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Recursive Generation and Parametric Modelling

of Two Dimensional Sinewaves

Joel Le Roux

Abstract

This communication deals with the analysis of an image representing a finite sum of two 

dimensional sinewaves or complex exponentials in presence of a stationary white noise. The 

purpose is the estimation of  the characteristics of these sinewaves (bidimensional frequency 

and complex amplitude). This estimation is based on the Prony Pisarenko method and 

requires a bidimensional extension of this approach. Then the estimated sinewaves are 

generated in using a recursive (autoregressive) model.

1. Introduction

In the one-dimensional case, the Prony Pisarenko method ([1], [2], [4]) is based on a 

parametric linear recursive representation of a signal in order to model it as a sum of real or

exponentials (in the case of undamped sinewaves, the exponential are imaginary) to which is 

added a stationary zero mean white noise. The estimation of the parameters consists in the 

computation of the signal covariance matrix, followed by the computation of the eigenvector 

associated with its smallest eigenvalue. When these recursive model (filter) parameters are 

obtained (the frequential characteristics), the complex amplitudes are computed. This second 

step begins with the computation of the filter impulse response. Then the estimation of the 

initial conditions of the generation of the sinewaves (this information is equivalent to the 

complex amplitude of the components) consists in finding the coefficients of the delayed 

impulse responses through the minimization of the squared error between the analyzed signal 

and this sum of delayed and weighted impulse responses.

In order to extend this approach to the case of two dimensional signals, it is necessary to 

specify the support of the recursive filter allowing the generation of the signal from initial 

conditions. The main point of the communication is the proposition of a double form of the 

support allowing the analysis/synthesis of the signal. It is related to the recursive vectorial 

representation of images [3]. This specific representation of bidimensional signals is 

described in the second section. The third section details the bidimensional extension of the 

Prony Pisarenko estimatition method yielding the recursive model. The fourth section 

illustrates the proposition through simulations.
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2. Recursive representation of bidimensional sinewaves

Let f (x, y) be the sum of p bidimensional  (or complex exponential) sinewaves
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In this sum, the index i varies from 1 to p, and the coefficients )(ig , 
i

u and
i

v are complex;

i
u and

i
v are pure imaginary in the case of undamped sinewaves. How to generate recursively

),( yxf from initial conditions? This question has several answers and it is necessary to 

choose a particular form of the recursive representation of the signal and to define the domain 

where are given the initial conditions from which the signal will be generated. In the 

proposed approach, the first step in the generation of the signal ),( yxf will be the generation 

of one line from initial conditions using a one-dimensional recursion ;  the second step will 

use a second (bidimensional) recursion in order to generate the two lines above and below the 

first one, and next the other lines.

2.1 Recursive representation of the lines in the image

On one line of the image (y constant equal to y0), the expression (1) is monodimensional
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In this special case, the only visible frequencies are the ‘horizontal’ frequencies ui; the 

information concerning the ‘vertical’ frequencies vi appears as a modification of the initial 

conditions that depend on the line under consideration. The initial conditions are given on p

successive points of one line, that is for the values 0,..., p-1 of x and for the null value of y.

The recursive generation of that line of the image from these initial conditions requires the 

computation of the recursive filter with poles )exp(
i

u , that is
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This recursive filter (that is neither stable nor causal in the general case) allows the generation 

of the values of ),(
0

yxf  for increasing values of x starting from p. It can also be used in 

order to generate the signal for decreasing negative values of x, assuming that the model order 

is correct, ( a(p) is different from zero and a(0) equals one).
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This procedure generates a whole line from the p initial values.



2.2 Recursive generation of the other lines of the image

In order to generate the other lines of the image, starting from this line with null ordinate, it is 

necessary to choose a form of the recursion allowing this computation. A simple proposition 

is the following: the generation of the line of ordinate y = 1 and subsequently of the lines of 

positive ordinate will use a computation of the form

)1,()(),( ∑ −−−=

i
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where the recursion order is equal to p and i varies from 1 to p. The computation of 

),( yxf for the negatives ordinates requires a modification of this formula that will be 

detailed later. This bidimensional computation may be performed only on p points of the new 

line, the recursive horizontal computation allowing the generation of the other samples of the 

line.

