Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds

Marc Arnaudon, Anton Thalmaier, Feng-Yu Wang

To cite this version:

Marc Arnaudon, Anton Thalmaier, Feng-Yu Wang. Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds. Stochastic Processes and their Applications, 2009, 119, pp.36533670. 10.1016/j.spa.2009.07.001 . hal-00226653

HAL Id: hal-00226653

https://hal.science/hal-00226653

Submitted on 30 Jan 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GRADIENT ESTIMATE AND HARNACK INEQUALITY ON NON-COMPACT RIEMANNIAN MANIFOLDS

MARC ARNAUDON, ANTON THALMAIER, AND FENG-YU WANG*

Abstract

A new type of gradient estimate is established for diffusion semigroups on non-compact complete Riemannian manifolds. As applications, a global Harnack inequality with power and a heat kernel estimate are derived for diffusion semigroups on arbitrary complete Riemannian manifolds.

1. The main result

Let M be a non-compact complete Riemannian manifold, and P_{t} be the Dirichlet diffusion semigroup generated by $L=\Delta+\nabla V$ for some C^{2} function V. We intend to establish reasonable gradient estimates and Harnack type inequalities for P_{t}. In case that Ric $-\operatorname{Hess}_{V}$ is bounded below, a dimension-free Harnack inequality was established in [15], which according to 17], is indeed equivalent to the corresponding curvature condition. See e.g. [2] for equivalent statements on heat kernel functional inequalities; see also [8, 3, [9] for a parabolic Harnack inequality using the dimensioncurvature condition by shifting time, which goes back to the classical local parabolic Harnack inequality of Moser 10.

Recently, some sharp gradient estimates have been derived in [13, 19] for the Dirichlet semigroup on relatively compact domains. More precisely, for $V=0$ and a relatively compact open C^{2} domain D, the Dirichlet heat semigroup P_{t}^{D} satisfies

$$
\begin{equation*}
\left|\nabla P_{t}^{D} f\right|(x) \leq C(x, t) P_{t}^{D} f(x), \quad x \in D, t>0 \tag{1.1}
\end{equation*}
$$

for some locally bounded function $C: D \times] 0, \infty[\rightarrow] 0, \infty\left[\right.$ and all $f \in \mathscr{B}_{b}^{+}$, the space of bounded non-negative measurable functions on M. Obviously, this implies the Harnack inequality

$$
\begin{equation*}
P_{t}^{D} f(x) \leq \tilde{C}(x, y, t) P_{t}^{D} f(y), \quad t>0, x, y \in D, f \in \mathscr{B}_{b}^{+}, \tag{1.2}
\end{equation*}
$$

for some function $\left.\tilde{C}: M^{2} \times\right] 0, \infty[\rightarrow] 0, \infty[$. The purpose of this paper is to establish inequalities analogous to (1.1) and (1.2) globally on the whole manifold M.

On the other hand however, both (1.1) and (1.2) are in general wrong for P_{t} in place of P_{t}^{D}. A simple counter-example is already the standard heat semigroup on \mathbb{R}^{d}. Hence, we turn to search for the following slightly weaker version of gradient

[^0]estimate:
\[

$$
\begin{array}{r}
\left|\nabla P_{t} f(x)\right| \leq \delta\left(P_{t} f \log f-P_{t} f \log P_{t} f\right)(x)+\frac{C(\delta, x)}{t \wedge 1} P_{t} f(x), \tag{1.3}\\
x \in M, t>0, \delta>0, f \in \mathscr{B}_{b}^{+},
\end{array}
$$
\]

for some positive function $C:] 0, \infty[\times M \rightarrow] 0, \infty[$. This kind of gradient estimate is new and, in particular, implies the Harnack inequality with power introduced in 15 (see Theorem 1.2 below).

Theorem 1.1. There exists a continuous positive function F on $] 0,1] \times M$ such that

$$
\begin{align*}
\left|\nabla P_{t} f(x)\right| & \leq \delta\left(P_{t} f \log f-P_{t} f \log P_{t} f\right)(x) \\
& +\left(F(\delta \wedge 1, x)\left(\frac{1}{\delta(t \wedge 1)}+1\right)+\frac{2 \delta}{\mathrm{e}}\right) P_{t} f(x), \tag{1.4}\\
& \delta>0, x \in M, t>0, f \in \mathscr{B}_{b}^{+} .
\end{align*}
$$

