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The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results:

• The classes of the Boolean hierarchy over level Σ1 of the dot-depth hierarchy are decidable in NL (previously only the decidability was known). The same remains true if predicates mod d for fixed d are allowed. • If modular predicates for arbitrary d are allowed, then the classes of the Boolean hierarchy over level Σ1 are decidable. • For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Σ2 of the Straubing-Thérien hierarchy are decidable in NL. This is the first decidability result for this hierarchy. • The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NL. • The membership problems for quasi-aperiodic languages and for d-quasi-aperiodic languages are logspace many-one complete for PSPACE.

Introduction

The study of decidability and complexity questions for classes of regular languages is a central research topic in automata theory. Its importance stems from the fact that finite automata are fundamental to many branches of computer science, e.g., databases, operating systems, verification, hardware and software design.

There are many examples for decidable classes of regular languages (e.g., locally testable languages), while the decidability of other classes is still a challenging open question (e.g., dot-depth two, generalized star-height). Moreover, among the decidable classes there is a broad range of complexity results. For some of them, e.g., the class of piecewise testable languages, efficient algorithms are known that work in nondeterministic logarithmic space (NL) and hence in polynomial time. For other classes, a membership test needs more resources, e.g., deciding the membership in the class of star-free languages is PSPACEcomplete.

The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were not previously known. Many of the known efficient decidability results for classes of regular languages are based on so-called forbidden-pattern characterizations. Here a language belongs to a class of regular languages if and only if its deterministic finite automaton does not have a certain subgraph (the forbidden pattern) in its transition graph. Usually, such a condition can be checked efficiently, e.g., in nondeterministic logarithmic space [START_REF] Stern | Characterizations of some classes of regular events[END_REF][START_REF] Cohen | On the expressive power of temporal logic[END_REF][START_REF] Glaßer | Languages of dot-depth 3/2[END_REF][START_REF] Glaßer | Decidable hierarchies of starfree languages[END_REF].

However, for the Boolean hierarchies considered in this paper, the design of efficient algorithm is more involved, since here no forbidden-pattern characterizations are known. More precisely, wherever decidability is known, it is obtained from a characterization of the corresponding class in terms of forbidden alternating chains of word extensions. Though the latter also is a forbidden property, the known characterizations are not efficiently checkable in general. (Exceptions are the special 'local' cases Σ ̺ 1 (n) and C 1 k (n) where decidability in NL is known [START_REF] Schmitz | The Boolean hierarchy over level 1/2 of the Straubing-Thérien hierarchy[END_REF][START_REF] Schmitz | The Forbidden-Pattern Approach to Concatenation Hierarchies[END_REF].) To overcome these difficulties, we first develop alternative forbidden-chain characterizations (they essentially ask only for certain reachability conditions in transition graphs). From our new characterizations we obtain efficient algorithms for membership tests in NL. For two of the considered Boolean hierarchies, these are the first decidable characterizations at all, i.e., for the classes Σ ̺ 2 (n) for the alphabet A = {a, b}, and for the classes Σ τ 1 (n)). Definitions. We sketch the definitions of the Boolean hierarchies considered in this paper. Σ ̺ 1 denotes the class of languages definable by first-order Σ 1 -sentences over the signature ̺ = {≤, Q a , . . .} where for every letter a ∈ A, Q a (i) is true if and only if the letter a appears at the i-th position in the word. Σ ̺ 1 equals level 1/2 of the Straubing-Thérien hierarchy (STH for short) [START_REF] Straubing | A generalization of the Schützenberger product of finite monoids[END_REF][START_REF] Thérien | Classification of finite monoids: the language approach[END_REF][START_REF] Straubing | Finite semigroup varieties of the form V * D[END_REF][START_REF] Perrin | First-order logic and star-free sets[END_REF]. Σ ̺ 2 is the class of languages definable by similar first-order Σ 2 -sentences; this class equals level 3/2 of the Straubing-Thérien hierarchy. Let σ be the signature obtained from ̺ by adding constants for the minimum and maximum positions in words and adding functions that compute the successor and the predecessor of positions. Σ σ 1 denotes the class of languages definable by first-order Σ 1 -sentences of the signature σ; this class equals level 1/2 of the dot-depth hierarchy (DDH for short) [START_REF] Cohen | Dot-depth of star-free events[END_REF][START_REF] Thomas | Classifying regular events in symbolic logic[END_REF]. Let τ d be the signature obtained from σ by adding the unary predicates P 0 d , . . . , P 

