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Patterns as first class citizens

The pure pattern calculus generalises the pure lambda-calculus by basing computation on pattern-matching instead of beta-reduction. The simplicity and power of the calculus derive from allowing any term to be a pattern. As well as supporting a uniform approach to functions, it supports a uniform approach to data structures which underpins two new forms of polymorphism. Path polymorphism supports searches or queries along all paths through an arbitrary data structure. Pattern polymorphism supports the dynamic creation and evaluation of patterns, so that queries can be customised in reaction to new information about the structures to be encountered. In combination, these features provide a natural account of tasks such as programming with XML paths. As the variables used in matching can now be eliminated by reduction it is necessary to separate them from the binding variables used to control scope. Then standard techniques suffice to ensure that reduction progresses and to establish confluence of reduction.

Introduction

The lambda-calculus is a theory of functions which is powerful enough to model arbitrary computations. In its pure form every term is a function, so that function arguments are themselves functions. Such higher-order functions give a clean account of recursion as the application of the fixpoint function. Also data structures such as pairs, lists and trees can be modelled as higher-order functions that take as arguments functions that are to act on the data stored within the structure. Central to the expressive power of the lambda-calculus is that a single rule, beta-reduction, is used to describe the evaluation of an arbitrary function. This uniformity allows a single function to be applied in a variety of different situations, i.e. supports function polymorphism. Unfortunately, the description of data structures is not so uniform. Although the lambda-calculus supports functions that act uniformly on all pairs, or all lists, it cannot support operations that exploit characteristics common to all data structures. These include operations for searching, updating and aggregating that are at the heart of data processing but do not make sense with lambda-abstractions.

In a way, this is surprising because such operations can be specified quite simply. Every data structure is either an atom or a compound. For example, every list is either empty or is compounded from a head and a tail, every tree is either a leaf or a node. With this characterisation, one can define searching a data structure d as follows:

1. if d is the goal then return d; 2. else if d is a compound data structure then traverse its components; 3. else stop.

For example, consider the problem of listing all the points in a data structure. Each point is represented by terms of the form point t where point is a constructor used to represent points whose data is represented by t but the nature of the structure holding the points is not known. Let the syntax [x 1 , . . . , x n ] be used for the list whose entries are given by x 1 , . . . , x n and let s@t be the result of appending s to the front of t. Now the solution can be given by a patternmatching function defined by cases

letrec listpoints = point y → [point y] | x y → (listpoints x) @ (listpoints y) | y → [ ]
The most interesting case of the three is the second, whose pattern x y is able to match against an arbitrary compound data structure. For example, when listpoints is applied to a pair pair s t of points s and t we get listpoints (pair s t) = ((listpoints pair) @ (listpoints s)) @ (listpoints t)

= ([ ] @ [s]) @ [t] = [s, t]
This uniform approach to compound data structures supports path polymorphism in which all paths through a data structure can be traversed. Another example of path polymorphism is the function that updates point data within an arbitrary data structure. It is given by

letrec updatepoint = f → point y → point (f y) | z y → (updatepoint f z) (updatepoint f y) | y → y
Further generalisation is achieved by making point a parameter to the generic update function defined by

letrec update = x → f → x y → x x (f y) | z y → (update x f z) (update x f y) | y → y
This time the two variables in the pattern x y above behave quite differently as x is a free variable ready to be substituted by, say, point while y is a binding variable, as usual. To distinguish these alternatives, the arrow in the case is decorated with the free variable x. Where no subscript is specified then all the free variables of the pattern are assumed bound.

The function update is pattern polymorphic, as it contains the free variable x in the pattern x y whose instantiation can produce a variety of different update functions. For example, update point reduces to updatepoint. Further, if update is applied to a case then the pattern must be reduced before matching can occur.

Such flexibility in the use of patterns leads to the following leitmotiv:

any term can be a pattern.

This complements the view in lambda-calculus that any term can be a function.

Hence, the pure pattern calculus has term syntax

t ::= x | t t | [θ] t → t
consisting of variables, applications and cases [θ] p → s where θ is a set of variables, its binding variables. In defining reduction one must first specify a set of variables γ which are to play the role of constructors. The sole reduction rule is motivated by the equation

([θ] p → s) u = γ {u/[θ] p} γ s (1)
where γ is disjoint from θ. Here {u/[θ] p} γ is the match of p against u that produces either a substitution with domain θ or a failure. It may be surprising to identify the constructors with a set of variables, but it proves convenient when reducing the pattern of a case [θ] p → s since the variables in θ are considered to be constructors when reducing the pattern p.

For example, [x] ([{ }] x → x) x → x reduces to [x] x → x since x is constructor within the pattern ([{ }] x → x) x.
The pure pattern calculus is well behaved. In particular, every closed term of the form ([θ] p → s) u is reducible. Also, reduction is confluent.