In order to ensure that the p coefficients b(i) generate recursively the sum of the p

sinewaves∑ +

i

ii
yvxuig )exp()( , these coefficients must satisfy the following set of p linear 

equations
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The generation of the points in negative ordinate lines uses the formula
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where the predictor/generator coefficients )(' ib  must satisfy
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It is also possible to predict or compute the sample f(x, y) from the samples f(x+i, y-1)

(predictor b’’) or the samples f(x+i, y+1) (predictor b’’’), yielding similar formulas for the 

computation of a sample at the left of the upper line. The coefficients of the predictor )('' ib

must satisfy
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The prediction/generation of a sample at the left of the line is given by the second expression 

of formula (4) where the predictor coefficients )(' ia  satisfy
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For the generation of a sample on the left of the lower line, the predictor coefficients )(''' ib

must satisfy
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When the horizontal frequencies
i

u and the coefficients b(i) of the predictor are known,

equations (6) gives the ‘vertical’ frequencies
i

v . So, three of the four bidimensional predictors 

(b), (b’), (b’’) or (b’’’) can be deduced from the fourth and one of the two horizontal 

predictors through the solution of a set of linear equations (see figure 1)

Figure 1. Prediction/generation pattern in the image

(b’’) Generation of the samples of the upper line        (b) 

(a’)             Generation of the samples in one line             (a) 

(b’’’)     Generation of the samples of the lower line        (b’)

(b’’) Generation of the samples of the upper line        (b) 

(a’)             Generation of the samples in one line             (a) 

(b’’’)     Generation of the samples of the lower line        (b’)



Remarks on possible extensions: The approach extends directly to a three-dimensional space 

in considering the prediction of one line in the third dimension just as in the second 

dimension; then there are 10 predictors instead of 6. This three dimensional extension may be 

useful for the analysis of wave propagation. It is also possible to extend the approach to the 

case where the initial conditions are given on a rectangular support and not a linear segment; 

then the number of predictors is equal to à q + 2, where q is the height of the rectangle.

2.3 Limitations in terms of accuracy

If the propagation direction of the sinewaves is close to the vertical, the recursive 

representation where the initial conditions are given on a horizontal line may yield inaccurate 

results. Then the initial conditions and the successive samples must be given on a vertical line. 

In some cases, it will be necessary to separate the frequency domain in two regions and 

process separately the components close to the horizontal direction on one side, and the 

components close to the vertical direction on the other.

3. Prony Pisarenko method in two dimensions

Following the recursive generation procedure, this analysis will be performed in two steps:

firstly, the horizontal analysis of the lines and secondly, the bidimensional extension.

3.1 The one-dimensional analysis

The estimation of the horizontal frequencies ui reduces to the monodimensional problem.

The generation of one line in the image (y = 0) requires the knowledge of p initial conditions

in the positions i = 0,..., p-1. These two steps are solved in using the Prony Pisarenko method: 

the computation of the coefficients ai of the predictor begins with the computation of the 

covariance matrix with term 
l,k

r
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then the eigenvector associated with the lowest eigenvalue of this matrix is computed yielding 

the horizontal predictor. The second step, corresponding to the computation of the initial 

conditions will be described later. The computation of a covariance matrix of a signal that is 

not stationary yields a recursive model generating exponentials and damped sinewaves as well 

as pure sinewaves, which are obtained in the stationary case, that is when the covariance 

matrix is Toeplitz, which is the case considered by Pisarenko.

3.2 Adjunction of the second dimension

The present recursive formulations allows the application of the Prony Pisarenko method after 

a modification of the construction of the covariance matrix: the measured signal s(x, y) is the 

sum of the signal f(x, y) satisfying the recursive equation and of a white noise w(x, y) 

independent of f(x, y)
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Using this expression in order to replace f(x, y) in equation (5) yields
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The multiplication of this equation by the complex conjugates of s(x, y) and s(x-1, y-1), ...,

s(x-p, y-1) followed by the computations of means show that the measured signal must satisfy
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where the real eigenvalue
2

σ is the variance of the stationary measurement noise w(x, y); the 

subtraction of the noise is possible only if this eigenvalue is the smallest of the eigenvalues of 

the covariance matrix. This equation gives the bidimensional predictor which, associated with 

the line monodimensional predictor, allows the correct representation of the analyzed image.