Theorem 1.2. There exists a positive function $C \in C(] 1, \infty\left[\times M^{2}\right)$ such that

$$
\begin{array}{r}
\left(P_{t} f(x)\right)^{\alpha} \leq\left(P_{t} f^{\alpha}(y)\right) \exp \left\{\frac{2(\alpha-1)}{\mathrm{e}}+\alpha C(\alpha, x, y)\left(\frac{\alpha \rho^{2}(x, y)}{(\alpha-1)(t \wedge 1)}+\rho(x, y)\right)\right\} \\
\alpha>1, t>0, x, y \in M, f \in \mathscr{B}_{b}^{+}
\end{array}
$$

where ρ is the Riemannian distance on M. Consequently, for any $\delta>2$ there exists a positive function $C_{\delta} \in C\left(\left[0, \infty[\times M)\right.\right.$ such that the transition density $p_{t}(x, y)$ of P_{t} with respect to $\mu(\mathrm{d} x):=\mathrm{e}^{V(x)} \mathrm{d} x$, where $\mathrm{d} x$ is the volume measure, satisfies

$$
\left.p_{t}(x, y) \leq \frac{\exp \left\{-\rho(x, y)^{2} /(2 \delta t)+C_{\delta}(t, x)+C_{\delta}(t, y)\right\}}{\sqrt{\mu(B(x, \sqrt{2 t})) \mu(B(y, \sqrt{2 t}))}}, \quad x, y \in M, t \in\right] 0,1[
$$

Remark 1.1. According to the Varadhan asymptotic formula for short time behavior, one has $\lim _{t \rightarrow 0} 4 t \log p_{t}(x, y)=-\rho(x, y)^{2}, x \neq y$. Hence, the above heat kernel upper bound is sharp for short time.

The paper is organized as follows: In Section 2 we provide a formula expressing P_{t} in terms of P_{t}^{D} and the joint distribution of $\left(\tau, X_{\tau}\right)$, where X_{t} is the L-diffusion process and τ its hitting time to ∂D. Some necessary lemmas and technical results are collected. Proposition 2.5 is a refinement of a result in 19 to make the coefficient of $\rho(x, y) / t$ sharp and explicit. In Section 3 we use parallel coupling of diffusions together with Girsanov transformation to obtain a gradient estimate for Dirichlet heat semigroup. Finally, complete proofs of Theorems 1.1 and 1.2 are presented in Section 1 .

To prove the indicated theorems, besides stochastic arguments, we make use of a local gradient estimate obtained in 13] for $V=0$. For the convenience of the reader, we include a brief proof for the case with drift in the Appendix.

2. Some Preparations

Let $X_{s}(x)$ be an L-diffusion process with starting point x and explosion time $\xi(x)$. For any open C^{2} domain $D \subset M$ such that $x \in D$, let $\tau(x)$ be the first hitting time of $X_{s}(x)$ at the boundary ∂D. We have

$$
P_{t} f(x)=\mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{t<\xi(x)\}}\right], \quad P_{t}^{D} f(x)=\mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{t<\tau(x)\}}\right]
$$

Let $p_{t}^{D}(x, y)$ be the transition density of P_{t}^{D} with respect to μ.
We first provide a formula for the density $h_{x}(t, z)$ of $\left(\tau(x), X_{\tau(x)}(x)\right)$ with respect to $\mathrm{d} t \otimes \nu(\mathrm{~d} z)$, where ν is the measure on ∂D induced by $\mu(\mathrm{d} y):=\mathrm{e}^{V(y)} \mathrm{d} y$.
Lemma 2.1. Let $K(z, x)$ be the Poisson kernel in D with respect to ν. Then

$$
\begin{equation*}
h_{x}(t, z)=\int_{D}\left(-\partial_{t} p_{t}^{D}(x, y)\right) K(z, y) \mu(\mathrm{d} y) \tag{2.1}
\end{equation*}
$$

Consequently, the density $s \mapsto \ell_{x}(s)$ of $\tau(x)$ satisfies the equation:

$$
\begin{equation*}
\ell_{x}(s)=\int_{D}\left(-\partial_{t} p_{t}^{D}(x, y)\right) \mu(\mathrm{d} y) \tag{2.2}
\end{equation*}
$$

Proof. Every bounded continuous function $f: \partial D \rightarrow \mathbb{R}$ extends continuously to a function h on \bar{D} which is harmonic in D and represented by

$$
h(x)=\int_{\partial D} K(z, x) f(z) \nu(\mathrm{d} z)
$$

Recall that $z \mapsto K(z, x)$ is the density of $X_{\tau(x)}(x)$. Hence

$$
\mathbb{E}\left[f\left(X_{\tau(x)}(x)\right)\right]=h(x)=\int_{\partial D} K(z, x) f(z) \nu(\mathrm{d} z)
$$