The simplicity of the pure pattern calculus is best appreciated by comparing to previous approaches to pattern-matching. Popular functional programming languages such as Standard ML [SML], OCAML [Oca] and Haskell [Has] only support irreducible patterns which are either headed by a constructor or are a binding variable. A general approach introducing λ-terms as patterns can be found in [vO90], where confluence is proved for terms verifying the rigid pattern condition, a technique which is also applied in the context of ρcalculi [START_REF] Cirstea | ρ-calculus, the rewriting calculus[END_REF][START_REF] Barthe | Pure Pattern Type Systems[END_REF]. Certification of meta-properties of pattern-matching calculi has been developed in [START_REF] Kahl | Basic pattern matching calculi: Syntax, reduction, confluence, and normalisation[END_REF]. The patterns of our calculus also generalise those of the concurrent language Linda [START_REF] Gelernter | Generative communication in linda[END_REF] in which patterns are tuples containing a mix of free and binding occurences. Later research sought to augment the collection of patterns with new constructions [START_REF] Kesner | A Typed Pattern Calculus[END_REF], reducible patterns [START_REF] Cirstea | ρ-calculus, the rewriting calculus[END_REF] and free variables which do not bound occurrences in the body of the program [START_REF] Barthe | Pure Pattern Type Systems[END_REF], and patterns for compound data structures [START_REF] Drossopoulou | The pattern calculus[END_REF]. Only the last of these supports path polymorphism and none of them supports pattern polymorphic examples.

The last of these underpinned the development of typed calculi supporting pattern polymorphism (e.g. [START_REF] Jay | Higher-order patterns[END_REF]) which allow free variables in patterns, and their reduction but without allowing arbitrary terms as patterns. These have been used to support the generic update, and its extension to handle arbitrary XML paths [START_REF] Huang | Dealing with complex patterns in XML processing[END_REF][START_REF] Huang | Programming with heterogeneous structures: Manipulating XML data using bondi[END_REF]. They have also been used to support an object model able to support central goals of object-orientation [START_REF] Jay | Methods as pattern-matching functions[END_REF]. Again, they provide an account of structure polymorphism [JC94,JBM98,Jay04c] necessary to support operations such as mapping and folding in a uniform way, similar to polytypic or generic functional programming [START_REF] Jansson | Functional Polytypic Programming[END_REF][START_REF] Bird | Generic functional programming with types and relations[END_REF][START_REF]Generic Programming: IFIP TC2/WG2.1 Working Conference on Generic Programming[END_REF]. Finally, the "scrap-your-boilerplate" approach [syb06] supports some key cases of path polymorphism.

All these calculi attempted to control variable binding by restricting the class of patterns and their reduction. However, simplicity comes by treating binding separately from the pattern itself. It is expected that all of the applications above can be re-engineered in the new, simpler, framework.

The structure of the rest of the paper is as follows. Section 2 introduces the terms. Section 3 defines reduction. Section 4 considers some examples. Section 5 shows that matching does not get stuck. Section 6 proves reduction is confluent. In Section 7 we present an alternative account of first-class patterns as proposed in [START_REF] Jay | Pure pattern calculus[END_REF]. Section 8 draws conclusions and considers further work.

Terms

Fix a countable alphabet of variables (meta-variables . . . x, y, z). Let ϕ, θ and γ denote finite sets of variables and θ, γ denote the disjoint union of such sets.

Definition 1 (Terms). The term syntax of the pure pattern calculus is given by the following grammar:

t ::= (terms) x (variable) | t t (application) | [θ] t → t (case)
The notations [x 1 , . . . , x n ] p → s and [ ] p → s will be used in place of [{x 1 , . . . , x n }] p → s and [{}] t → s to avoid unnecessary brackets.

The variables are available for binding, matching and substitution. The application r u applies the function r to its argument u. The case [θ] p → s is formed of a pattern p and a body s linked by the set θ of binding variables. Application is left-associative and case is right-associative. Application binds tighter than case. For example

[x] x → [y] x y z → y is equal to [x] x → ([y] ((x y) z) → y).
Lambda-abstraction can be defined by setting λx.t to be [x] x → t.

Definition 2 (Free and bound Variables). Free and bound of terms are defined by:

fv(x) := {x} bv(x) := {} fv(r u) := fv(r) ∪ fv(u) bv(r u) := bv(r) ∪ bv(u) fv([θ] p → s) := (fv(p) ∪ fv(s)) \ θ bv([θ] p → s) := bv(p) ∪ bv(s) ∪ θ.
Hence the binding variables of a case bind their free occurrences in both the pattern and body. A term is closed if it has no free variables.

The notation p → s stands for [fv(p)] p → s (so that in particular a lambdaabstraction λx.t can also be written as x → t). More generally, p → ϕ s stands for [fv(p) \ ϕ] p → s.

Hence programmers need never actually mention binding variables explicitly unless they require free variables in the pattern.

Matches

A substitution (meta-variable σ) is a partial function from variables to terms. The notation {u 1 /x 1 , . . . , u n /x n } represents the finite substitution that maps x i to u i for i = 1 . . . n and {} is the empty substitution.

A match (meta-variable µ) is either a successful match, given by a substitution σ, or a failure, written as none.

The usual concepts and notation associated with substitutions will be defined for arbitrary matches.

The domain of µ is written dom(µ). The domain of none is the empty set. If dom(µ) and dom(µ ) are disjoint we write µ#µ . The set of free variables of σ is given by the union of the sets fv(σx) where x ∈ dom(σ). Also, none has no free variables. Define the variables of µ to be var(µ) = dom(µ) ∪ fv(µ). We use the predicate µ avoids x to mean x ∈ var(µ). More generally, µ avoids θ if it avoids each variable in θ and avoids a term t if it avoids fv(t).