D(n) df ={L L = L 1 -(L 2 -(. . . -L n )) where L 1 , . . . , L n ∈ D and L 1 ⊇ L 2 ⊇ • • • ⊇ L n }.
The Boolean hierarchies considered in this paper are illustrated in Figure 1. Our Contribution. The paper contributes to the understanding of Boolean hierarchies of regular languages in two ways:

{Σ ̺ 2 (n)} {Σ ̺ 1 (n)} Σ ̺ 1 BC(Σ ̺ 1 ) Π ̺ 1 Σ ̺ 0 = Π ̺ 0 Σ ̺ 2 BC(Σ ̺ 2 ) Π ̺ 2 {Σ σ 1 (n)} Σ σ 1 BC(Σ σ 1 ) Π σ 1 Σ σ 0 = Π σ 0 {C d k (n)} Σ τ d 0 = Π τ d 0 Π τ d 1 BC(Σ τ d 1 ) Σ τ d 1 BC(C d k ) C d k coC d k {Σ τ d 1 (n)} coC 1 k {Σ τ 1 (n)} Σ τ 1 BC(Σ τ 1 ) Π τ 1 Σ τ 0 = Π τ 0 C 1 k {C 1 k (n)} BC(C 1 k ) aperiodic DDH (A + ) STH (A * ) for d-quasi-aperiodic |A| = 2 quasi-aperiodic
(1) For the classes Σ σ 1 (n), Σ τ d 1 (n), and Σ ̺ 2 (n) for the alphabet A = {a, b} we prove new characterizations in terms of forbidden alternating chains. In case of Σ ̺ 2 (n) for the alphabet A = {a, b}, this is the first characterization of this class.

(2) For the classes Σ σ 1 (n), C d k (n), Σ τ d 1 (n), and Σ ̺ 2 (n) for the alphabet A = {a, b} we construct the first efficient algorithms for testing membership in these classes. In particular, this yields the decidability of the classes Σ τ 1 (n), and of Σ ̺ 2 (n) for the alphabet A = {a, b}. We also show that the membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NL. An overview of the obtained decidability and complexity results can be found in Table 1. Moreover, we prove that the membership problems for quasiaperiodic languages and for d-quasi-aperiodic languages are logspace many-one complete for PSPACE.

Boolean hierarchies can also be seen as fine-grain measures for regular languages in terms of descriptional complexity. Note that the Boolean hierarchies considered in this paper do not collapse [START_REF] Shukin | Difference hierarchies of regular languages (in russian)[END_REF][START_REF] Selivanov | On hierarchies of regular star-free languages[END_REF][START_REF] Selivanov | Some hierarchies and reducibilities on regular languages[END_REF]. Moreover, all these hierarchies either are known or turn out to be decidable (see Table 1 for the attribution of these results). If in addition the Boolean closure of the base class is decidable, then we can even exactly compute the Boolean level of a given language. By known results (summarized in Theorem 1.1), one can do this exact computation of the level for the Boolean hierarchies over Σ ̺ 1 , Σ ̺ 2 (for alphabet A = {a, b}), C 1 k , Σ σ 1 , and Σ τ 1 . To achieve the same for the Boolean hierarchies over C d k and Σ τ d 1 we need the decidability of their Boolean closures which is not known. Related Work. Due to the many characterizations of regular languages there are several approaches to attack decision problems on subclasses of regular languages: Among them there is the algebraic, the automata-theoretic, and the logical approach. In this paper Boolean hierarchy classes decidability complexity

