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Abstract

This paper deals with the dynamical analysis of a multi-stage assembly of cyclic struc-
tures such as, for example, turbomachinery compressor or turbines. If such assemblies are
traditionally modelled stage by stage, the inter-stage coupling effect can sometime be im-
portant. As an answer to this issue, we propose a new method which combines a cyclic
modelling of each stage with a realistic inter-stage coupling. Study cases are presented to
evaluate the efficiency of the method.
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1 Introduction

Rotationally periodic structures are used in many engineering applications such as turbine
bladed disks or gear wheels. It is well known that the dynamics of such structures can be
studied using the cyclic symmetry reduction. This method makes it possible to analyse the
complete cyclic structure by considering a single elementary sector. Examples in the literature
are numerous on this subject, from the early developments of cyclic symmetry method [Thomas,
1979, Wildheim, 1981] to specific studies on bladed disks dynamics [Srinivasan, 1984, Slater,
1999]. Also, even if some applications involve an assembly of cyclic structures leading to a
multi-stage pattern (such as turbines or compressors), most existing studies focus on single
stage analysis and the influence of the interstage coupling is usually neglected. Nevertheless,
in some cases, this coupling can modify noticeably the dynamics of the structures; Bladh et al.
[2003] have, for example, shown that the dynamics of the multi-stage assembly significantly
differed from the single stage predictions (underestimation of vibratory levels).

Concerning modelling aspects, the major issue is that the cyclic symmetry reduction cannot
be applied directly to the multi-stage assembly. Rzadkowski and Drewczynski [2004, 2006] have
used full 360 models to study the (free and forced) dynamics of multi-stage systems. However,
as such techniques often yield prohibitive computational costs, the use of component mode
synthesis methods (with multilevel reductions) have been proposed [Bladh et al., 2001]. These
strategies are efficient but can be somewhat difficult to use in a design process. In the present
paper, we put forward a new strategy to study the dynamics of multi-stage assemblies using a
cyclic symmetry reduction. This method handles the sector finite element modelling directly
and involves a realistic interstage coupling. Following a brief review of the cyclic symmetry
method (Section 2), the proposed method will be detailed in Section 3. Then, some numerical
example and results will be presented in Section 4.
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2 Cyclic symmetry for single stages

Let’s consider a cyclic structure composed of N sectors; as a consequence of the rotational
periodicity, the mode shapes are such that each sector has the same deflection and a constant
phase difference from the adjacent sectors. This inter-sector phase angle is βn = 2πn/N and
the harmonic index (or wave number) n = 0, 1, . . . , N − 1 is called the nodal diameter number.
The dynamical problem of the complete cyclic structure can be transform (exactly) into N
reduced problems (corresponding to each nodal diameter number n) on the reference sector
with appropriate inter-sector boundary conditions. Then, if the reference sector displacement
vector u0 is broken down into left l

u0 and right r
u0 inter-sector degrees of freedom, we have,

for the nth nodal diameter number:

l
u0 = e−

2iπn

N
r
u0 (1)

A displacement vector, in the cyclic base, ũn can be defined by eliminating the left part of
reference sector degrees of freedom u0 for nodal diameter number n. Finally, introducing the
cyclic constraints given by equation (1) in the structural matrices of the reference sector an
eigenvalue equation, for the n-th nodal diameter is obtained:

Knũn = Mnũnλ (2)

Each reduced problem (2) is solved in cyclic coordinates ũn (for the reference sector) and the
transformation in physical coordinates (complete structure) is given by:

u = en ⊗ ũn with en =
[

1 e
2iπn

N e
4iπn

N . . . e
2(N−1)iπn

N

]T

(3)

where ⊗ is the Kronecker product.
Other dynamical problems (forced or transient responses for example) can also be solve

using this method. For further readings, see references [Thomas, 1979, Wildheim, 1981, Henry,
1980].

3 A multi-stage cyclic symmetry method

We suggest a new strategy to analyse the dynamics of multi-stage cyclic structures. It is
called multi-stage cyclic symmetry since the cyclic symmetry strategy is used to model each
stage. The interstage coupling is ensured through a cyclic expansion of the interface degrees
of freedom of each stages. The method will be detailed based on the example of two stages
respectively composed of N1 and N2 sectors (N1 6= N2). The method is presented assuming a
mesh compatibility of the interstage interfaces. However, in cases where the interstage interfaces
would not match the use of multi-point constraints can be a solution but this does not restrict
the present method.

For the (i)-th stage (i = 1, 2), we define the vector containing the degrees of freedom of the

reference sector in the appropriate cyclic base for the n-th nodal diameter number ũ
(i)
n with

the notations defined in Section 2. We also define, in physical and cyclic bases, b
u

(i) and b
ũ

(i)
n

the restriction of the degrees of freedom vectors to the interstage degrees of freedom and, o
u

(i)

and o
ũ

(i)
n those related to other degrees of freedom. We additionally introduce identity matrices

Ibi
and Ioi

which size correspond to the number of boundary and internal degrees of freedom
respectively of the i-th stage.