As mentioned at the end of section 2.2, this knowledge of both predictors allows the recursive 

generation of the image starting from initial conditions; it also gives the full spatial 

frequencies with both the horizontal and vertical components;

3.3 Estimation of the initial conditions

Although the proposed criterion is not consistent with the hypotheses on which the recursive 

model is based, it may be useful to complete the approach with a step where the signal is 

synthesized in order, for instance to smooth the signal.

3.3.1 Computation of the modes

As the bidimensional frequencies are known, the analyzed signal can be matched with a sum 

of weighted exponentials. These exponentials have the value one at the origin of the plane and 

they can be generated recursively using the following formula and its three equivalent 

expressions in the negative horizontal direction and the positive and negative vertical 

directions
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3.3.2 Formalization and minimization of the quadratic criterion

s(x, y) will be constructed as the sum of p bidimensional exponentials to which is added a 

noise ),(' yxw
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Then the computation of the coefficients c(i) can be reduced to the minimization of a 

quadratic criterion (the variance of ),(' yxw ), although this criterion is not necessarily 

compatible with the measurement noise whiteness assumption on which the first step of the 

identification process is based. When the c(i) have been computed, the initial values are 

obtained in applying (16) with a null noise. However this second step is very dependant on the 



accuracy of the recursive models parameters: when the noise level is high, the covariance 

matrix estimation is not perfect and the evaluation of the characteristics of the exponential 

components is approximate; this lack of accuracy (especially on its real part associated with 

the damping factor) can severely deteriorate the final results. So, it may require improvements 

as proposed below.

3.4 Possible improvement

In order to reduce the inaccuracies occurring in this estimation procedure, a gradient 

technique can be used (with care, since the formulas are highly nonlinear). This may be done 

in using the following recursive procedure:

At step t of the recursion, there is an estimation of the parameters (c(i), ui, vi) on a rectangular 

portion of the image (with size XxY) ; the size of this portion of the image is slightly

increased to (X+∆X)x(Y+ ∆Y) ; the gradient of the sum of the squares of the differences

between f(x,y) and its prediction s(x,y) is computed and the linear corrections  ∆c(i), ∆ui, ∆vi

are computed in order to minimize the quadratic form
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This linear correction may be repeated several times; then the domain XxY is slightly 

extended again, and the correction of the parameters is repeated. However, an excessive 

augmentation of the domain size may yield a local minimum.

4. Confirmation by simulations

The analysis was performed on a 256x256 image composed of two complex undamped 

sinewaves. Their horizontal and vertical frequencies were u0=80.2/256 and v0=-60.3/256 (or 

195.7/256) for the first and 30.4/256 and 70.5/256  for the second, the sampling frequency 

being equal to 1; their amplitudes were g0=0.7 and g1=1. The results are visualized in the 

frequency domain in fig. 2.  The effects of the noise level are summarized in table I.  Figure 3 

presents the results of the improvement, when the analyzed signal is in the very low frequency 

range; then the Prony Pisarenko method yields rather poor results that are improved by a few 

steps of the error minimization proposed in paragraph 3.4. It should be stressed that this step 

has to be applied with care, since the control of its convergence is quite difficult.

5. Conclusion

Although there exist numerous sophisticated methods (see for instance [5], [6], [7], [8] among 

others), the proposed one may present some interest at least as an academic exercise: its 

implementation is rather simple. It also presents limitations: when the noise level is high, the 

accuracy of the covariance matrix estimation is not perfect and the evaluation of the 

characteristics of the exponential components is approximate; this lack of accuracy (especially 

on its real part associated with the damping factor) has a negative effect on the estimation of 

the initial conditions. It can be reduced by a refinement of the estimation of the parameters of 

the exponentials.
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Figure 2 :  Representation of the analyzed signal in the frequency domain (left) and of the

reconstructed sinewaves (right) (the poor accuracy of the representation is due to the 

limitations of the 256x256 discrete Fourier transform)

Table I: Effect of the noise level on the parameters estimation

0.0001 1.38E-07 2.01E-05 1.94E-04

0.001 2.19E-06 1.84E-04 8.24E-04

0.01 2.18E-05 1.87E-03 8.34E-03

0.1 1.47E-04 0.018 0.086

1 6.81E-03 0.566 1.722

10 0.626 1.022 not significant

noise 

standard 

deviation

typical error (standard deviation) on 

frequency 

and   

damping

initial 

conditions

the 

regenerated 

signal



Re s( ) Im s( )