On the other hand, the identity

$$
h(x)=\mathbb{E}\left[h\left(X_{t \wedge \tau(x)}\right)\right]
$$

yields

$$
\begin{aligned}
h(x) & =\int_{D} p_{t}^{D}(x, y) h(y) \mu(\mathrm{d} y)+\int_{\partial D} \nu(\mathrm{~d} z) \int_{0}^{t} h_{x}(s, z) f(z) \mathrm{d} s \\
& =\int_{D} p_{t}^{D}(x, y)\left(\int_{\partial D} K(z, y) f(z) \nu(\mathrm{d} z)\right) \mu(\mathrm{d} y)+\int_{\partial D} \nu(\mathrm{~d} z) \int_{0}^{t} h_{x}(s, z) f(z) \mathrm{d} s \\
& =\int_{\partial D} f(z)\left(\int_{D} p_{t}^{D}(x, y) K(z, y) \mu(\mathrm{d} y)+\int_{0}^{t} h_{x}(s, z) \mathrm{d} s\right) \nu(\mathrm{d} z)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
K(z, x)=\int_{D} p_{t}^{D}(x, y) K(z, y) \mu(\mathrm{d} y)+\int_{0}^{t} h_{x}(s, z) \mathrm{d} s \tag{2.3}
\end{equation*}
$$

Differentiating with respect to t gives

$$
\begin{equation*}
h_{x}(t, z)=-\partial_{t} \int_{D} p_{t}^{D}(x, y) K(z, y) \mu(\mathrm{d} y) \tag{2.4}
\end{equation*}
$$

Since $\partial_{t} p_{t}^{D}(x, y)$ is bounded on $\left[\varepsilon, \varepsilon^{-1}\right] \times \bar{D} \times \bar{D}$ for any $\left.\varepsilon \in\right] 0,1[$, Eq. (2.1) follows by the dominated convergence.

Finally, Eq. (2.2) is obtained by integrating (2.1) with respect to $\nu(\mathrm{d} z)$.
Lemma 2.2. The following formula holds:

$$
\begin{aligned}
P_{t} f(x) & =P_{t}^{D} f(x)+\int_{] 0, t] \times \partial D} P_{t-s} f(z) h_{x}(s, z) \mathrm{d} s \nu(\mathrm{~d} z) \\
& =P_{t}^{D} f(x)+\int_{j 0, t] \times \partial D} P_{t-s} f(z) P_{s / 2}^{D} h .(s / 2, z)(x) \mathrm{d} s \nu(\mathrm{~d} z) .
\end{aligned}
$$

Proof. By the strong Markov property we have

$$
\begin{align*}
& P_{t} f(x)=\mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{t<\xi(x)\}}\right] \\
& =\mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{t<\tau(x)\}}\right]+\mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{\tau(x)<t<\xi(x)\}}\right] \\
& =P_{t}^{D} f(x)+\mathbb{E}\left[\mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{\tau(x)<t<\xi(x)\}} \mid\left(\tau(x), X_{\tau(x)}(x)\right)\right]\right] \tag{2.5}\\
& =P_{t}^{D} f(x)+\int_{j 0, t] \times \partial D} P_{t-s} f(z) h_{x}(s, z) d s \nu(\mathrm{~d} z) .
\end{align*}
$$

Next, since

$$
\begin{aligned}
\partial_{s} p_{s}^{D}(x, y) & =L p_{s}^{D}(\cdot, y)(x)=L P_{s / 2}^{D} p_{s / 2}^{D}(\cdot, y)(x) \\
& =P_{s / 2}^{D}\left(L p_{s / 2}^{D}(\cdot, y)\right)(x)=P_{s / 2}^{D}\left(\left.\partial_{u} p_{u}^{D}(\cdot, y)\right|_{u=s / 2}\right)(x),
\end{aligned}
$$

it follows from (2.1) that

$$
\begin{equation*}
h_{x}(s, z)=P_{s / 2}^{D} h .(s / 2, z)(x) . \tag{2.6}
\end{equation*}
$$