Definition 3 (Applying a substitution). The application of a substitution σ to a term is defined by

σx := σx if x ∈ dom(σ) σx := x if x / ∈ dom(σ) σ(r u) := (σr) (σu) σ([θ] p → s) := [θ] σp → σs if σ avoids θ
The restriction on the definition of σ([θ] p → s) is necessary to avoid a variable clash which would change the semantics of the term. Thus for example {y/x}([y] y → x) would change the status of the free variable x in the body to a bound variable y while {y/x} ([x] x → y) would change the bound variable x in the pattern to a free one. Variable clashes will be handled by α-conversion.

If matching fails in Equation (1) then none will be applied to the body of the case, which should be discarded. One possibility is to introduce a special error term, but match failure provides a natural branching mechanism which can be used to underpin the definitions of conditionals and pattern-matching functions. Hence, we define none t := x → x.

Definition 4 (Disjoint union of matches). The disjoint union µ 1 µ 2 of matches µ 1 and µ 2 is defined as follows. If either of them is none or their domains have a non-empty intersection then their disjoint union is none. Otherwise, it is the substitution given by

(µ 1 µ 2 )x :=    µ 1 x if x ∈ dom(µ 1 ) µ 2 x if x ∈ dom(µ 2 ) x otherwise.
Disjoint domains will be used to ensure that matching is deterministic.

The composition σ 2 • σ 1 of two substitutions σ 1 and σ 2 is defined by (σ 2 • σ 1 )x = σ 2 (σ 1 x). Further, if µ 1 and µ 2 are matches of which at least one is none then µ 2 • µ 1 is defined to be none.

Definition 5 (Check). The check µ θ of a match µ on a set of variables θ is µ if µ is a substitution whose domain is exactly θ and is none otherwise.

Checks will be used to ensure that variables do not escape their scope in next section.

Alpha conversion

Let θ be a set of variables and x and y be variables. Then {y/x}θ is defined to be the set obtained by replacing x by y in θ if x ∈ θ and y ∈ θ, and to be undefined otherwise.

Alpha conversion is the congruence relation generated by the following axiom

[θ] p → s = α [{y/x}θ] {y/x}p → {y/x}s if y / ∈ fv(p) ∪ fv(s). For example, [y] x y → x (t y) = α [z] x z → x (t z) if z is not free in t.
Lemma 1. For every substitution σ and term t there is an α-equivalent term t such that σt is defined. If t 1 and t 2 are α-equivalent terms then fv(t 1 ) = fv(t 2 ) and if u 1 = σt 1 and u 2 = σt 2 are both defined then u 1 = α u 2 .

Proof. The proofs are by straightforward inductions.

From now on, a term is an α-equivalence class in the term syntax. Note that although it is easy to avoid variable clashes by α-conversion, it is a little harder to decide equality of terms since there are n 2 ways of aligning two sets of n binding variables. If this is important then the definitions can be modified to employ lists of binding variables.

Reduction

In all well-known pattern-matching calculi reduction proceeds in two stages: first generate a match and then apply it. The difference between different languages resides in different notions of matching functions. As the patterns of our calculus contain free variables, the notion of matching has to be carefully defined in order to guarantee that substitutions generated by the match operation will only affect the set of binding variables of the case.

Matching

Basic matching is defined using two parameters ϕ and θ, the first being the set of constructors and the second one the set of binding variables. A key notion used in the definition of basic matching is the one of ϕ-matchable form, intuitively, those terms that are ready to be matched.

Definition 6 (Data Structures and Matchable Forms). The ϕ-data structures (meta-variable d) and ϕ-matchable forms (meta-variable e) are given by the following grammar:

d ::= x (x ∈ ϕ) | d t e ::= d | [θ] t → t
where t can be an arbitrary term. Define the data structures (resp. matchable forms) to be the {}-data structures (resp. {}-matchable forms).

Definition 7 (Basic Matching). The basic matching { {u θ p} } γ of a term p (called the pattern) against a term u (called the argument) relative to a set θ of binding variables and a disjoint set γ of constructing variables (or constructors) is the partial operation defined by applying the following equations in order

{ {u θ x} } γ := {u/x} if x ∈ θ { {x θ x} } γ := {} if x ∈ γ { {v u θ q p} } γ := { {v θ q} } γ { {u θ p} } γ if q p is a γ, θ-matchable form and v u is a γ-matchable form { {u θ p} } γ := none if p is a γ, θ-matchable form and u is a γ-matchable form { {u θ p} } γ := undefined otherwise.
That is, matching is always defined if the pattern is a γ, θ-matchable form and the argument is a γ-matchable form, and match failure can only arise if rules for successful matching do not apply. A binding variable matches anything. A constructor matches itself. Matching of compound data structures is componentwise, using (disjoint) union. Note that the ordering of the equations can be avoided by expanding the definition into an induction on the structure of the pattern.