Re signal z( )( ) Im signal z( )( )

Re f( ) Im f( )

Fig. 3. Improvement by gradient correction of the parameters of the exponentials: Upper 

view: the signal estimation after application of Prony’s method; Middle view: Evolution after 

8 steps of the gradient correction (one step ahead of convergence); Lower view: the final 

result after the last step, coinciding with the true signal.
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Abstract





This communication deals with the analysis of an image representing a finite sum of two dimensional sinewaves or complex exponentials in presence of a stationary white noise. The purpose is the estimation of  the characteristics of these sinewaves (bidimensional frequency and complex amplitude). This estimation is based on the Prony Pisarenko method and requires a bidimensional extension of this approach. Then the estimated sinewaves are generated in using a recursive (autoregressive) model.





1. Introduction





In the one-dimensional case, the Prony Pisarenko method ([1], [2], [4]) is based on a parametric linear recursive representation of a signal in order to model it as a sum of real or exponentials (in the case of undamped sinewaves, the exponential are imaginary) to which is added a stationary zero mean white noise. The estimation of the parameters consists in the computation of the signal covariance matrix, followed by the computation of the eigenvector associated with its smallest eigenvalue. When these recursive model (filter) parameters are obtained (the frequential characteristics), the complex amplitudes are computed. This second step begins with the computation of the filter impulse response. Then the estimation of the initial conditions of the generation of the sinewaves (this information is equivalent to the complex amplitude of the components) consists in finding the coefficients of the delayed impulse responses through the minimization of the squared error between the analyzed signal and this sum of delayed and weighted impulse responses.





In order to extend this approach to the case of two dimensional signals, it is necessary to specify the support of the recursive filter allowing the generation of the signal from initial conditions. The main point of the communication is the proposition of a double form of the support allowing the analysis/synthesis of the signal. It is related to the recursive vectorial representation of images [3]. This specific representation of bidimensional signals is described in the second section. The third section details the bidimensional extension of the Prony Pisarenko estimatition method yielding the recursive model. The fourth section illustrates the proposition through simulations.
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2. Recursive representation of bidimensional sinewaves





Let  f (x, y) be the sum of p bidimensional  (or complex exponential) sinewaves
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In this sum, the index i varies from 1 to p, and the coefficientsfile_1.unknown
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are pure imaginary in the case of undamped sinewaves. How to generate recursively file_6.unknown





thumbnail_6.wmf


)



,



(



y



x



f






 from initial conditions? This question has several answers and it is necessary to choose a particular form of the recursive representation of the signal and to define the domain where are given the initial conditions from which the signal will be generated.  In the proposed approach, the first step in the generation of the signal file_7.unknown
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 will be the generation of one line from initial conditions using a one-dimensional recursion ;  the second step will use a second (bidimensional) recursion in order to generate the two lines above and below the first one, and next the other lines.





2.1 Recursive representation of the lines in the image





On one line of the image (y constant equal to y0), the expression (1) is monodimensional
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In this special case, the only visible frequencies are the ‘horizontal’ frequencies ui; the information concerning the ‘vertical’ frequencies vi appears as a modification of the initial conditions that depend on the line under consideration. The initial conditions are given on p successive points of one line, that is for the values 0,..., p-1 of x and for the null value of y. The recursive generation of that line of the image from these initial conditions requires the computation of the recursive filter with polesfile_9.unknown
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This recursive filter (that is neither stable nor causal in the general case) allows the generation of the values of file_11.unknown
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 for increasing values of x starting from p. It can also be used in order to generate the signal for decreasing negative values of x, assuming that the model order is correct, ( a(p) is different from zero and a(0) equals one).
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,                 (4)





This procedure generates a whole line from the p initial values.























2.2 Recursive generation of the other lines of the image





In order to generate the other lines of the image, starting from this line with null ordinate, it is necessary to choose a form of the recursion allowing this computation. A simple proposition is the following: the generation of the line of ordinate y = 1 and subsequently of the lines of positive ordinate will use a computation of the form
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where the recursion order is equal to p and i varies from 1 to p. The computation of file_14.unknown
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for the negatives ordinates requires a modification of this formula that will be detailed later. This bidimensional computation may be performed only on p points of the new line, the recursive horizontal computation allowing the generation of the other samples of the line.