Σ ̺ 1 (n) [SW98] NL-complete [SW98] C 1 k (n) [GS01a, Sel01] NL-complete [Sch01] Σ σ 1 (n) [GS01a] NL-complete [this paper] C d k (n) [Sel04] NL-complete [this paper] Σ τ d 1 (n) [Sel04] NL-complete [this paper] Σ τ 1 (n) [this paper] no efficient bound known (see Remark 4.3) Σ ̺ 2 (n) for |A| = 2 [this paper] NL-complete [this paper]
Table 1: Overview of decidability and complexity results.

we mainly use the logical approach which has a long tradition starting with the early work of Trakhtenbrot [START_REF] Trakhtenbrot | Synthesis of logic networks whose operators are described by means of singleplace predicate calculus[END_REF] and Büchi [START_REF] Büchi | Weak second-order arithmetic and finite automata[END_REF]. Decidability questions for Boolean hierarchies over classes of concatenation hierarchies were previously studied by [START_REF] Schmitz | The Boolean hierarchy over level 1/2 of the Straubing-Thérien hierarchy[END_REF][START_REF] Schmitz | The Forbidden-Pattern Approach to Concatenation Hierarchies[END_REF][START_REF] Glaßer | The boolean structure of dot-depth one[END_REF][START_REF] Selivanov | Some hierarchies and reducibilities on regular languages[END_REF].

Enrichments of the first-order logics related to the dot-depth hierarchy and the Straubing-Thérien hierarchy were considered in [BCST92, Str94, MPT00, Sel04, CPS06]. For more background on regular languages, starfree languages, concatenation hierarchies, and their decidability questions we refer to the survey articles [Brz76, Pin95,

. Paper Outline. After the preliminaries, we explain the general idea of an efficient membership algorithm for the classes C d k (n) (section 2). This easy example shows how a suitable characterization of a Boolean hierarchy can be turned into an efficient membership test. The algorithms for the other Boolean hierarchies are similar, but more complicated. Section 3 provides new alternating-chain characterizations for the Boolean hierarchies over Σ σ 1 , Σ τ d 1 , and Σ ̺ 2 for the alphabet A = {a, b}. In section 4 we exploit these characterizations and obtain efficient algorithms for testing the membership in these classes. In particular, we obtain the decidability of the classes Σ τ 1 (n) and Σ ̺ 2 (n) for the alphabet A = {a, b}. Finally, section 5 provides lower bounds for the complexity of the considered decidability problems. As a consequence (with the exception of Σ τ 1 (n)) the membership problems of all considered Boolean levels are logspace many-one complete for NL. In contrast, the membership problems of the general classes FO τ and FO τ d are logspace many-one complete for PSPACE and hence are strictly more complex.

Detailed proofs are available in the technical report [START_REF] Glaßer | Efficient algorithms for membership in Boolean hierarchies of regular languages[END_REF].

Preliminaries

In this section we recall definitions and results that are needed later in the paper. If not stated otherwise, A denotes some finite alphabet with |A| ≥ 2. Let A * and A + be the sets of finite (resp., of finite non-empty) words over A. If not stated otherwise, variables range over the set of natural numbers. We use [m, n] as abbreviation for the interval {m, m + 1, . . . , n}. For a deterministic finite automaton M = (A, Z, δ, s 0 , F ) (dfa for short), the number of states is denoted by |M | and the accepted language is denoted by L(M ). Moreover, for words x and y we write x ≡ M y if and only if δ(s 0 , x) = δ(s 0 , y). For a class of languages C, BC(C) denotes the Boolean closure of C, i.e., the closure under union, intersection, and complementation.

All hardness and completeness results in this paper are with respect to logspace manyone reductions, i.e., whenever we refer to NL-complete sets (resp., PSPACE-complete sets) then we mean sets that are logspace many-one complete for NL (resp., PSPACE).