The use of disjoint unions when matching compound patterns means that matching against a compound such as c x x can never succeed. Since non-linear patterns cannot be banned (any term can be a pattern), the alternative would be to allow it to match with terms of the form c u u. However, this may cause a loss of confluence, as in [START_REF] Forest | Expression reduction systems with patterns[END_REF][START_REF] Kahl | Basic pattern matching calculi: Syntax, reduction, confluence, and normalisation[END_REF], for reasons grounded in Klop's observation [START_REF] Klop | Combinatory Reduction Systems[END_REF] that the combination of untyped λ-calculus with non left-linear firstorder rewriting systems breaks confluence.

As defined, matching one case against another always fails. It should be possible to support this without too much effort, but it it not neccessary for the sorts of data manipulations that motivated this work.

Definition 8 (Matching). Let p and u be terms and let θ and γ be disjoint sets of variables. Define the matching {u/[θ] p} γ of p against u with respect to binding variables θ and constructors γ to be the check of { {u θ p} } γ on θ, where the check of a match is the function in Definition 5.

The check is necessary to ensure that reduction does not allow bound variables to become free. For example, { {x y x} } {x} = {} but {x/[y] x} {x} = none since the basic matching is not defined on y.

The pure pattern calculus has a match rule given by

([θ] p → s) u > γ {u/[θ] p} γ s (2)
parametrised by the choice of constructors γ. That is, if matching of the pattern against the argument produces a substitution whose domain is the binding variables then apply this to the body. If the matching fails then return the identity function. Of course, if {u/[θ] p} γ is undefined (e.g. because p or u needs to be reduced) then the match rule does not apply.

([θ] p → s) u γ {u/[θ] p}γ s r γ r r u γ r u u γ u r u γ r u p γ,θ p [θ] p → s γ [θ] p → s s γ s [θ] p → s γ [θ] p → s Fig. 1. One-step reduction
The one-step reduction relation γ is defined by the rules in Figure 1. The reduction relation * γ is the reflexive-transitive closure of γ . A term t is γ-irreducible if there is no reduction of the form t γ t .

The key point is that the binding variables of a case become constructors when reducing the pattern. For example,

[x] ([ ] x → x) x → x {} [x] x → x
since the binding variable x becomes a constructor when reducing (([ ] x → x) x).

Examples

λ-calculus There is a simple embedding of the pure λ-calculus into the pure pattern calculus obtained by identifying the λ-abstraction λx.s with [x] x → s or [ ] x → s. Pattern-matching for these terms with respect to any set of constructors is exactly the β-reduction of the λ-calculus. For example, the fixpoint

term fix := (x → f → f (x x f )) (x → f → f (x x f ))
can be used to define recursive functions. A term definition of the form letrec x := t will be interpreted as giving f the value fix (x → t) in the usual way. where x ∈ fv(s). Thus, if true then s else r reduces to (x → s) r and then to s while if false then s else r reduces to (y → y) r and then to r. More generally, the extension

Constructors

[θ] p → s | r extends the case [θ] p → s with a default r by [θ] p → s | r := x → ([θ] p → y → s) x (r x)
where x ∈ fv([θ] p → s) ∪ fv(r) and y ∈ fv(s). When applied to some term u it reduces to { {u θ p} } γ (y → s) (r u). Now if { {u θ p} } γ is some substitution σ then this reduces to σ(y → s) (r u) = (y → σs) (r u) and then to σs as desired.

Alternatively, if { {u θ p} } γ = none then the term reduces to (none (y → s)) (r u) = (z → z) (r u) and then to r u as desired.

Extensions can be iterated to produce pattern-matching functions out of a sequence of many cases. Make | right-associative so that

[θ 1 ] p 1 → s 1 | [θ 2 ] p 2 → s 2 . . . | [θ n ] p n → s n is [θ 1 ] p 1 → s 1 | ([θ 2 ] p 2 → s 2 | (. . . | [θ n ] p n → s n )).
For example, the functions listpoints and update in the introduction are defined in this way.

Arithmetic The natural numbers can be defined as data structures built from constructors zero and successor. Then recursive functions can be defined using fix. This compares favourably with the representation of numbers as the iterators used to define the Church numerals.

Generic equality Now let us consider some novel programs. A generic equality is defined by

equal := x → (x → x true | y → false)
where the first argument is used as the pattern for matching against the second. For example, equal (successor zero) (successor zero) reduces to true. This is a simple example of pattern polymorphism where the pattern is created dynamically.

The generic eliminator The generic eliminator is given by

elim := x → x y → x y
For example, elim successor reduces to successor y → y. Again, suppose that the list constructors nil and cons are given and define singleton := x → cons x nil.

Then elim singleton reduces to cons y nil → y by reduction of the pattern.

Generic updating Patterns of the form x y are used to access data along arbitrary paths through a data structure, i.e. to support path polymorphism.

Combining the use of pattern and path polymorphism yields the generic update function defined in the introduction. When applied to a constructor c, and a function f and a data structure d it replaces sub-terms of d of the form c t by c (f t). For example, update c f

((c u) (c v)) reduces to (c (f u)) (c (f v)).
In general, update can be applied to cases. For example, update singleton f reduces to

cons y nil → cons (f y) nil | z y → (update singleton f z) (update singleton f y) | y → y
Also, updating can be iterated to give finer control. For example, given constructors salary, employee and department and a function f then the program update department (update employee (update salary f )) updates departmental employee salaries. Note that it is not necessary to know how employees are represented within departments for this to work, so that a new level of abstraction arises, similar to that which XML is intended to support. The full range of XML paths can be handled by defining an appropriate abstract data type, similar to that of signposts given in [START_REF] Huang | Dealing with complex patterns in XML processing[END_REF][START_REF] Huang | Programming with heterogeneous structures: Manipulating XML data using bondi[END_REF].