This completes the proof.
We remark that formula (2.6) can also be derived from the strong Markov property without invoking Eq. (2.1). Indeed, for any $u<s$ and any measurable set $A \subset \partial D$, the strong Markov property implies that

$$
\begin{aligned}
\mathbb{P}\left\{\tau(x)>s, X_{\tau(x)}(x) \in A\right\} & =\mathbb{E}\left[\left(1_{\{u<\tau(x)\}} \mathbb{P}\left\{\tau(x)>s, X_{\tau(x)}(x) \in A \mid \mathscr{F}_{u}\right\}\right]\right. \\
& =\int_{D} p_{u}^{D}(x, y) \mathbb{P}\left\{\tau(y)>s-u, X_{\tau(y)}(y) \in A\right\} \mu(\mathrm{d} y),
\end{aligned}
$$

and thus,

$$
h_{x}(s, z)=P_{u}^{D} h .(s-u, z)(x), \quad s>u>0, x \in D, z \in \partial D .
$$

Lemma 2.3. Let D be a relatively compact open domain and $\rho_{\partial D}$ be the Riemannian distance to the boundary ∂D. Then there exists a constant $C>0$ depending on D such that

$$
\mathbb{P}\{\tau(x) \leq t\} \leq C \mathrm{e}^{-\rho_{\partial D}^{2}(x) / 16 t}, \quad x \in D, t>0
$$

Proof. For $x \in D$, let $R:=\rho_{\partial D}(x)$ and ρ_{x} the Riemannian distance function to x. Since D is relatively compact, there exists a constant $c>0$ such that $L \rho_{x}^{2} \leq c$ holds on D outside the cut-locus of x. Let $\gamma_{t}:=\rho_{x}\left(X_{t}(x)\right), t \geq 0$. By Itô's formula, according to Kendall [7], there exists a one-dimensional Brownian motion b_{t} such that

$$
\mathrm{d} \gamma_{t}^{2} \leq 2 \sqrt{2} \gamma_{t} \mathrm{~d} b_{t}+c \mathrm{~d} t, \quad t \leq \tau(x)
$$

Thus, for fixed $t>0$ and $\delta>0$,

$$
Z_{s}:=\exp \left(\frac{\delta}{t} \gamma_{s}^{2}-\frac{\delta}{t} c s-4 \frac{\delta^{2}}{t^{2}} \int_{0}^{s} \gamma_{u}^{2} \mathrm{~d} u\right), \quad s \leq \tau(x)
$$

is a supermartingale. Therefore,

$$
\begin{aligned}
\mathbb{P}\{\tau(x) \leq t\} & =\mathbb{P}\left\{\max _{s \in[0, t]} \gamma_{s \wedge \tau(x)} \geq R\right\} \leq \mathbb{P}\left\{\max _{s \in[0, t]} Z_{s \wedge \tau(x)} \geq \mathrm{e}^{\delta R^{2} / t-\delta c-4 \delta^{2} R^{2} / t}\right\} \\
& \leq \exp \left(c \delta-\frac{1}{t}\left(\delta R^{2}-4 \delta^{2} R^{2}\right)\right)
\end{aligned}
$$

The proof is completed by taking $\delta:=1 / 8$.

Lemma 2.4. On a measurable space $(E, \mathscr{F}, \tilde{\mu})$ satisfying $\tilde{\mu}(E)<\infty$, let $f \in L^{1}(\tilde{\mu})$ be non-negative with $\tilde{\mu}(f)>0$. Then for every measurable function ψ such that $\psi f \in L^{1}(\tilde{\mu})$, there holds:

$$
\begin{equation*}
\int_{E} \psi f \mathrm{~d} \tilde{\mu} \leq \int_{E} f \log \frac{f}{\tilde{\mu}(f)} \mathrm{d} \tilde{\mu}+\tilde{\mu}(f) \log \int_{E} \mathrm{e}^{\psi} \mathrm{d} \tilde{\mu} \tag{2.7}
\end{equation*}
$$

Proof. This is a direct consequence of 12 Lemma 6.45. We give a proof for completeness. Multiplying f by a positive constant, we can assume that $\tilde{\mu}(f)=1$. If $\int_{E} \mathrm{e}^{\psi} \mathrm{d} \tilde{\mu}=\infty$, then (2.7) is clearly satisfied.