The Logical Approach to Regular Languages

We relate to an arbitrary alphabet A = {a, . . .} the signatures ̺ = {≤, Q a , . . .} and σ = {≤, Q a , . . . , ⊥, ⊤, p, s}, where ≤ is a binary relation symbol, Q a (for any a ∈ A) is a unary relation symbol, ⊥ and ⊤ are constant symbols, and p, s are unary function symbols. A word u = u 0 . . . u n ∈ A + may be considered as a structure u = ({0, . . . , n}; ≤, Q a , . . .) of signature σ, where ≤ has its usual meaning, Q a (a ∈ A) are unary predicates on {0, . . . , n} defined by Q a (i) ⇔ u i = a, the symbols ⊥ and ⊤ denote the least and the greatest elements, while p and s are respectively the predecessor and successor functions on {0, . . . , n} (with p(0) = 0 and s(n) = n). Similarly, a word v = v 1 . . . v n ∈ A * may be considered as a structure v = ({1, . . . , n}; ≤, Q a , . . .) of signature ̺. For a sentence φ of σ (resp., ̺), let

L φ = {u ∈ A + |u |= φ} (resp., L φ = {v ∈ A * |v |= φ}).
Sentences φ, ψ are treated as equivalent when L φ = L ψ . A language is FO σ -definable (resp., FO ̺ -definable) if it is of the form L φ , where φ ranges over first-order sentences of σ (resp., ̺). We denote by Σ σ k (resp., Π σ k ) the class of languages that can be defined by a sentence of σ having at most k -1 quantifier alternations, starting with an existential (resp., universal) quantifier. Σ ̺ k and Π ̺ k are defined analogously.

It is well-known that the class of FO σ -definable languages (and FO ̺ -definable languages) coincides with the class of regular aperiodic languages which are also known as the star-free languages. Moreover there is a levelwise correspondence to concatenation hierarchies: The classes Σ ̺ k , Π ̺ k , and BC(Σ ̺ k ) coincide with the classes of the Straubing-Thérien hierarchy [START_REF] Perrin | First-order logic and star-free sets[END_REF], while the classes Σ σ k , Π σ k , and BC(Σ σ k ) coincide with the classes of the dot-depth hierarchy [START_REF] Thomas | Classifying regular events in symbolic logic[END_REF].

We will consider also some enrichments of the signature σ. Namely, for any positive integer d let τ d be the signature σ ∪ {P 0 d , . . . , P d-1 d }, where P r d is the unary predicate true on the positions of a word which are equivalent to r modulo d. By FO τ d -definable language we mean any language of the form L φ , where φ is a first-order sentence of signature τ d . Note that signature τ 1 is essentially the same as σ because P 0 1 is the valid predicate. In contrast, for d > 1 the FO τ d -definable languages need not to be aperiodic. E.g., the sentence P 1 2 (⊤) defines the language L consisting of all words of even length which is known to be non-aperiodic. We are also interested in the signature τ = d τ d . Barrington et al. [START_REF] Mix Barrington | Regular languages in NC 1[END_REF][START_REF] Straubing | Finite automata, formal logic and circuit complexity[END_REF] defined quasi-aperiodic languages and showed that this class coincides with the class of FO τ -definable languages. With the same proof we obtain the equality of the class of d-quasi-aperiodic languages and the class of FO τ d -definable languages [START_REF] Selivanov | Some hierarchies and reducibilities on regular languages[END_REF]. It was observed in the same paper that Σ τ n = d Σ τ d n for each n > 0, where Σ n with an upper index denotes the class of regular languages defined by Σ n -sentences of the corresponding signature in the upper index.

Theorem 1.1. For the following classes D it is decidable whether a given dfa M accepts a language in D:

BC(Σ ̺ 1 ) [Sim75], BC(Σ ̺ 2 ) for |A| = 2 [Str88], BC(Σ σ 1 ) [Kna83], BC(Σ τ 1 ) [MPT00].
We do not know the decidability of BC(Σ τ d 1 ). However, it is likely to be a generalization of Knast's proof [START_REF] Knast | A semigroup characterization of dot-depth one languages[END_REF].

