N

HAL

open science

Patterns as first-class citizens

C. Barry Jay, Delia Kesner

» To cite this version:

‘ C. Barry Jay, Delia Kesner. Patterns as first-class citizens. 2006. hal-00229331

HAL Id: hal-00229331
https://hal.science/hal-00229331

Preprint submitted on 31 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00229331
https://hal.archives-ouvertes.fr

Patterns as first class citizens

Barry Jay! and Delia Kesner?

! University of Technology, Sydney, cbj@it.uts.edu.au
2 PPS, CNRS and Université Paris 7, kesner@pps. jussieu.fr

Abstract. The pure pattern calculus generalises the pure lambda-calculus
by basing computation on pattern-matching instead of beta-reduction.
The simplicity and power of the calculus derive from allowing any term
to be a pattern. As well as supporting a uniform approach to functions,
it supports a uniform approach to data structures which underpins two
new forms of polymorphism. Path polymorphism supports searches or
queries along all paths through an arbitrary data structure. Pattern poly-
morphism supports the dynamic creation and evaluation of patterns, so
that queries can be customised in reaction to new information about the
structures to be encountered. In combination, these features provide a
natural account of tasks such as programming with XML paths.

As the variables used in matching can now be eliminated by reduction
it is necessary to separate them from the binding variables used to con-
trol scope. Then standard techniques suffice to ensure that reduction
progresses and to establish confluence of reduction.

1 Introduction

The lambda-calculus is a theory of functions which is powerful enough to model
arbitrary computations. In its pure form every term is a function, so that func-
tion arguments are themselves functions. Such higher-order functions give a clean
account of recursion as the application of the fixpoint function. Also data struc-
tures such as pairs, lists and trees can be modelled as higher-order functions
that take as arguments functions that are to act on the data stored within the
structure. Central to the expressive power of the lambda-calculus is that a single
rule, beta-reduction, is used to describe the evaluation of an arbitrary function.
This uniformity allows a single function to be applied in a variety of different
situations, i.e. supports function polymorphism. Unfortunately, the description
of data structures is not so uniform. Although the lambda-calculus supports
functions that act uniformly on all pairs, or all lists, it cannot support opera-
tions that exploit characteristics common to all data structures. These include
operations for searching, updating and aggregating that are at the heart of data
processing but do not make sense with lambda-abstractions.

In a way, this is surprising because such operations can be specified quite
simply. Every data structure is either an atom or a compound. For example,
every list is either empty or is compounded from a head and a tail, every tree
is either a leaf or a node. With this characterisation, one can define searching a
data structure d as follows:

1. if d is the goal then return d;
2. else if d is a compound data structure then traverse its components;
3. else stop.

For example, consider the problem of listing all the points in a data structure.
Each point is represented by terms of the form point ¢ where point is a constructor
used to represent points whose data is represented by ¢ but the nature of the
structure holding the points is not known. Let the syntax [z1,...,z,] be used
for the list whose entries are given by z1,...,x, and let sQt be the result of
appending s to the front of t. Now the solution can be given by a pattern-
matching function defined by cases

letrec listpoints =

point y — [point y]
| zy — (listpoints =) @ (listpoints y)
|y =[]

The most interesting case of the three is the second, whose pattern = y is able
to match against an arbitrary compound data structure. For example, when
listpoints is applied to a pair pair s t of points s and ¢t we get

listpoints (pair s t) = ((listpoints pair) @ (listpoints s)) @ (listpoints t)
E[]]@ [s]) @ [t]
=|s,1

This uniform approach to compound data structures supports path polymorphism
in which all paths through a data structure can be traversed.

Another example of path polymorphism is the function that updates point
data within an arbitrary data structure. It is given by

letrec updatepoint = f —

point y — point (f y)
|z y — (updatepoint f z) (updatepoint f y)
ly =y

Further generalisation is achieved by making point a parameter to the generic
update function defined by

letrec update= x — f —

Ty =z (fy)
|z y — (update z f z) (update x f y)
|y =y

This time the two variables in the pattern = y above behave quite differently as
x is a free variable ready to be substituted by, say, point while y is a binding
variable, as usual. To distinguish these alternatives, the arrow in the case is
decorated with the free variable z. Where no subscript is specified then all the
free variables of the pattern are assumed bound.

The function update is pattern polymorphic, as it contains the free variable x
in the pattern x y whose instantiation can produce a variety of different update
functions. For example, update point reduces to updatepoint. Further, if update is
applied to a case then the pattern must be reduced before matching can occur.

Such flexibility in the use of patterns leads to the following leitmotiv:

any term can be a pattern.

This complements the view in lambda-calculus that any term can be a function.
Hence, the pure pattern calculus has term syntax

to=x|tt|[0]t—t

consisting of variables, applications and cases [0]p — s where 6 is a set of
variables, its binding variables. In defining reduction one must first specify a set
of variables «v which are to play the role of constructors. The sole reduction rule
is motivated by the equation

([0]p — 5) w =y {u/[0] p}y s (1)

where «y is disjoint from 6. Here {u/[f] p}, is the match of p against u that
produces either a substitution with domain @ or a failure.

It may be surprising to identify the constructors with a set of variables, but
it proves convenient when reducing the pattern of a case [#]p — s since the
variables in 6 are considered to be constructors when reducing the pattern p.
For example, [z] ([{ }]z — «) * — x reduces to [x] x — z since x is constructor
within the pattern ([{ }]z — z) .

The pure pattern calculus is well behaved. In particular, every closed term
of the form ([6] p — s) u is reducible. Also, reduction is confluent.