Wild-cards It is interesting to add a new constant denoted ? to the pure pattern calculus, the wild-card. It has no free variables and is unaffected by substitution. It is a data structure, is compatible with anything, and has the matching rule { {u θ ?} } γ := {} for any γ and θ. That is, it behaves like a fresh binding variable in a pattern but like a constructor in a body. For example, the second and first projections from a pair can be encoded as elim (pair ?) and elim (x → pair x ?).

The following example uses recursion in the pattern. Define the function for the extracting list entries by

letrec entrypattern = succ n → x → cons ? (entrypattern n x) | zero → x → cons x ? entry = n → elim (entrypattern n)
For example, entry (succ (succ zero)) reduces to cons ? (cons ? (cons x ?)) → x which recovers the second entry from a list. Note the standard approach, in which each occurrence of the wild-card represents a distinct binding variable, cannot support such recursion.

Properties of reduction

This section establishes some basic properties of the reduction relation introduced in Figure 1.

Lemma 2. If γ ⊆ ϕ, then t γ t implies t ϕ t .
Proof. The proof is by induction on the reduction relation. The interesting case is that of the match rule for which we use two facts :

-If u is a γ-matchable form, then it is also a ϕ-matchable form.

-If { {u θ p} } γ is defined, then { {u θ p} } ϕ is also defined. Define contexts by the following grammar:

C ::= | C t | t C | [θ] C → t | [θ] t → C
where is a constant. The replacement of by a term t in a context C is written C

[t]. A relation R is closed under contexts if t R u implies C[t] R C[u] for any context C.

Lemma 3. The reduction relation

γ is stable under substitution for variables not in γ and is closed under contexts.

Proof. Stability of reduction under substitutions follows by a straightforward induction. Stability under contexts can be shown by induction. The interesting case consists in showing that p γ p implies [θ] p → s γ [θ] p → s for which we use Lemma 2 and definition of reduction.

Theorem 1. Let t be a term whose free variables are all in some set γ. If t is γ-irreducible then t is a γ-matchable form. Hence, pattern-matching cannot get stuck.

Proof. The proof is by induction on the structure of t. We only consider here t of the form ([θ] p → s) u as all the other cases are straightforward. Now u is γ-irreducible, and p is γ, θ-irreducible and so, by induction, u is γ-matchable and p is γ, θ-matchable. Hence the basic matching of p against u is defined and so t is γ-reducible, contradicting the assumption.

Confluence

Confluence of reduction is established using the simultaneous reduction technique due to Tait and Martin-Löf [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics[END_REF] which can be summarised in four steps: define a simultaneous reduction relation denoted γ ; prove that * γ and * γ are the same relation (Lemma 4); show that * γ has the diamond property (Theorem 2); and use this to prove confluence.

Let γ be a set of variables. The simultaneous γ-reduction relation is given in Figure 2. Proof. The proofs are by straightforward induction on the definitions.

t γ t r γ r u γ u r u γ r u p γ,θ p s γ s [θ] p → s γ [θ] p → s p γ,θ p s γ s u γ u ([θ] p → s) u γ {u /[θ] p }γ s
The simultaneous γ-reduction relation γ between matches is defined as follows. Given two substitutions σ and σ then σ γ σ if dom(σ) = dom(σ ) and σx γ σ x for every x ∈ dom(σ). We define also none γ none. Substitutions and none are not related.

Lemma 5. If t is a term and µ is a match then fv(µ t) ⊆ fv(µ)∪(fv(t)\dom(µ)).

Proof. If µ is none then the result is immediate since fv(none t) is exactly fv([x] x → x) which is the empty set. So assume that µ is a substitution σ. The proof is by induction on the structure of t. If t is [θ] p → s where σ avoids θ then

fv([θ] σp → σs) = (fv(σp) ∪ fv(σs)) \ θ ⊆ (fv(σ) ∪ ((fv(p) ∪ fv(s)) \ dom(σ))) \ θ (by the i.h.) = fv(σ) ∪ (fv(t) \ dom(σ)).
The other cases are straightforward.

A simple example can be given by the term t = x y w and the match {t/x, u/y, v/z}, for which we have fv(t u w) ⊆ fv(t) ∪ fv(u) ∪ fv(v) ∪ {w}. Lemma 6. If µ = { {u θ p} } γ for some terms p and u and disjoint sets of variables γ and θ then fv(µ) ⊆ fv(u).

Proof. If µ = none then there is nothing to prove. Otherwise the proof is by a straightforward induction on the structure of p.

For example, µ = { {t v w x,y x y w} } w = {t/x, v/y} we have fv

(µ) = fv(t) ∪ fv(v) ⊆ fv(t) ∪ fv(v) ∪ {w} = fv(t v w).
Exactly as in λ-calculus, reduction and simultaneous reduction in the pure pattern calculus preserve the set of free variables of terms but may lose some of them. A simple example of this can be given by the simultaneous reduction step t = ([x, y] x y → y) (z w) {} w = t which loses the free variable z. Formally, Lemma 7. If t γ t is a simultaneous reduction then fv(t ) ⊆ fv(t). Hence, if µ γ µ is a simultaneous reduction between matches, then var(µ ) ⊆ var(µ).

