of instances (i.e.,
different sets of parameters and different demands). The results
were consistent with the examples presented in the previous sec-
tions of this paper (the graph in Fig. 9 summarizes the perfor-
mance of the two heuristics). The module–size heuristic quickly
determines a good stock composition. The simulated annealing
algorithm used the results of the frequency and size heuristics
as the initial solutions. The dotted circles show the minimum
cost computed with each heuristic. The full circle shows the op-
timum computed with all of the heuristics.

Note that when the number of components is large, generating
an optimal solution is not feasible as the number of possible
compositions is excessive (see Section V-B). The performance
of a module mix for a large portfolio of products cannot be easily
evaluated.

Any of the two heuristics is easy to implement. Therefore, to
select the right mix of modules, both heuristics may be applied
(using a set of different penalty coefficients for the module–fre-
quency heuristic) and the composition that provides the lower
total cost may be selected. In the interest of the decision maker’s
time, the module–size heuristic is recommended, though both
heuristics provide good quality results.

The simulated annealing algorithm solves the problem. Pro-
viding initial solutions leads to better quality solutions and re-
duces computing time.
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VI. CONCLUSION

This research emphasized the importance of demand for final
products when allocating assembly operations in a supply chain.
This decision impacts the overall cost structure, as it determines
the assignment of operations and inventory performed at loca-
tions with different assembly costs. Based on the industrial case
study, a cost function is proposed that integrates operations per-
formed at different locations and the time-to-market constraint.

Two heuristic algorithms were designed to solve this combi-
natorial problem. The effectiveness of the algorithms was illus-
trated with examples and an industrial case study. Numerical
examples illustrated that a “good” design can save up to 25% of
the total production cost. Two heuristics were proposed to select
a proper stock mix. The first heuristic is based on the frequency
of components usage across different products. The second one
is based on the module size and it performed better. Simulated
annealing is useful to improve previous solutions.

If no acceptable solution (stock mix) is available for a given
mean assembly time, a supplier may need to renegotiate the con-
tract for a longer lead time.

In the model considered in this paper, an assumption was
made that dealers were not intervening in the product person-
alization (e.g., changing wheels or adding a sunroof to a car).
Future research will lead to the investigation of less restrictive
models. For example, the use of multiple locations with different
labor costs and different transport costs could be considered.
Furthermore, models with a stock-level decision variable could
be developed.

For decision makers, an important parameter is the robustness
of the solution they want to implement. In this particular case,
it could be interesting to study the performances of the results
given by the heuristics, when the weights of the costs and/or the
demand change. Obtaining this information could be the subject
of further work.
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