The simplicity of the pure pattern calculus is best appreciated by compar-
ing to previous approaches to pattern-matching. Popular functional program-
ming languages such as Standard ML [SML], OCAML [Oca] and Haskell [Has]
only support irreducible patterns which are either headed by a constructor or
are a binding variable. A general approach introducing A-terms as patterns
can be found in [vO90], where confluence is proved for terms verifying the
rigid pattern condition, a technique which is also applied in the context of p-
calculi [CK98,BCKLO03]. Certification of meta-properties of pattern-matching
calculi has been developed in [Kah03]. The patterns of our calculus also gen-
eralise those of the concurrent language Linda [Gel85] in which patterns are
tuples containing a mix of free and binding occurences. Later research sought to
augment the collection of patterns with new constructions [KPT96], reducible
patterns [CK98] and free variables which do not bound occurrences in the body
of the program [BCKLO03], and patterns for compound data structures [Jay04c].
Only the last of these supports path polymorphism and none of them supports
pattern polymorphic examples.

The last of these underpinned the development of typed calculi supporting
pattern polymorphism (e.g. [Jay04a]) which allow free variables in patterns, and

their reduction but without allowing arbitrary terms as patterns. These have
been used to support the generic update, and its extension to handle arbitrary
XML paths [HJS05a,HJS05b]. They have also been used to support an object
model able to support central goals of object-orientation [Jay04b]. Again, they
provide an account of structure polymorphism [JC94,JBM98,Jay04c] necessary
to support operations such as mapping and folding in a uniform way, similar
to polytypic or generic functional programming [Jan00,BAMH96,GJ03]. Finally,
the “scrap-your-boilerplate” approach [syb06] supports some key cases of path
polymorphism.

All these calculi attempted to control variable binding by restricting the class
of patterns and their reduction. However, simplicity comes by treating binding
separately from the pattern itself. It is expected that all of the applications above
can be re-engineered in the new, simpler, framework.

The structure of the rest of the paper is as follows. Section 2 introduces the
terms. Section 3 defines reduction. Section 4 considers some examples. Section 5
shows that matching does not get stuck. Section 6 proves reduction is confluent.
In Section 7 we present an alternative account of first-class patterns as proposed
in [JKO6]. Section 8 draws conclusions and considers further work.

Acknowledgements We would like to thank the anonymous referees and Eu-
genio Moggi for their constructive criticism.

2 Terms

Fix a countable alphabet of variables (meta-variables ...z, y, z). Let ¢, 8 and 7
denote finite sets of variables and 6, denote the disjoint union of such sets.

Definition 1 (Terms). The term syntaz of the pure pattern calculus is given
by the following grammar:

to= (terms)
x (variable) |
tt (application) |
0]t —t (case)

The notations [x1,...,2,]p — s and []p — s will be used in place of
[{x1,...,2,}]p — s and [{}]t — s to avoid unnecessary brackets.

The variables are available for binding, matching and substitution. The appli-
cation 7 u applies the function r to its argument u. The case [0] p — s is formed
of a pattern p and a body s linked by the set 6 of binding variables. Application
is left-associative and case is right-associative. Application binds tighter than
case. For example [z]z — [y]z y z — y is equal to [z]z — ([y] ((z y) 2) — y).
Lambda-abstraction can be defined by setting Az.t to be [z] x — t.

Definition 2 (Free and bound Variables). Free and bound of terms are
defined by:

fv(zx) = {x} bv(z) ={}
fv(r w) = fv(r) Ufv(u) bv(r u) = bv(r) Ubv(u)
fv([f]p — s) := (fv(p) Ufv(s)) \ @ bv([0] p — s) := bv(p) U bv(s) U 6.

Hence the binding variables of a case bind their free occurrences in both the
pattern and body. A term is closed if it has no free variables.

The notation p — s stands for [fv(p)]p — s (so that in particular a lambda-
abstraction Az.t can also be written as < ¢). More generally, p <, s stands
for [fv(p) \ ¢lp — s.

Hence programmers need never actually mention binding variables explicitly
unless they require free variables in the pattern.

2.1 Matches

A substitution (meta-variable o) is a partial function from variables to terms.
The notation {uy/z1, ..., u,/x,} represents the finite substitution that maps x;
to u; for i = 1...n and {} is the empty substitution.

A match (meta-variable p) is either a successful match, given by a substitution
o, or a failure, written as none.

The usual concepts and notation associated with substitutions will be defined
for arbitrary matches.

The domain of p is written dom(u). The domain of none is the empty set. If
dom(u) and dom(p') are disjoint we write u#u’. The set of free variables of o is
given by the union of the sets fv(ox) where 2 € dom(c). Also, none has no free
variables. Define the wvariables of u to be var(u) = dom(p) U fv(i). We use the
predicate p avoids x to mean x ¢ var(u). More generally, u avoids 6 if it avoids
each variable in 6 and avoids a term ¢ if it avoids fv(t).

Definition 3 (Applying a substitution). The application of a substitution
o to a term is defined by

ox =ox if x € dom(o)
ox =z if ¢ dom(o)
o(r u) = (or) (ou)

a([0]p — s) :=[0]op — osif o avoids 6

The restriction on the definition of o([f#] p —) is necessary to avoid a vari-
able clash which would change the semantics of the term. Thus for example
{y/z}([y] y — z) would change the status of the free variable z in the body to a
bound variable y while {y/z}([z] — y) would change the bound variable x in
the pattern to a free one. Variable clashes will be handled by a-conversion.

If matching fails in Equation (1) then none will be applied to the body of the
case, which should be discarded. One possibility is to introduce a special error
term, but match failure provides a natural branching mechanism which can be

used to underpin the definitions of conditionals and pattern-matching functions.
Hence, we define
none t (= — x.