Proof. By Lemma 4 it suffices to prove the result for the one-step reduction relation; we only show here the case of the reduction rule (2). Then

fv(t ) = fv({ {u θ p} } γ s) ⊆ fv({ {u θ p} } γ ) ∪ (fv(s) \ dom({ {u θ p} } γ )) (Lemma 5) ⊆ fv({ {u θ p} } γ ) ∪ (fv(s) \ θ) ⊆ fv(u) ∪ (fv([θ] p → s)) (Lemma 6) = fv(t).
Generalising the Substitution Lemma of λ-calculus [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics[END_REF] yields the following lemma.

Lemma 8. Let µ be a match and let θ and γ be two disjoint sets of variables such that µ avoids θ and dom(µ) ∩ γ = {}. If p and u are terms such that { {u θ p} } γ is defined then so is { {µ u θ µ p} } γ and { {µ u θ µ p}

} γ • µ = µ • { {u θ p} } γ . Hence {µ u/[θ] µ p} γ • µ = µ • {u/[θ] p} γ .
Proof. The second statement follows directly from the first which we analyse in detail. If µ is none then both sides of the equation are none. So without loss of generality, assume that µ is a substitution σ. The proof is by induction on the structure of p. If p is a variable x ∈ θ then both sides of the equation map x to σu and behave as σ on all other variables since var(σ) ∩ θ = {}. If p is in γ and u is the same then both sides of the equation are µ. If p and u are compatible applications then apply the induction hypothesis twice. This requires that µ avoids θ.

If { {u θ p} } γ = none then { {σu θ σp} } γ = none (since dom(σ)∩(θ ∪γ) = {})
and so both sides of the equation are none.

As expected, basic matching is stable under reduction. This property can be specified by the following general statement concerning simultaneous reduction which includes by definition reduction. Lemma 9. If p γ,θ p and u γ u are simultaneous reductions on terms and

{ {u θ p} } γ is defined then so is { {u θ p } } γ and { {u θ p} } γ γ { {u θ p } } γ .
Proof. The proof is by induction on the structure of p. If p is a variable then p is the same variable so that the result follows directly. If p is a case then both matches will fail. Otherwise p must be a γ, θ-matchable form p 1 p 2 and u must be a γ-matchable form. If u is not an application then it must be a constructor or a case: either way, both matchings will fail. Alternatively, if u = u 1 u 2 then Theorem 1 implies that u 1 is also a γ-data structure and thus u = u 1 u 2 where u 1 γ u 1 and u 2 γ u 2 . Now p 1 is a γ, θ-data structure and so p = p 1 p 2 where p 1 γ,θ p 1 and p 2 γ,θ p 2 . Hence the induction hypothesis applies.

Simultaneous reduction (and thus reduction) is stable under substitution:

Lemma 10. If µ γ µ and t γ t are simultaneous reductions of matches and terms respectively and dom(µ) ∩ γ = {} then µ t γ µ t .

Proof. If µ is none then µ is none and so the result is immediate. So assume that µ and µ are substitutions σ and σ respectively. The proof is by induction on the derivation of t γ t . The only non-trivial case is when t = ([θ] p → s) u γ { {u θ p } } γ s where p γ,θ p and u γ u and s γ s . Without loss of generality, assume var(σ) ∩ θ = {} by α-conversion. Hence var(σ ) ∩ θ ⊆ var(σ) ∩ θ = {} by Lemma 7 and dom(m

) ∩ γ = dom(m) ∩ γ = {}. Thus, σ ({ {u θ p } } γ s ) is equal to { {σ u θ σ p } } γ (σ s ) by Lemma 8 and so σ(([θ] p → s)u) = ([θ] σ p → σs) (σ u) γ { {σ u θ σ p } } γ (σ s ) = σ ({ {u θ p } } γ s ).
In order to get confluence of the reduction relation γ we first show that γ has the diamond property, then we conclude by using the fact that * γ and * γ are the same relation so that confluence of one implies confluence of the other one.

Theorem 2. The relation γ has the diamond property. That is, t γ t 1 and t γ t 2 then there is t 3 such that t 1 γ t 3 and t 2 γ t 3 .

Proof. The proof is by induction on the definition of simultaneous reduction. Suppose

([θ] p 2 → s 2 ) u 2 γ ([θ] p → s) u γ { {u 1 θ p 1 } } γ s 1
where p γ,θ p 1 and p γ,θ p 2 and s γ s 1 and s γ s 2 and u γ u 1 and u γ u 2 . By the induction hypothesis, there are terms p 3 , s 3 and u 3 such that p 1 γ,θ p 3 and p 2 γ,θ p 3 and s 1 γ s 3 and s 2 γ s 3 and u 1 γ u 3 and u 2 γ u 3 . Now { {u 1 θ p 1 } } γ γ { {u 3 θ p 3 } } γ by Lemma 9 and so { {u 1 θ p 1 } } γ s 1 γ { {u 3 θ p 3 } } γ s 3 by Lemma 10 since dom({ {u 1 θ p 1 } } γ ) does not contain γ by construction. Hence, the diamond is completed by { {u 3 θ p 3 } } γ s 3 .