The interstage compatibility can be ensured in the (common) physical base

b
u

(1) = b
u

(2) (4)
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and since for each interface, we have,

b
u

(1) = (eN1,n ⊗ Ib1)
b
ũ

(1)
n and b

u
(2) = (eN2,n ⊗ Ib2)

b
ũ

(2)
n (5)

equation (4) can be rewritten in terms of cyclic coordinates as,

b
ũ

(2)
n = Bn

b
ũ

(1)
n with Bn =

(

e
∗

N2,n ⊗ Ib2

)(

eN1,n ⊗ Ib1

)

(6)

The matrix Bn is the projection matrix of the n-th cyclic vector of stage 1 on the n-th cyclic
vector of stage 2. We can then perform the assembly of the two stages degrees of freedom vector

[

ũ
(1)
n

ũ
(2)
n

]

= Tnũ
(1∪2)
n with, Tn =









Ib1 0 0
0 Io1 0

Bn 0 0
0 0 Io2









and ũ
(1∪2)
n =







b
ũ

(1)
n

o
ũ

(1)
n

o
ũ

(2)
n






(7)

and define the two stages eigenvalue problem:

K(1∪2)
n ũ

(1∪2)
n = M (1∪2)

n ũ
(1∪2)
n λ (8)

with,

K(1∪2)
n = T T

n

(

K
(1)
n 0

0 K
(2)
n

)

Tn and M (1∪2)
n = T T

n

(

M
(1)
n 0

0 M
(2)
n

)

Tn (9)

This method enables the study of nodal diameter modes separately as for individual stages,
each being modelled with its own elementary sector. The size of problem (8) is close to the
sum of the two individual stages problem sizes. The “nodal diameter modes” found with the
present method are not truly modes of the multi-stage system since it is not cyclic; however,
the numerical results (Section 4) will show that they are a good set of basis vectors and provide
a very good approximation to system’s dynamics.

4 Numerical results

In this section we evaluate the performance of the multi-stage cyclic symmetry method on a
numerical example. We consider two stages of cyclic structures with simple geometry; the first
being composed of 24 elementary sectors and the second of 45 elementary sectors. The figure 1
shows the finite elements meshes of the two elementary sectors and of the whole structure. First
we have compared the results on the multi-stage cyclic symmetry method to a full 360 analysis
taken as a reference. In figure 2, the eigenfrequencies calculated by the two methods plotted
versus their nodal diameter index are displayed. The correlation appears to be correct since the
eigenfrequency deviation between the two methods is very small. Also note that all modes are
properly captured (none are missed) with multi-stage cyclic symmetry method; this attests the
quality of the “cyclic condition” approximation of the method.

Next, we show and compare (in a qualitative way) the modal deformed shapes. Figures 3
and 4 show results from (a) the reference analysis and (b) the multi-stage cyclic symmetry for
various nodal diameter numbers. In these examples we can distinguish some modes localized
in only one stage (figure 4) and some others with a clear multi-stage behaviour (figure 3).

Finally, we found interesting to show the influence of the interstage coupling by comparing
the results of single stage analysis to the multi-stage case. For the single stage analysis we applied
a fixed boundary condition on the interstage interface. The figure 5 gathers the eigenfrequencies
of these three calculations. The influence of the interstage coupling appears clearly and new
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Figure 1: Finite element model of 2 cyclic structures – N1 = 24, N2 = 45

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5
x 10

4

Nodal diameter number

E
ig

en
fr

eq
ue

nc
y 

[H
z]

Figure 2: Eigenfrequency correlation: Eigenfrequency/nodal diameter map, reference � / multi-
stage cyclic symmetry + .
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(a) (b)

Figure 3: One nodal diameter mode at 4824Hz

(a) (b)

Figure 4: Five nodal diameter mode at 6147Hz
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Figure 5: Influence of interstage coupling: Eigenfrequency/nodal diameter map, single stages
(stage#1 × and stage#2 +) / coupled stages �.

modes appears that could not be predicted by a single stage analysis. This is particularly clear
in small nodal diameter numbers. In effect, in these cases, the blade/disk coupling is generally
more important than for higher nodal diameter numbers where the disk’s participation is usually
smaller. This comparison clearly shows the influence of the multi-stage coupling in the blade
disks design.

5 Conclusions

A new strategy to study the dynamics of multi-stage cyclic structures have been proposed. It is
based on a cyclic symmetry modelling of individual stages (in their respective cyclic base) and
an accurate interstage coupling in the common physical base. This method appears quite simple
to carry out since the sector models of each stage are handled directly and the coupling involves
few additional difficulties. The results from numerical simulations show a good accuracy of this
method.
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