1.2. Preliminaries on the Classes C d k (n) We will also refer to 'local' versions of the BH's over Σ σ 1 and Σ τ d 1 [Ste85a, GS01a, Sel01, Sel04]. For any k ≥ 0 the following partial order on Σ + was studied in [Ste85a, [START_REF] Glaßer | The boolean structure of dot-depth one[END_REF][START_REF] Selivanov | A logical approach to decidability of hierarchies of regular star-free languages[END_REF]:

u ≤ k v, if u = v ∈ A ≤k or u, v ∈ A >k , p k (u) = p k (v), s k (u) = s k (v),
and there is a k-embedding f : u → v. Here p k (u) (resp., s k (u)) is the prefix (resp., suffix) of u of length k, and the k-embedding f is a monotone injective function from {0. . . . , |u| -1} to {0. . . . , |v| -1} such that u(i)

• • • u(i + k) = v(f (i)) • • • v(f (i) + k) for all i < |u| -k. Note that ≤ 0 is the subword relation. Definition 1.2 ([Sel04]). Let k ≥ 0 and d > 0.
(1) We say that a k-embedding f : 

u → v is a (k, d)-embedding, if P r d (i) implies P r d (f (i)) for all i < |u| and r < d. (2) For all u, v ∈ A + , let u ≤ d k v mean that u = v ∈ A ≤k or u, v ∈ A >k , p k (u) = p k (v), s k (u) = s k (v),
. , x n ) such that x 0 ≤ d k • • • ≤ d k x n and x i ∈ L ⇔ x i+1 ∈ L for every i < n. The chain is called 1-alternating if x 0 ∈ L, otherwise it is called 0-alternating. Proposition 1.3 ([GS01a, Sel01, Sel04]). For all L ⊆ A + and n ≥ 1, L ∈ C d k (n) if and only if L has no 1-alternating chain of length n in (A + ; ≤ d k ). Moreover, (A + ; ≤ d k ) is a well partial order, Σ τ d 1 = k C d k , and Σ τ 1 = k,d C d k [GS01a, Sel01, Sel04].

Theorem 1.4 ([Ste85a]

). It is decidable whether a given dfa accepts a language in BC(C 1 k ). For d > 1 it is not known whether BC(C d k ) is decidable. However, we expect that this can be shown by generalizing the proof in [START_REF] Stern | Characterizations of some classes of regular events[END_REF].

Efficient Algorithms for C d k (n)

The main objective of this paper is the design of efficient algorithms deciding membership for particular Boolean hierarchies. For this, two things are needed: first, we need to prove suitable characterizations for the single levels of these hierarchies. This gives us certain criteria that can be used for testing membership. Second, we need to construct algorithms that efficiently apply these criteria. If both steps are successful, then we obtain an efficient membership test.

Based on known ideas for membership tests for C 1 0 (n) [START_REF] Schmitz | The Boolean hierarchy over level 1/2 of the Straubing-Thérien hierarchy[END_REF] 1 and C 1 k (n) [START_REF] Schmitz | The Forbidden-Pattern Approach to Concatenation Hierarchies[END_REF], in this section we explain the construction of a nondeterministic, logarithmic-space membership algorithm for the classes C d k (n). This is the first efficient membership test for this general case. Our explanation has an exemplary character, since it shows how a suitable characterization of a Boolean hierarchy can be turned into an efficient membership test. Our results in later sections use similar, but more complicated constructions.

1 For all n, the classes C 1 0 (n) and Σ ̺ 1 (n) coincide up to the empty word, i.e.,

C 1 0 (n) = {L ∩ A + L ∈ Σ ̺ 1 (n)}.
We start with the easiest case k = 0 and d = 1, i.e., with the classes C 1 0 (n). By Proposition 1.3,

L / ∈ C 1 0 (n) ⇔ L has a 1-alternating ≤ 0 -chain of length n. (2.1)
We argue that for a given L, represented by a finite automaton M , the condition on the right-hand side can be verified in nondeterministic logarithmic space. So we have to test whether there exists a chain w 0 ≤ 0 • • • ≤ 0 w n such that w i ∈ L if and only if i is even. This is done by the following algorithm.