Again, suppose

{ {u 1 θ p 1 } } γ s 1 γ ([θ] p → s) u γ { {u 2 θ p 2 } } γ s 2
where p γ,θ p 1 and p γ,θ p 2 and s γ s 1 and s γ s 2 and u γ u 1 and u γ u 2 . By the induction hypothesis there are terms p 3 , s 3 and u 3 such that p 1 γ,θ p 3 and p 2 γ,θ p 3 and s 1 γ s 3 and s 2 γ s 3 and u 1 γ u 3 and u 2 γ u 3 . Now { {u 1 θ p 1 } } γ and { {u 2 θ p 2 } } γ both simultaneous reduce to { {u 3 θ p 3 } } γ by Lemma 9 and so Lemma 10 implies the diamond is completed by { {u 3 θ p 3 } } γ s 3 . The other cases are straightforward.

Corollary 1 (Confluence). The reduction relation γ is confluent.

Proof. Theorem 2 shows that γ has the diamond property and so the reflexivetransitive closure of γ is confluent (as can be spelled out by a straightforward induction). Now apply Lemma 4.

A second solution

This section presents an alternative account of first-class patterns [START_REF] Jay | Pure pattern calculus[END_REF]. From a syntactical point of view the main difference between this second solution and the one presented before is that the set of constructors does not increase dynamically during reduction as it is just defined once for all. So, one globally fixes a set of symbols to play the role of constructors. For simplicity we only consider here a single constructor •.

Terms are now generated by the following grammar

t ::= (terms) x (variable) | • (constructor) | t t (application) | [θ] t → t (case)
We add to Definition 2 the case fv(•) := {} and to Definition 3 the case σ• := •. Now, the most common situation is that the free variables of a pattern are binding variables and so ready to be matched, as in (x → x) • or (x y → y) (• •) where x and y both bind to •. In various examples that we gave a pattern may contain a free variable that is awaiting substitution. Then matching of the pattern must be delayed untile the value of the (free) variable is known, as in x → ([y] x y → y) (• •). There is even a third possibility which is illustrated by the following closed term

t = ([x] ([ ] x → x) x → x) (• •) (3) 
The pattern p given by ([ ] x → x) x contains a free variable x which cannot be replaced by substitution, as it is a binding variable of t. Hence there is no way that p can ever be reduced and so it is natural to treat it as a compound data structure in order to match against its parts. Then the match of ([ ] x → x) x against (• •) will fail since the (subcase) match of ([ ] x → x) against • will also fail. In this way, the matching does not get stuck.

The difficulty with this approach is in determining that p is irreducible within t. Of course this depends upon the status of x, so the notion of data structure needs to characterise the irreducible applications such as ([ ] x → x) x. We thus define the notion of data structure in terms of irreducibility of their parts, which in turn depends upon the data structures within them, in a virtuous, but well-founded cycle. Thus, data structures and reduction are mutually recursive definitions whose well-foundedness will be argued after their introduction.

Definition 9 (Data Structures and Matchable Forms). The ϕ-data structures (meta-variable d) are defined as follows:

-The constant • is a ϕ-data structure.

-Every x ∈ ϕ is a ϕ-data structure.

-If d is a ϕ-data structure and u a term, then d u is a ϕ-data structure.

-If ([θ] p → s) u is an irreducible term and all its free variables are in ϕ, then the term is a ϕ-data structure.

Thus for example, • • is a ϕ-data structure. Also ([ ] x → x) x will be proved to be irreducible, and so to be a {x}-data structure.

The ϕ-matchable forms are given by the grammar:

e ::= d | [θ] t → u
As before, define the data structures (resp. matchable forms) to be the {}data structures (resp. {}-matchable forms).

Definition 10 (Basic Matching). The basic matching { {u θ p} } of a term p (called the pattern) against a term u (called the argument) relative to a set θ of binding variables is the partial operation defined by applying the following equations in order

{ {u θ x} } := {u/x} if x ∈ θ { {• θ •} } := {} { {v u θ q p} } := { {v θ q} } { {u θ p} } if q p is a θ-matchable form and v u is a matchable form { {u θ p} } := none
if p is a θ-matchable form and u is a matchable form { {u θ p} } := undefined otherwise.

For example, evaluation of t in (3) will use the match

σ = { {(• •) x ([ ] x → x) x} } Now, { {x {} x} } is undefined so that ([ ] x → x)
x turns out to be irreducible and thus it is a {x}-data structure. Hence the matching of [ ] x → x against • is calculated, and proves to be none, and so σ is also none and t is reducible.

Definition 11 (Matching). Let p and u be terms and let θ be a set of variables. Define the matching {u/[θ] p} of p against u with respect to binding variables θ to be the check of { {u θ p} } on θ, where now the check of a match m on a set of variables ϕ is m if m is a substitution whose domain is exactly ϕ and none otherwise.