Definition 4 (Disjoint union of matches). The disjoint union wq W pe of
matches p1 and pe is defined as follows. If either of them is none or their do-
mains have a non-empty intersection then their disjoint union is none. Other-
wise, it is the substitution given by

pir it x € dom(pq)

(1 W pe)x := < poxr if x € dom(puz)
T otherwise.

Disjoint domains will be used to ensure that matching is deterministic.

The composition o9 o o1 of two substitutions o1 and oy is defined by (o9 o
o1)x = o9(o1z). Further, if g1 and ps are matches of which at least one is none
then pg o py is defined to be none.

Definition 5 (Check). The check pg of a match p on a set of variables 0 is
if u is a substitution whose domain is exactly @ and is none otherwise.

Checks will be used to ensure that variables do not escape their scope in next
section.

2.2 Alpha conversion

Let 0 be a set of variables and = and y be variables. Then {y/x}6 is defined
to be the set obtained by replacing x by y in 0 if x € 0 and y € 6, and to be
undefined otherwise.

Alpha conversion is the congruence relation generated by the following axiom

0] — s =a [{y/2}0] {y/x}p — {y/x}s if y & fu(p) Ufv(s).
For example, [y|x y — z (t y) =4 [2] 2 2 — = (¢ 2) if 2z is not free in ¢.

Lemma 1. For every substitution o and term t there is an a-equivalent term t’
such that ot’ is defined. If t1 and ty are a-equivalent terms then fv(t1) = fv(tz2)
and if uy = ot1 and uy = ote are both defined then uy =, us.

Proof. The proofs are by straightforward inductions.

From now on, a term is an a-equivalence class in the term syntax.

Note that although it is easy to avoid variable clashes by a-conversion, it is
a little harder to decide equality of terms since there are n? ways of aligning
two sets of n binding variables. If this is important then the definitions can be
modified to employ lists of binding variables.

3 Reduction

In all well-known pattern-matching calculi reduction proceeds in two stages: first
generate a match and then apply it. The difference between different languages
resides in different notions of matching functions. As the patterns of our calculus
contain free variables, the notion of matching has to be carefully defined in order
to guarantee that substitutions generated by the match operation will only affect
the set of binding variables of the case.

3.1 Matching

Basic matching is defined using two parameters ¢ and 6, the first being the set of
constructors and the second one the set of binding variables. A key notion used
in the definition of basic matching is the one of p-matchable form, intuitively,
those terms that are ready to be matched.

Definition 6 (Data Structures and Matchable Forms). The ¢-data struc-
tures (meta-variable d) and ¢-matchable forms (meta-variable e) are given by
the following grammar:

de=x(xep)|dt
ex=d|[0]t—t

where t can be an arbitrary term. Define the data structures (resp. matchable
forms) to be the {}-data structures (resp. {}-matchable forms).

Definition 7 (Basic Matching). The basic matching {urg p}, of a termp
(called the pattern) against a term u (called the argument) relative to a set 6 of
binding variables and a disjoint set vy of constructing variables (or constructors)
1s the partial operation defined by applying the following equations in order

fure 2}, = {u/z} ifxed

{zxro z}, ={} ifexeny

fvure ¢p}y :=fvre g}, W{ury p}, if ¢ pis ay,f-matchable form
and v u is a y-matchable form

fure p}, := none if p is a ~y, f-matchable form
and u is a y-matchable form
fure p}, := undefined otherwise.

That is, matching is always defined if the pattern is a «, #-matchable form
and the argument is a y-matchable form, and match failure can only arise if rules
for successful matching do not apply. A binding variable matches anything. A
constructor matches itself. Matching of compound data structures is component-
wise, using (disjoint) union. Note that the ordering of the equations can be
avoided by expanding the definition into an induction on the structure of the
pattern.

The use of disjoint unions when matching compound patterns means that
matching against a compound such as ¢ « x can never succeed. Since non-linear

patterns cannot be banned (any term can be a pattern), the alternative would be
to allow it to match with terms of the form ¢ u u. However, this may cause a loss
of confluence, as in [FK03,Kah03], for reasons grounded in Klop’s observation
[K1o80] that the combination of untyped A-calculus with non left-linear first-
order rewriting systems breaks confluence.

As defined, matching one case against another always fails. It should be
possible to support this without too much effort, but it it not neccessary for the
sorts of data manipulations that motivated this work.

Definition 8 (Matching). Let p and u be terms and let 0 and v be disjoint
sets of variables. Define the matching {u/[0] p}, of p against u with respect to
binding variables 6 and constructors 7y to be the check of {urg p}, on 6, where
the check of a match is the function in Definition 5.

The check is necessary to ensure that reduction does not allow bound vari-
ables to become free. For example, {z>, 2},; = {} but {z/[y] 2}{,; = none
since the basic matching is not defined on y.

The pure pattern calculus has a match rule given by

([0]p — 5) u > {u/[0] p} s (2)

parametrised by the choice of constructors . That is, if matching of the pattern
against the argument produces a substitution whose domain is the binding vari-
ables then apply this to the body. If the matching fails then return the identity
function. Of course, if {u/[f] p}, is undefined (e.g. because p or u needs to be
reduced) then the match rule does not apply.

r0,r u O~ o
(10]p — s) w Oy {u/[0] p}y s rulyru rulyru
pOy0 7 sO, 8
[0]p—s O, [0]p —s 0lp—s O, 0lp—s

Fig. 1. One-step reduction

The one-step reduction relation [, is defined by the rules in Figure 1. The
reduction relation U7 is the reflexive-transitive closure of [, . A term ¢ is
~v-irreducible if there is no reduction of the form ¢ O, ¢'.