0 // On input of a deterministic, finite automaton M = (A, Z, δ, z 0 , F) the algorithm tests whether L(M) ∈ C 1 0 (n).

1 let s 0 = • • • = s n = z 0 2 do 3
nondeterministically choose a ∈ A and j ∈ [0, n] 4 for i = j to n 5 s i = δ(s i , a) // stands for the imaginary command w

i := w i a 6 next i 7 until ∀i, [s i ∈ F ⇔ i is even] 8 accept
The algorithm guesses the words w 0 , . . . , w n in parallel. However, instead of constructing these words in the memory, it guesses the words letter by letter and stores only the states s i = δ(z 0 , w i ). More precisely, in each pass of the loop we choose a letter a and a number j, and we interpret this choice as appending a to the words w j , . . . , w n . Simultaneously, we update the states s j , . . . , s n appropriately. By doing so, we guess all possible chains w 0 ≤ 0 • • • ≤ 0 w n in such a way that we know the states s i = δ(z 0 , w i ). This allows us to easily verify the right-hand side of (2.1) in line 7. Hence, testing non-membership in C 1 0 (n) is in NL. By NL = coNL [START_REF] Immerman | Nondeterministic space is closed under complementation[END_REF][START_REF] Szelepcsényi | The method of forcing for nondeterministic automata[END_REF], the membership test also belongs to NL. The algorithm can be modified such that it works for C d 0 (n) where d is arbitrary: For this we have to make sure that the guessed ≤ 0 -chain is even a ≤ d 0 -chain, i.e., the word extensions must be such that the lengths of single insertions are divisible by d. This is done by (i) introducing new variables l i that count the current length of w i modulo d and (ii) by making sure that l i = l i+1 whenever j ≤ i < n (i.e., letters that appear in both words, w i and w i+1 , must appear at equivalent positions modulo d). So also the membership test for C d 0 (n) belongs to NL. Finally, we adapt the algorithm to make it work for C d k (n) where d and k are arbitrary. So we have to make sure that the guessed ≤ d 0 -chain is even a ≤ d k -chain. For this, let us consider an extension u ≤ d k w where u, w ∈ A >k . The (k, d)-embedding f that is used in the definition of u ≤ d k w ensures that for all i it holds that in u at position i there are the same k + 1 letters as in w at position f (i). Therefore, a word extension u ≤ d k w can be split into a series of elementary extensions of the form u 1 u 2 ≤ d 0 u 1 vu 2 such that the length k prefixes of u 2 and vu 2 are equal. The latter is called the prefix condition. Moreover, we can always make sure that the positions in u at which the elementary extensions occur form a strictly increasing sequence. This allows us to guess the words in the ≤ d k -chain letter by letter. Now the algorithm can test the prefix condition by introducing new variables v i that contain a guessed preview of the next k letters in w i . Each time a letter is appended to w i , (i) we verify that this letter is consistent with the preview v i and (ii) we update v i by removing the first letter and by appending a new guessed letter. In this way the modified algorithm carries the length k previews of the w i with it and it makes sure that guessed letters are consistent with these previews. Moreover, we modify the algorithm such that whenever j ≤ i < n, then the condition v i = v i+1 is tested. The latter makes sure that elementary extensions u 1 u 2 ≤ d 0 u 1 vu 2 satisfy the prefix condition and hence the involved words are even in ≤ d k relation. This modified algorithm shows the following. Theorem 2.1. {M M is a det. finite automaton and L(M