The new match rule is now given by

([θ] p → s) u > {u/[θ] p} s (4) 
The new one-step reduction relation is defined by the rules in Figure 3. Now, remark that a term t is reducible if one of its subterms is reducible or if t = ([θ] p → s) u and {u/[θ] p} is defined. The check {u/[θ] p} is defined if it is none or if it is a substitution { {u θ p} } whose domain is equal to θ. Now, { {u θ p} } is a substitution if one of the cases of the definition hold, in particular if p is a θ-matchable form (a case or a θ-data structure) and u is a matchable form (a case or a data structure). To check this on p and u we would eventually need to check if they are reducible or not, but they are subterms of the original term t.

([θ] p → s) u {u/[θ] p} s r r r u r u u u r u r u p p [θ] p → s [θ] p → s s s [θ] p → s [θ] p → s
Summing up, a simple induction on terms allows us to show that the property of being reducible is well-defined. Thus, Definitions 9, 10 and 11 together with Figure 3 give sound mutual recursive notions.

As expected, this formalism also gives a sound solution to the quest of a language with path and pattern polymorphism. More precisely, Theorem 3 (Confluence). For each γ the reduction relation is confluent.

We refer the reader to [START_REF] Jay | Pure pattern calculus[END_REF] for a detailed proof.

Conclusion and Further Work

Pattern-matching provides a natural mechanism for computing with data structures; its expressive power is determined by the nature of the patterns that are allowed. The pure pattern calculus maximises this expressive power by allowing any term to be a pattern. The resulting language supports patterns that are able to match with arbitrary compound data structures (path polymorphism), and patterns that can be assembled dynamically (using free variables to represent patterns) and simplified into a matchable form (pattern polymorphism). Such patterns will prove useful when manipulating remote data whose structure is only partially known, as illustrated by the example of updating. Two related approaches were explored. The first solution identifies constructors with variables, and makes the notion of constructor context-dependent. This makes it easy to describe the data structures and matching, but now everything, including reduction, is parametrised by the choice of constructors. Such parametrised families of reduction relations are unfamiliar, and so there may be some surprises in store. The second solution fixes the constructors once and for all, so that there is only one reduction relation, but this one relation is defined by mutual recursion with that of the data structures, so that the overall account is actually more complicated. Overall, we prefer the first solution for its naturality: the difficulties of handling parametrised families of relations are probably less than those flowing from the mutual recursion; and the contextualisation of constructors is closer to programming practice.

There are a number of open questions concerning the pure pattern calculus itself, and its connections to rewriting, logic, type theory and category theory.

The matching process may extend to consider matching of cases as well as of data structures, provided the binding variables of cases are treated appropriately. We have not pursued this here as the complexity of the development was not justified by any new forms of polymorphism. However, it may prove useful in program analysis and transformation.

It is not yet clear what extensional equality should be for the pattern calculus, as earlier work on extensionally for pattern-matching [START_REF] Kesner | Reasoning about redundant patterns[END_REF] does not take full account of data structures. For example, the η-equality rule f = λx.f x does not apply in our setting since a data structure is not a case.

Another issue concerns higher-order rewriting within a formalism with patterns [START_REF] Forest | Expression reduction systems with patterns[END_REF]. It seems natural to extend such languages to capture the rich dynamics of the patterns presented here.

In the spirit of [START_REF] Kesner | A Typed Pattern Calculus[END_REF] it would be interesting to explore a Curry-Howard interpretation for the pure pattern calculus in order to recognise, or develop, the corresponding logic. For example, matching against arbitrary compounds appears to model structural induction [START_REF] Burstall | Proving properties of programs by structural induction[END_REF] in a uniform way.

The calculus presented here uses a meta-level (or implicit) pattern-matching operation. One could also consider explicit pattern-matching, where the match equations become themselves rewriting rules which can then be interleaved with other reductions [START_REF] Cerrito | Pattern matching as cut elimination[END_REF][START_REF] Forest | A weak calculus with explicit operators for pattern matching and substitution[END_REF][START_REF] Kahl | Basic pattern matching calculi: Syntax, reduction, confluence, and normalisation[END_REF][START_REF] Drossopoulou | The pattern calculus[END_REF].

It is straightforward to provide simple types and indeed to support parametric polymorphism. Of more interest will be the addition of type specialisations [START_REF] Drossopoulou | The pattern calculus[END_REF] necessary to type the more complex examples. The calculus will then provide a clean foundation for a typed account of XML paths, as described in [START_REF] Huang | Dealing with complex patterns in XML processing[END_REF][START_REF] Huang | Programming with heterogeneous structures: Manipulating XML data using bondi[END_REF] and a platform upon which to model object-orientation, along the lines proposed in [START_REF] Jay | Methods as pattern-matching functions[END_REF].

The denotational semantics of the pattern calculus also awaits exploration. It is not yet clear how to represent a case in a domain-theoretic setting. As a lambda-abstraction is an arrow in a category then perhaps a case is a span in a category or, rather, the internalisation of a span.

In conclusion, the pure pattern calculus provides a compact setting in which to handle both functions and data structures in a uniform manner, and so support new forms of polymorphism.

  It is common to add to the λ-calculus a collection γ of term constants to play the role of constructors for data structures. Here we can define a program to consist of a pair of a term p and a set of term variables γ, and perform reduction relative to γ. Equivalently, one may define a program to be a term of the form [γ] p → • where • ∈ γ, with reduction relative to the empty set of variables. Branching constructs Let true and false be constructors and define conditionals by if b then s else r := (true → x → s) b r
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