The key point is that the binding variables of a case become constructors
when reducing the pattern. For example,

2] ([]Jr—2)z =2 0g [z]z —2

since the binding variable 2 becomes a constructor when reducing (([]z —) x).

4 Examples

A-calculus There is a simple embedding of the pure A-calculus into the pure
pattern calculus obtained by identifying the A-abstraction \x.s with [z]x — s
or []z — s. Pattern-matching for these terms with respect to any set of con-
structors is exactly the g-reduction of the A-calculus. For example, the fizpoint
term

fix=@@—ofofaf) (t=ff(zzf))

can be used to define recursive functions. A term definition of the form letrec x :=
t will be interpreted as giving f the value fix (z < t) in the usual way.

Constructors It is common to add to the A-calculus a collection v of term
constants to play the role of constructors for data structures. Here we can define
a program to consist of a pair of a term p and a set of term variables 7, and
perform reduction relative to ~y. Equivalently, one may define a program to be a
term of the form

Vp— e

where e € v, with reduction relative to the empty set of variables.

Branching constructs Let true and false be constructors and define condition-
als by
if bthen s else r:= (true -z <— s) br

where x & fv(s). Thus, if true then s else r reduces to (z < s) r and then to s
while if false then s else r reduces to (y < y) r and then to r. More generally,
the extension [f]p — s | r extends the case [0]p — s with a default r by

B]p—s|r=c—=(0lp—y—s)z(rz

where z & fv([0]p — s) Ufv(r) and y & fv(s). When applied to some term w it
reduces to {urvg p}, (y — s) (r u). Now if {urg p}, is some substitution o
then this reduces to o(y — s) (r u) = (y — os) (r u) and then to os as desired.
Alternatively, if furg p}, = none then the term reduces to (none (y —
s)) (r u) = (2 < 2) (r u) and then to r u as desired.

Extensions can be iterated to produce pattern-matching functions out of a
sequence of many cases. Make | right-associative so that

[91]]91 — 51
| [92]]92 — 52

| [Hn]pn — Sn

is [1]p1 — s1 | ([f2)p2 — s2 | (.. | [0n] Pn — sn)). For example, the functions
listpoints and update in the introduction are defined in this way.

Arithmetic The natural numbers can be defined as data structures built from
constructors zero and successor. Then recursive functions can be defined using

fix. This compares favourably with the representation of numbers as the iterators
used to define the Church numerals.

Generic equality Now let us consider some novel programs. A generic equality
is defined by
equal := z < (x <, true | y — false)

where the first argument is used as the pattern for matching against the second.
For example, equal (successor zero) (successor zero) reduces to true. This is a sim-
ple example of pattern polymorphism where the pattern is created dynamically.

The generic eliminator The generic eliminator is given by
eim=z—zy—,y

For example, elim successor reduces to successor y — y. Again, suppose that the
list constructors nil and cons are given and define singleton := x < cons x nil.
Then elim singleton reduces to cons y nil < y by reduction of the pattern.

Generic updating Patterns of the form x y are used to access data along
arbitrary paths through a data structure, i.e. to support path polymorphism.
Combining the use of pattern and path polymorphism yields the generic update
function defined in the introduction. When applied to a constructor ¢, and a
function f and a data structure d it replaces sub-terms of d of the form ¢ ¢ by
¢ (f t). For example, update ¢ f ((c u) (¢ v)) reduces to (¢ (f w)) (¢ (f v)). In
general, update can be applied to cases. For example, update singleton f reduces

to
cons y nil < cons (f y) nil

| zy — (update singleton f z) (update singleton f y)
|y =y
Also, updating can be iterated to give finer control. For example, given con-
structors salary, employee and department and a function f then the program

update department (update employee (update salary f))

updates departmental employee salaries. Note that it is not necessary to know
how employees are represented within departments for this to work, so that a
new level of abstraction arises, similar to that which XML is intended to support.
The full range of XML paths can be handled by defining an appropriate abstract
data type, similar to that of signposts given in [HJS05a,HIJS05Db].

Wild-cards It is interesting to add a new constant denoted 7 to the pure pattern
calculus, the wild-card. It has no free variables and is unaffected by substitution.
It is a data structure, is compatible with anything, and has the matching rule

fuvo 7}, = {)

for any v and 6. That is, it behaves like a fresh binding variable in a pattern but
like a constructor in a body. For example, the second and first projections from
a pair can be encoded as elim (pair ?) and elim (z < pair x 7).

10

The following example uses recursion in the pattern. Define the function for
the extracting list entries by

letrec entrypattern =
succ n < x < cons ? (entrypattern n x)
| zero — x<—consx?

entry = n < elim (entrypattern n)

For example, entry (succ (succ zero)) reduces to cons ? (cons ? (cons x 7)) < x
which recovers the second entry from a list. Note the standard approach, in
which each occurrence of the wild-card represents a distinct binding variable,
cannot support such recursion.

5 Properties of reduction

This section establishes some basic properties of the reduction relation intro-
duced in Figure 1.

Lemma 2. If v C ¢, then t O, t' implies t O, t'.

Proof. The proof is by induction on the reduction relation. The interesting case
is that of the match rule for which we use two facts :

— If u is a y-matchable form, then it is also a ¢-matchable form.
— If {urg p}, is defined, then {u>g p}, is also defined.

Define contexts by the following grammar:
C:=0|Ct|tC|[0|C—t|[0)t—C

where [is a constant.

The replacement of [J by a term ¢ in a context C' is written C[t].

A relation R is closed under contexts if t R u implies C[t] R Cfu] for any
context C.

Lemma 3. The reduction relation 0. is stable under substitution for variables
not in vy and is closed under contexts.