In order to ensure that the p coefficients b(i) generate recursively the sum of the p sinewavesfile_15.unknown





thumbnail_15.wmf


å



+



i



i



i



y



v



x



u



i



g



)



exp(



)



(






, these coefficients must satisfy the following set of p linear equations
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The generation of the points in negative ordinate lines uses the formula
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where the predictor/generator coefficients file_18.unknown
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It is also possible to predict or compute the sample f(x, y) from the samples f(x+i, y-1) (predictor b’’) or the samples f(x+i, y+1) (predictor b’’’), yielding similar formulas for the computation of a sample at the left of the upper line. The coefficients of the predictor file_20.unknown
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The prediction/generation of a sample at the left of the line is given by the second expression of formula (4) where the predictor coefficients file_22.unknown
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For the generation of a sample on the left of the lower line, the predictor coefficients file_24.unknown
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When the horizontal frequencies file_26.unknown
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 and the coefficients b(i) of the predictor are known, equations (6) gives the ‘vertical’ frequenciesfile_27.unknown
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. So, three of the four bidimensional predictors (b), (b’), (b’’) or (b’’’) can be deduced from the fourth and one of the two horizontal predictors through the solution of a set of linear equations (see figure 1)
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Figure 1. Prediction/generation pattern in the image





Remarks on possible extensions:  The approach extends directly to a three-dimensional space in considering the prediction of one line in the third dimension just as in the second dimension; then there are 10 predictors instead of 6. This three dimensional extension may be useful for the analysis of wave propagation. It is also possible to extend the approach to the case where the initial conditions are given on a rectangular support and not a linear segment; then the number of predictors is equal to à q + 2, where q is the height of the rectangle.





2.3 Limitations in terms of accuracy





If the propagation direction of the sinewaves is close to the vertical, the recursive representation where the initial conditions are given on a horizontal line may yield inaccurate results. Then the initial conditions and the successive samples must be given on a vertical line. In some cases, it will be necessary to separate the frequency domain in two regions and process separately the components close to the horizontal direction on one side, and the components close to the vertical direction on the other.








3. Prony Pisarenko method in two dimensions





Following the recursive generation procedure, this analysis will be performed in two steps: firstly, the horizontal analysis of the lines and secondly, the bidimensional extension.





3.1 The one-dimensional analysis 





The estimation of the horizontal frequencies ui reduces to the monodimensional problem.


The generation of one line in the image (y = 0) requires the knowledge of p initial conditions in the positions i = 0,..., p-1. These two steps are solved in using the Prony Pisarenko method: the computation of the coefficients ai of the predictor begins with the computation of the covariance matrix with term file_29.unknown
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 ,                                             (12)





then the eigenvector associated with the lowest eigenvalue of this matrix is computed yielding the horizontal predictor. The second step, corresponding to the computation of the initial conditions will be described later. The computation of a covariance matrix of a signal that is not stationary yields a recursive model generating exponentials and damped sinewaves as well as pure sinewaves, which are obtained in the stationary case, that is when the covariance matrix is Toeplitz, which is the case considered by Pisarenko.





3.2 Adjunction of the second dimension





The present recursive formulations allows the application of the Prony Pisarenko method after a modification of the construction of the covariance matrix: the measured signal s(x, y) is the sum of the signal f(x, y) satisfying the recursive equation and of a white noise w(x, y) independent of f(x, y)





file_31.unknown





thumbnail_30.wmf


)



,



(



)



,



(



)



,



(



y



x



w



y



x



f



y



x



s



+



=






                                                     (13)





Using this expression in order to replace f(x, y) in equation (5) yields
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The multiplication of this equation by the complex conjugates of s(x, y) and  s(x-1, y-1), ..., s(x-p, y-1) followed by the computations of means show that the measured signal must satisfy
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where the real eigenvalue file_34.unknown
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 is the variance of the stationary measurement noise w(x, y); the subtraction of the noise is possible only if this eigenvalue is the smallest of the eigenvalues of the covariance matrix. This equation gives the bidimensional predictor which, associated with the line monodimensional predictor, allows the correct representation of the analyzed image. As mentioned at the end of section 2.2, this knowledge of both predictors allows the recursive generation of the image starting from initial conditions; it also gives the full spatial frequencies with both the horizontal and vertical components;





3.3 Estimation of the initial conditions





Although the proposed criterion is not consistent with the hypotheses on which the recursive model is based, it may be useful to complete the approach with a step where the signal is synthesized in order, for instance to smooth the signal.