) ∈ C d k (n)} ∈ NL for k ≥ 0, d ≥ 1.
We now explain why the above idea does not immediately lead to a nondeterministic, logarithmic-space membership algorithm for the classes Σ σ 1 (n), although an alternating chain characterization for Σ σ 1 (n) is known from [START_REF] Glaßer | The boolean structure of dot-depth one[END_REF]. Note that the described algorithm for C d k (n) stores the following types of variables in logarithmic space. (1) variables s i that contain states of M (2) variables l i that contain numbers from [0, d -1] (3) variables v i that contain words of length k However, the characterization of the classes Σ σ 1 (n) [START_REF] Glaßer | The boolean structure of dot-depth one[END_REF] is unsuitable for our algorithm: In order to verify the forbidden-chain condition, we have to guess a chain of so-called structured words and have to make sure that certain parts u in these words are M -idempotent (i.e., δ(s, u) = δ(s, uu) for all states s). Again we would try to guess the words letter by letter, but now we have to make sure that (larger) parts u of these words are M -idempotent. We do not know how to verify the latter condition in logarithmic space.

In a similar way one observes that the known characterization of the classes Σ τ d 1 (n) [START_REF] Selivanov | Some hierarchies and reducibilities on regular languages[END_REF] cannot be used for the construction of an efficient membership test. So new characterizations of Σ σ 1 (n) and Σ τ d 1 (n) are needed in order to obtain efficient membership algorithms.

New Characterizations of Boolean-Hierarchy Classes

In this section we develop new alternating-chain characterizations that allow the construction of efficient algorithms deciding membership for the Boolean hierarchies over Σ σ 1 , Σ τ d 1 , and Σ ̺ 2 for |A| = 2. We begin with the introduction of marked words and related partial orders which turn out to be crucial for the design of efficient algorithms. 

Marked Words

=[x 1 , ε] • • • [x m-1 , ε][x m , u].
Next we define a relation on marked words. For w, w ′ ∈ A * we write w w ′ if and only if there exist m ≥ 0, marked words x i , z i ∈ A * , and marked letters b i = [a i , u i ] ∈ A where u i ∈ A + s.t.

w = x 0 b 1 x 1 b 2 x 2 • • • b m
x m , and

w ′ = x 0 b 1 z 1 b 1 x 1 b 2 z 2 b 2 x 2 • • • b m z m b m x m .
We call b i the context letter of the insertion z i b i . We write w d w ′ if w w ′ and |f 0 (z i b i )| ≡ 0 (mod d) for all i. Note that 1 coincides with and observe that d is a transitive relation.

Conclusions

The results of this paper (as well as several previous facts that appeared in the literature) show that more and more decidable levels of hierarchies turn out to be decidable in NL. One is tempted to strengthen the well-known challenging conjecture of decidability of the dot-depth hierarchy to the conjecture that all levels of reasonable hierarchies of firstorder definable regular languages are decidable in NL. At least, it seems instructive to ask this question about any level of such a hierarchy known to be decidable.

In this paper we considered the complexity of classes of regular languages only w.r.t. the representation of regular languages by dfa's. Similar questions are probably open for other natural representations of regular languages, like nondeterministic finite automata and propositions of monadic second order, first order or temporal logics.
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 1 Figure 1: Boolean hierarchies considered in this paper.

  and there is a (k, d)-embedding f : u → v.(3) With C d k we denote the class of all upper sets in (A + ; ≤ d k ). Note that for d = 1 the order ≤ d k coincides with ≤ k . By an alternating ≤ d k -chain of length n for a set L we mean a sequence (x 0 , . .
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  Let τ be the union of all τ d . Σ τ d 1 (resp., Σ τ 1 ) is the class of languages definable by first-order Σ 1 -sentences of the signature τ d (resp., τ ).

	C d k is the generalization of Σ ̺ 1 where neighborhoods of k + 1 consecutive letters and distances modulo d are expressible (Definition 1.2). For a class D (in our case one of the classes Σ ̺ 1 , Σ σ 1 , C d k , Σ τ d 1 , Σ τ 1 , and Σ ̺ 2 for |A| = 2), the Boolean hierarchy over D is the family of classes

d-1 d where P j d (i) is true if and only if i ≡ j(mod d).
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For a dfa M = (A, Z, δ, s 0 , F ) and s, t ∈ Z we write s w -→ M t, if δ(s, w) = t and for all i, δ(s, a 1 • • • a i ) = δ(s, a 1 • • • a i u i ). So s w -→ M t means that the marked word w leads from s to t in a way such that the labels of w are consistent with loops in M . We say that w is M -consistent, if for some t ∈ Z, s 0 w -→ M t and denote by B M the set of marked words that are M -consistent. Every M -consistent word has the following nice property.