Proof. Stability of reduction under substitutions follows by a straightforward
induction. Stability under contexts can be shown by induction. The interesting
case consists in showing that p 0., p’ implies [#]p — s O, [0]p’ — s for which
we use Lemma 2 and definition of reduction.

Theorem 1. Let t be a term whose free variables are all in some set ~y. If t is
~y-irreducible then t is a y-matchable form. Hence, pattern-matching cannot get
stuck.

Proof. The proof is by induction on the structure of ¢. We only consider here
t of the form ([f]p — s) w as all the other cases are straightforward. Now u
is y-irreducible, and p is -y, #-irreducible and so, by induction, u is y-matchable
and p is vy, #-matchable. Hence the basic matching of p against u is defined and
so t is y-reducible, contradicting the assumption.

11

6 Confluence

Confluence of reduction is established using the simultaneous reduction tech-
nique due to Tait and Martin-Lof [Bar84] which can be summarised in four
steps: define a simultaneous reduction relation denoted = -; prove that =7 and
07 are the same relation (Lemma 4); show that = has the diamond property
(Theorem 2); and use this to prove confluence.

Let v be a set of variables. The simultaneous y-reduction relation is given in
Figure 2.

7"3'\/7"/ Ué’yul

t=41 rus,r u
PP s=48 pa0p 5248 uz,u
Olp—s=,[0]p — s ([0]p —) u=~ {u/]0] p'}y &

Fig. 2. Simultaneous 7-reduction

Lemma 4. Fvery one-step y-reduction is a simultaneous y-reduction. Also, ev-
ery simultaneous y-reduction is a y-reduction. Hence the reflexive-transitive clo-
sure =2, of = is the reduction relation 07 .

Proof. The proofs are by straightforward induction on the definitions.

The simultaneous ~y-reduction relation = . between matches is defined as
follows. Given two substitutions ¢ and ¢’ then o =, ¢’ if dom(c) = dom(¢’) and
ox = o'z for every x € dom(c). We define also none =, none. Substitutions
and none are not related.

Lemma 5. Ift is a term and p is a match then fv(p t) C fv(p)U(fv(t)\dom(u)).

Proof. If p is none then the result is immediate since fv(none t) is exactly
fv([x] x —) which is the empty set. So assume that p is a substitution o.
The proof is by induction on the structure of ¢. If ¢ is [#] p — s where ¢ avoids
0 then

fv([0] op — os) = (fv(op) Ufv(os)) \ 6
(fv(o) U ((fv(p) Ufv(s)) \ dom(c))) \ € (by the i.h.)
fv(o) U (fv(t) \ dom(o)).

N

The other cases are straightforward.

12

A simple example can be given by the term ¢ = z y w and the match
{t/z,u/y,v/z}, for which we have fv(t u w) C fv(t) U fv(u) Ufv(v) U {w}.

Lemma 6. If p = {u>g p}, for some terms p and u and disjoint sets of
variables v and 0 then fv(u) C fv(u).

Proof. If i = none then there is nothing to prove. Otherwise the proof is by a
straightforward induction on the structure of p.

For example, p = {t v wpyy =y whe = {t/x,v/y} we have fv(u) =
fv(t) Ufv(v) Cfv(t) Ufv(v) U{w} = fv(t v w).

Exactly as in A-calculus, reduction and simultaneous reduction in the pure
pattern calculus preserve the set of free variables of terms but may lose some of
them. A simple example of this can be given by the simultaneous reduction step
t=([r,y]ry —y) (z w) = w =1 which loses the free variable z. Formally,

Lemma 7. Ift =, t' is a simultaneous reduction then fv(t') C fv(t). Hence, if
w =~ i is a simultaneous reduction between matches, then var(p') C var(u).

Proof. By Lemma 4 it suffices to prove the result for the one-step reduction
relation; we only show here the case of the reduction rule (2). Then

fv(fure p}y s)

/-\
—

O b 130 ((s) \ dom(ue gy) (Lemmas)
C W(fuso pl) U (R(s)\0)

C fulu) U (v([68]p — 5)) (Lemma 6)
= fv(t).

Generalising the Substitution Lemma of A-calculus [Bar84] yields the fol-
lowing lemma.

Lemma 8. Let i be a match and let 8 and vy be two disjoint sets of variables such
that p avoids 6 and dom(p) Ny = {}. If p and u are terms such that {ure p},

is defined then so is {p u>e pply and {puve pp}y op=pofurvy p}, .
Hence

{w/l0] ppty op=pofu/lo] p}y -

Proof. The second statement follows directly from the first which we analyse in
detail. If 14 is none then both sides of the equation are none. So without loss of
generality, assume that p is a substitution . The proof is by induction on the
structure of p. If p is a variable € 6 then both sides of the equation map z to
ou and behave as o on all other variables since var(c) N0 = {}. If p is in y and
u is the same then both sides of the equation are u. If p and u are compatible
applications then apply the induction hypothesis twice. This requires that u
avoids 6.

If {u>g p}, = none then {ourg op}, = none (since dom(o)N(OU~) = {})
and so both sides of the equation are none.

13

As expected, basic matching is stable under reduction. This property can be
specified by the following general statement concerning simultaneous reduction
which includes by definition reduction.

Lemma 9. Ifp =99 andu =, v are simultaneous reductions on terms and
{ure p} is defined then so is {u'vg p'}, and {ure p}, =, {u've P’} -

Proof. The proof is by induction on the structure of p. If p is a variable then p’
is the same variable so that the result follows directly. If p is a case then both
matches will fail. Otherwise p must be a «, #-matchable form p; ps and u must
be a v-matchable form. If u is not an application then it must be a constructor
or a case: either way, both matchings will fail. Alternatively, if v = u; ug then
Theorem 1 implies that u; is also a y-data structure and thus v’ =) uj where
uy =, u} and ug = uhH. Now py is a v, f-data structure and so p’ = p| p5 where
P1 =+,0 Py and pa =, ¢ ph. Hence the induction hypothesis applies.