3.3.1 Computation of the modes





As the bidimensional frequencies are known, the analyzed signal can be matched with a sum of weighted exponentials. These exponentials have the value one at the origin of the plane and they can be generated recursively using the following formula and its three equivalent expressions in the negative horizontal direction and the positive and negative vertical directions
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3.3.2 Formalization and minimization of the quadratic criterion





s(x, y) will be constructed as the sum of p bidimensional exponentials to which is added a noise file_36.unknown





thumbnail_35.wmf


)



,



(



'



y



x



w












file_37.unknown





thumbnail_36.wmf


)



,



(



'



)



exp(



)



(



)



,



(



y



x



w



y



v



x



u



i



c



y



x



s



i



i



i



+



+



=



å






                                         (17)


Then the computation of the coefficients c(i) can be reduced to the minimization of a quadratic criterion (the variance of file_38.unknown
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), although this criterion is not necessarily compatible with the measurement noise whiteness assumption on which the first step of the identification process is based. When the c(i) have been computed, the initial values are obtained in applying (16) with a null noise. However this second step is very dependant on the accuracy of the recursive models parameters: when the noise level is high, the covariance matrix estimation is not perfect and the evaluation of the characteristics of the exponential components is approximate; this lack of accuracy (especially on its real part associated with the damping factor) can severely deteriorate the final results. So, it may require improvements as proposed below.











3.4 Possible improvement





In order to reduce the inaccuracies occurring in this estimation procedure, a gradient technique can be used (with care, since the formulas are highly nonlinear). This may be done in using the following recursive procedure: 





At step t of the recursion, there is an estimation of the parameters (c(i), ui, vi) on a rectangular portion of the image (with size XxY) ; the size of this portion of the image is slightly increased to (X+DX)x(Y+ DY) ; the gradient of the sum of the squares of the differences between f(x,y) and its prediction s(x,y) is computed and the linear corrections  Dc(i), Dui, Dvi are computed in order to minimize the quadratic form
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This linear correction may be repeated several times; then the domain XxY is slightly extended again, and the correction of the parameters is repeated. However, an excessive augmentation of the domain size may yield a local minimum.





4. Confirmation by simulations





The analysis was performed on a 256x256 image composed of two complex undamped sinewaves. Their horizontal and vertical frequencies were u0=80.2/256 and v0=-60.3/256 (or 195.7/256) for the first and 30.4/256 and 70.5/256  for the second, the sampling frequency being equal to 1; their amplitudes were g0=0.7 and g1=1. The results are visualized in the frequency domain in fig. 2.  The effects of the noise level are summarized in table I.  Figure 3 presents the results of the improvement, when the analyzed signal is in the very low frequency range; then the Prony Pisarenko method yields rather poor results that are improved by a few steps of the error minimization proposed in paragraph 3.4. It should be stressed that this step has to be applied with care, since the control of its convergence is quite difficult.





5. Conclusion





Although there exist numerous sophisticated methods (see for instance [5], [6], [7], [8] among others), the proposed one may present some interest at least as an academic exercise: its implementation is rather simple. It also presents limitations: when the noise level is high, the accuracy of the covariance matrix estimation is not perfect and the evaluation of the characteristics of the exponential components is approximate; this lack of accuracy (especially on its real part associated with the damping factor) has a negative effect on the estimation of the initial conditions. It can be reduced by a refinement of the estimation of the parameters of the exponentials.
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Figure 2 :  Representation of the analyzed signal in the frequency domain (left) and of the reconstructed sinewaves (right) (the poor accuracy of the representation is due to the limitations of the 256x256 discrete Fourier transform)





Table I: Effect of the noise level on the parameters estimation
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Fig. 3. Improvement by gradient correction of the parameters of the exponentials: Upper view: the signal estimation after application of Prony’s method; Middle view: Evolution after 8 steps of the gradient correction (one step ahead of convergence); Lower view: the final result after the last step, coinciding with the true signal.
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