3.2. New Characterization of the Classes Σ σ 1 (n) and Σ τ d 1 (n) We extend the known characterization of the classes Σ τ d 1 (n) [START_REF] Selivanov | Some hierarchies and reducibilities on regular languages[END_REF] and add a characterization in terms of alternating chains on M -consistent marked words. Because we can also restrict the length of the labels u i , we denote by B c M for any c > 0 the set of marked words

We can give an upper bound on d for languages in Σ τ 1 (n). Theorem 3.4. For every dfa

We obtain an alternating-chain characterization for the classes of the Boolean hierarchy over Σ ̺ 2 for the case |A| = 2. This allows us to prove the first decidability result for this hierarchy. Note that only in case |A| = 2 decidability of BC(Σ ̺

2 ) [START_REF] Straubing | Semigroups and languages of dot-depth two[END_REF] and

For u ∈ A * let α(u) be the set of letters in u. We say that a marked word w

Theorem 3.5. Let A = {a, b}, n ≥ 1 and let L(M ) ⊆ A * for some dfa M such that L = L(M ) is a star-free language. Then L ∈ Σ ̺ 2 (n) if and only if f -1 0 (L) has no 1alternating chain (w 0 , . . . , w n ) in (B M ; ) such that all w i satisfy the alphabet condition.

Decidability and Complexity

The alternating-chain characterizations from the last sections can be used for the construction of efficient algorithms for testing the membership in these classes. As corollaries we obtain new decidability results: the classes Σ τ 1 (n) and Σ ̺ 2 (n) for |A| = 2 are decidable. The characterizations given in Theorems 3.2 and 3.3 allow the construction of nondeterministic, logarithmic-space membership tests for Σ σ 1 (n) and Σ τ d 1 (n). Theorem 4.1. For all n ≥ 1, {M M is a det. finite automaton and L(M ) ∈ Σ σ 1 (n)} ∈ NL. Theorem 4.2. For all n ≥ 1, {M M is a det. finite automaton and L(M ) ∈ Σ τ d 1 (n)} ∈ NL. Remark 4.3. Unfortunately, we do not obtain NL-decidability for the classes Σ τ 1 (n). The reason is that the d in Theorem 3.4 is extremely big, i.e., we only know the upper bound d ≤ (m m )! where m is the size of the automaton. We leave the question for an improved bound open. Note that if d can be bounded polynomially in the size of the automaton, then Σ τ 1 (n) is decidable in NL. Although d is very large, it is still computable from the automaton M which implies the decidability of all levels Σ τ 1 (n). This settles a question left open in [START_REF] Selivanov | Some hierarchies and reducibilities on regular languages[END_REF].

Theorem 4.4. For all n ≥ 1, {M M is a det. finite automaton and L(M

{M M is a det. finite automaton over the alphabet {a, b} and L(M

Exact Complexity Estimations

With the exception of Σ τ 1 (n), the membership problems of all classes of Boolean hierarchies considered in this paper are NL-complete. In contrast, the membership problems of the general classes FO τ and FO τ d are PSPACE-complete and hence are strictly more complex.

Proposition 5.1. Let C be any class of regular quasi-aperiodic languages over A with |A| ≥ 2 and ∅ ∈ C. Then it is NL-hard to decide whether a given dfa M accepts a language in C.

Together with the upper bounds established in the previous sections this immediately implies the following exact complexity estimations.

We conclude this section with a corollary of the PSPACE-completeness of deciding FO σ which was established by Stern [Ste85b] and by Cho and Huynh [START_REF] Cho | Finite-automaton aperiodicity is PSPACE-complete[END_REF]. It shows that the complexity of deciding the classes FO τ and FO τ d is strictly higher than the complexity of deciding the classes mentioned in Theorem 5.