Simultaneous reduction (and thus reduction) is stable under substitution:

Lemma 10. If p =, ¢/ and t =, t' are simultaneous reductions of matches
and terms respectively and dom(p) Ny = {} then pt =, u' t'.

Proof. If 1 is none then p’ is none and so the result is immediate. So assume
that p and p' are substitutions ¢ and ¢’ respectively. The proof is by induction
on the derivation of ¢ =, t’. The only non-trivial case is when t = ([0]p —
s)u =~ fu've p'}y s where p =, p and u =, v’ and s =, s’. Without
loss of generality, assume var(c) N6 = {} by a-conversion. Hence var(c’) N6 C
var(c) N6 = {} by Lemma 7 and dom(m’) Ny = dom(m) N~ = {}. Thus,
o({u' e p'}y &) is equal to {o' u' >y o p'}, (0 §') by Lemma 8 and
so o(([f]p — $)u) = (0o p — 05) (0 u) By {0' Wrp o Phy (0) =
o ({u've p'Ey).

In order to get confluence of the reduction relation [, we first show that
= has the diamond property, then we conclude by using the fact that =7 and
07 are the same relation so that confluence of one implies confluence of the
other one.

Theorem 2. The relation =~ has the diamond property. That is, t = t1 and
t =, t2 then there is t3 such that t1 =, t3 and t2 =, t3.

Proof. The proof is by induction on the definition of simultaneous reduction.
Suppose
([0]p2 = s2) uz v& ([0]lp — 5) u=~ {uive 1}y 51

where p =9 p1 and p =, 9 p2 and s =, s; and s =, s2 and u =, Uy
and u =, u2. By the induction hypothesis, there are terms ps, s3 and uz such
that p1 =, p3 and p» =~ p3 and s1 =, s3 and sz =, s3 and u; =~ u3
and uy =~ uz. Now {u1>9 p1}y =, {usve ps}, by Lemma 9 and so
fuire p1}}y s1 =+ {uspe ps} s3 by Lemma 10 since dom({w1>9 p1}~) does not
contain y by construction. Hence, the diamond is completed by {usrg ps}~ ss.

14

Again, suppose

fuive pil}y s14E& (Blp — 5) u=y {uave p2lty s2

where p =49 p1 and p =9 p2 and s =, s; and s =, s2 and u =,
and u =~ uz. By the induction hypothesis there are terms ps, s3 and usz such
that p; =9 p3 and p2 =9 p3 and s; =, s3 and sy =, s3 and u; =, uz and
up =~ uz. Now {ui>g p1}y and {uapg po}}, both simultaneous reduce to
{us>e p3l}, by Lemma 9 and so Lemma 10 implies the diamond is completed
by {us>e psl}, ss. The other cases are straightforward.

Corollary 1 (Confluence). The reduction relation 0. is confluent.

Proof. Theorem 2 shows that =, has the diamond property and so the reflexive-
transitive closure of =, is confluent (as can be spelled out by a straightforward
induction). Now apply Lemma 4.

7 A second solution

This section presents an alternative account of first-class patterns [JK06]. From
a syntactical point of view the main difference between this second solution
and the one presented before is that the set of constructors does not increase
dynamically during reduction as it is just defined once for all. So, one globally
fixes a set of symbols to play the role of constructors. For simplicity we only
consider here a single constructor e.

Terms are now generated by the following grammar

o= (terms)
x (variable) |
° (constructor) |
tt (application) |

0]t — t (case)

We add to Definition 2 the case fv(e) := {} and to Definition 3 the case
ge = e,

Now, the most common situation is that the free variables of a pattern are
binding variables and so ready to be matched, asin (z < z) e or (z y <— y) (e ®)
where = and y both bind to e. In various examples that we gave a pattern
may contain a free variable that is awaiting substitution. Then matching of the
pattern must be delayed untile the value of the (free) variable is known, as in
x = ([y]z y — y) (o o). There is even a third possibility which is illustrated by
the following closed term

t= (] ([]e—2)z—2) (o) (3)

The pattern p given by ([]z —) = contains a free variable x which cannot
be replaced by substitution, as it is a binding variable of ¢. Hence there is no way

15

that p can ever be reduced and so it is natural to treat it as a compound data
structure in order to match against its parts. Then the match of ([|z — z) «
against (e e) will fail since the (subcase) match of ([]z — x) against e will also
fail. In this way, the matching does not get stuck.

The difficulty with this approach is in determining that p is irreducible within
t. Of course this depends upon the status of x, so the notion of data structure
needs to characterise the irreducible applications such as ([|z — z) z. We
thus define the notion of data structure in terms of irreducibility of their parts,
which in turn depends upon the data structures within them, in a virtuous, but
well-founded cycle. Thus, data structures and reduction are mutually recursive
definitions whose well-foundedness will be argued after their introduction.

Definition 9 (Data Structures and Matchable Forms). The ¢-data struc-
tures (meta-variable d) are defined as follows:

— The constant e is a p-data structure.

— FBvery x € ¢ is a p-data structure.

— If d is a p-data structure and u a term, then d u is a p-data structure.

— If ([0]p — s) u is an irreducible term and all its free variables are in @, then
the term is a p-data structure.

Thus for example, o o is a p-data structure. Also ([]x — z) x will be proved
to be irreducible, and so to be a {x}-data structure.
The p-matchable forms are given by the grammar:

ex=d|[0]t—u

As before, define the data structures (resp. matchable forms) to be the {}-
data structures (resp. {}-matchable forms).

Definition 10 (Basic Matching). The basic matching {urg p} of a term
p (called the pattern) against a term w (called the argument) relative to a set
0 of binding variables is the partial operation defined by applying the following
equations in order

fuve 2} = {u/z} if xeb
foro o} ={}

fvurvg gp} =fvre ¢} W{ure p} if ¢ pis a f-matchable form
and v v is a matchable form

{ury p} :=none if p is a G-matchable form
and u is a matchable form
{urp p} := undefined otherwise.

For example, evaluation of ¢ in (3) will use the match

o={(eo)>s ([Jz—)2}

Now, {z>gy x}} is undefined so that ([]# — x) x turns out to be irreducible
and thus it is a {z}-data structure. Hence the matching of [|« — z against e is
calculated, and proves to be none, and so ¢ is also none and t is reducible.

16

Definition 11 (Matching). Let p and u be terms and let 0 be a set of variables.
Define the matching {u/[f] p} of p against v with respect to binding variables
6 to be the check of {urg p} on 6, where now the check of a match m on a set
of variables v is m if m is a substitution whose domain is exactly ¢ and none
otherwise.

The new match rule is now given by

([01p —) uw> {u/[0] p} s (4)

The new one-step reduction relation O is defined by the rules in Figure 3.

r O 7 w o
([0]p — s) v O {u/[0] p} s ruldr u rul ru
pOp sO s
[0]p—s O [0]p —s [0]lp—s O [0lp—s

Fig. 3. New one-step reduction

Now, remark that a term ¢ is reducible if one of its subterms is reducible or
if t = ([0]p — s) uand {u/[0] p} is defined. The check {u/[f] p} is defined if
it is none or if it is a substitution {u>g p} whose domain is equal to 6. Now,
{ure p} is a substitution if one of the cases of the definition hold, in particular
if p is a f-matchable form (a case or a 6-data structure) and w is a matchable
form (a case or a data structure). To check this on p and u we would eventually
need to check if they are reducible or not, but they are subterms of the original
term ¢.

Summing up, a simple induction on terms allows us to show that the property
of being reducible is well-defined. Thus, Definitions 9, 10 and 11 together with
Figure 3 give sound mutual recursive notions.

As expected, this formalism also gives a sound solution to the quest of a
language with path and pattern polymorphism. More precisely,

Theorem 3 (Confluence). For each ~y the reduction relation O is confluent.

We refer the reader to [JK06] for a detailed proof.

8 Conclusion and Further Work

Pattern-matching provides a natural mechanism for computing with data struc-
tures; its expressive power is determined by the nature of the patterns that are
allowed. The pure pattern calculus maximises this expressive power by allowing

17

any term to be a pattern. The resulting language supports patterns that are able
to match with arbitrary compound data structures (path polymorphism), and
patterns that can be assembled dynamically (using free variables to represent
patterns) and simplified into a matchable form (pattern polymorphism). Such
patterns will prove useful when manipulating remote data whose structure is
only partially known, as illustrated by the example of updating.

Two related approaches were explored. The first solution identifies construc-
tors with variables, and makes the notion of constructor context-dependent.
This makes it easy to describe the data structures and matching, but now every-
thing, including reduction, is parametrised by the choice of constructors. Such
parametrised families of reduction relations are unfamiliar, and so there may be
some surprises in store. The second solution fixes the constructors once and for
all, so that there is only one reduction relation, but this one relation is defined
by mutual recursion with that of the data structures, so that the overall account
is actually more complicated. Overall, we prefer the first solution for its natu-
rality: the difficulties of handling parametrised families of relations are probably
less than those flowing from the mutual recursion; and the contextualisation of
constructors is closer to programming practice.

There are a number of open questions concerning the pure pattern calculus
itself, and its connections to rewriting, logic, type theory and category theory.

The matching process may extend to consider matching of cases as well as of
data structures, provided the binding variables of cases are treated appropriately.
We have not pursued this here as the complexity of the development was not
justified by any new forms of polymorphism. However, it may prove useful in
program analysis and transformation.

It is not yet clear what extensional equality should be for the pattern calculus,
as earlier work on extensionally for pattern-matching [Kes97] does not take full
account of data structures. For example, the n-equality rule f = Ax.f = does not
apply in our setting since a data structure is not a case.

Another issue concerns higher-order rewriting within a formalism with pat-
terns [FKO03]. It seems natural to extend such languages to capture the rich
dynamics of the patterns presented here.

In the spirit of [KPT96] it would be interesting to explore a Curry-Howard
interpretation for the pure pattern calculus in order to recognise, or develop,
the corresponding logic. For example, matching against arbitrary compounds
appears to model structural induction [Bur69] in a uniform way.

The calculus presented here uses a meta-level (or implicit) pattern-matching
operation. One could also consider explicit pattern-matching, where the match
equations become themselves rewriting rules which can then be interleaved with
other reductions [CK99,For02,Kah03,Jay04c].

It is straightforward to provide simple types and indeed to support paramet-
ric polymorphism. Of more interest will be the addition of type specialisations
[Jay04c] necessary to type the more complex examples. The calculus will then
provide a clean foundation for a typed account of XML paths, as described

18

in [HJS05a,HJS05b] and a platform upon which to model object-orientation,
along the lines proposed in [Jay04b).

The denotational semantics of the pattern calculus also awaits exploration.
It is not yet clear how to represent a case in a domain-theoretic setting. As a
lambda-abstraction is an arrow in a category then perhaps a case is a span in a
category or, rather, the internalisation of a span.

In conclusion, the pure pattern calculus provides a compact setting in which
to handle both functions and data structures in a uniform manner, and so sup-
port new forms of polymorphism.

References

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
1984. Revised Edition.

[BCKLO03] Gilles Barthe, Horatiu Cirstea, Claude Kirchner, and Luigi Liquori. Pure
Pattern Type Systems. In Proceedings of the 30th Annual ACM Symposium
on Principles of Programming Languages (POPL), pages 250-261. ACM,
2003.

[BAMH96] Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional
programming with types and relations. Journal of Functional Programming,
6(1):1-28, 1996.

[Bur69] Rod M. Burstall. Proving properties of programs by structural induction.
The Computer Journal, 1969.

[CK98] Horatiu Cirstea and Claude Kirchner. p-calculus, the rewriting calculus. In
5th International Workshop on Constraints in Computational Logics (CCL),
1998.

[CK99] Serenella Cerrito and Delia Kesner. Pattern matching as cut elimination. In

Giuseppe Longo, editor, 14th Annual IEEE Symposium on Logic in Com-
puter Science (LICS), pages 98-108. IEEE Computer Society Press, 1999.

[FKO03] Julien Forest and Delia Kesner. Expression reduction systems with patterns.
In Robert Nieuwenhuis, editor, 14th International Conference on Rewriting
Techniques and Applications (RTA), volume 2706 of Lecture Notes in Com-
puter Science, pages 107—122. Springer-Verlag, 2003.

[For02] Julien Forest. A weak calculus with explicit operators for pattern matching
and substitution. In Sophie Tison, editor, 13th International Conference
on Rewriting Techniques and Applications (RTA), volume 2378 of Lecture
Notes in Computer Science, pages 174-191. Springer-Verlag, 2002.

[Gel85] David Gelernter. Generative communication in linda. ACM Trans. Program.
Lang. Syst., 7(1):80-112, 1985.
[GJ03] Jeremy Gibbons and Johan Jeuring, editors. Generic Programming:

IFIP TC2/WG2.1 Working Conference on Generic Programming July 11-
12,2002, Dagstuhl, Germany. Kluwer Academic Publishers, 2003.

[Has] The Haskell language. http://www.haskell.org/.

[HJS05a] Freeman Yufei Huang, C. Barry Jay, and David B. Skillicorn. Dealing with
complex patterns in XML processing. Technical Report 2005-497, Queen’s
University School of Computing, 2005.

19

[HJS05b] Freeman Yufei Huang, C. Barry Jay, and David B. Skillicorn. Programming

[Jan00]

[Jay04a)

[Jay04b]

[Jay04c]
[TBMOS]

[JC94]

[JKO6)

[Kah03]

[Kes97]
[K1080]
[KPT96]

[Oca]
[SML]

[sybO06]

[vO90]

with heterogeneous structures: Manipulating XML data using bondi. Tech-
nical Report 2005-494, Queen’s University School of Computing, 2005. To
appear in ACSW’06.

Patrick Jansson. Functional Polytypic Programming. PhD thesis, Comput-
ing Science, Chalmers University of Technology and Gd&teborg University,
Sweden, May 2000.

C. Barry Jay. Higher-order patterns. Available as www-staff.it.uts.edu.
au/~cbj/Publications/higher_order _patterns.pdf, 2004.

C. Barry Jay. Methods as pattern-matching functions. In Sophia
Drossopoulou, editor, The 11th International Workshop on Foundations of
Object-Oriented Languages, 2004. Proc. available as http://www.doc.ic.
ac.uk/~scd/F00.pdf.

C. Barry Jay. The pattern calculus. ACM Transactions on Programming
Languages and Systems (TOPLAS), 26(6):911-937, November 2004.

C. Barry Jay, Gianna Belle, and Eugenio Moggi. Functorial ML. Journal
of Functional Programming, 8(6):573-619, 1998.

C. Barry Jay and J. Robin B. Cockett. Shapely types and shape poly-
morphism. In D. Sannella, editor, Programming Languages and Systems
- ESOP ’94: 5th European Symposium on Programming, Edinburgh, U.K.,
April 1994, Proceedings, volume 788 of Lecture Notes in Computer Science,
pages 302-316. Springer Verlag, 1994.

Barry Jay and Delia Kesner. Pure pattern calculus. In Programming Lan-
guages and Systems, 15th FEuropean Symposium on Programming, ESOP
2006, Held as Part of the Joint Furopean Conferences on Theory and Prac-
tice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Pro-
ceedings (ed:P. Sestoft), pages 100-114, 2006. Available as www-staff.it.
uts.edu.au/~cbj/Publications/purepatterns.pdf.

Wolfram Kahl. Basic pattern matching calculi: Syntax, reduction, conflu-
ence, and normalisation. Technical Report 16, Software Quality Research
Laboratory, McMaster Univ., 2003.

Delia Kesner. Reasoning about redundant patterns. Journal of Functional
and Logic Programming, 1997(4), June 1997.

Jan-Willem Klop. Combinatory Reduction Systems. PhD thesis, Mathemat-
ical Centre Tracts 127, CWI, Amsterdam, 1980.

Delia Kesner, Laurence Puel, and Val Tannen. A Typed Pattern Calculus.
Information and Computation, 124(1):32-61, 1996.

The Objective Caml language. http://caml.inria.fr/.

STANDARD ML OF NEW JERSEY. http://cm.bell-labs.com/cm/cs/what/
smlnj/.

Scrap your boilerplate homepage. http://www.cs.vu.nl/boilerplate/,
2006.

Vincent van Oostrom. Lambda calculus with patterns. Technical Report
TR-228, Vrije Universiteit, Amsterdam, 1990.

20