If $\int_{E} \mathrm{e}^{\psi} \mathrm{d} \tilde{\mu}<\infty$, then since $\int_{E} \mathrm{e}^{\psi} \mathrm{d} \tilde{\mu} \geq \int_{\{f>0\}} \mathrm{e}^{\psi} \mathrm{d} \tilde{\mu}$, we can assume that $f>0$ everywhere. Now from the fact that $e^{\psi} \frac{1}{f} \in L^{1}(f \tilde{\mu})$, we can apply Jensen's inequality to obtain

$$
\log \left(\int_{E} e^{\psi} \mathrm{d} \tilde{\mu}\right)=\log \left(\int_{E} e^{\psi} \frac{1}{f} f \mathrm{~d} \tilde{\mu}\right) \geq \int_{E} \log \left(e^{\psi} \frac{1}{f}\right) f \mathrm{~d} \tilde{\mu}
$$

(note the right-hand-side belongs to $\mathbb{R} \cup\{-\infty\}$). To finish we remark that since $\psi f \in L^{1}(\tilde{\mu})$,

$$
\int_{E} \log \left(e^{\psi} \frac{1}{f}\right) f \mathrm{~d} \tilde{\mu}=\int_{E} \psi f d \tilde{\mu}-\int_{E} f \log f d \tilde{\mu} .
$$

Finally, in order to obtain precise gradient estimate of the type (1.4), where the constant in front of $\rho(x, y) / t$ is explicit and sharp, we establish the following revision of [19, Theorem 2.1].

Proposition 2.5. Let D be a relatively compact open C^{2} domain in M and $K a$ compact subset of D. For any $\varepsilon>0$, there exists a constant $C(\varepsilon)>0$ such that

$$
\begin{array}{r}
\left|\nabla \log p_{t}^{D}(\cdot, y)(x)\right| \leq \frac{C(\varepsilon) \log \left(1+t^{-1}\right)}{\sqrt{t}}+\frac{(1+\varepsilon) \rho(x, y)}{2 t} \\
t \in] 0,1[, x \in K, y \in D \tag{2.8}
\end{array}
$$

In addition, if D is convex, the above estimate holds for $\varepsilon=0$ and some constant $C(0)>0$.

Proof. Since $\delta:=\min _{K} \rho_{\partial D}>0$, it suffices to deal with the case where $0<t \leq 1 \wedge \delta$. To this end, we combine the argument in 19] with relevant results from 16, 18.
(a) Let $t_{0}=t / 2$ and $y \in D$ be fixed. Take

$$
f(x, s)=p_{s+t_{0}}^{D}(x, y), \quad x \in D, s>0
$$

Applying Theorem 5.1 of the Appendix to the cube

$$
Q:=B\left(x, \rho_{\partial D}(x)\right) \times\left[s-\rho_{\partial D}(x)^{2} / 2, s\right] \subset D \times\left[-t_{0}, t_{0}\right], \quad s \leq t_{0}
$$

we obtain

$$
\begin{equation*}
|\nabla \log f(x, s)| \leq \frac{c_{0}}{\rho_{\partial D}(x)}\left(1+\log \frac{A}{f(x, s)}\right), \quad s \leq t_{0} \tag{2.9}
\end{equation*}
$$

where $A:=\sup _{Q} f$ and $c_{0}>0$ is a constant depending on the dimension and curvature on D. By [9, Theorem 5.2],

$$
\begin{equation*}
\left.\left.A \leq c_{1} f\left(x, s+\rho_{\partial D}(x)^{2}\right), \quad s \in\right] 0,1\right], x \in D \tag{2.10}
\end{equation*}
$$

holds for some constant $c_{1}>0$ depending on D and L. Moreover, by the boundary Harnack inequality of [4 (which treats $Z=0$ but generalizes easily to non-zero C^{1} drift Z),

$$
\begin{equation*}
\left.\left.f\left(x, s+\rho_{\partial D}(x)^{2}\right) \leq c_{2} f(x, s), \quad s \in\right] 0,1\right], x \in D \tag{2.11}
\end{equation*}
$$

for some constant $c_{2}>0$ depending on D and L. Combining (2.9), (2.10) and (2.11), there exists a constant $c>0$ depending on D and L such that

$$
\begin{equation*}
\left.\left.|\nabla \log f(x, s)| \leq \frac{c}{\sqrt{s}}, \quad x \in D, s \in\right] 0, t_{0}\right] \quad \text { with } \rho_{\partial D}(x)^{2} \leq s \tag{2.12}
\end{equation*}
$$

(b) Let

$$
\Omega=\left\{(x, s): x \in D, s \in\left[0, t_{0}\right], \rho_{\partial D}(x)^{2} \geq s\right\}
$$

and $B=\sup _{\Omega} f$. Since $\partial_{s} f=L f$, for any constant $b \geq 1$, we have

$$
\left(L-\partial_{s}\right)\left(f \log \frac{b B}{f}\right)=-\frac{|\nabla f|^{2}}{f}
$$

Next, again by $\partial_{s} f=L f$ and the Bochner-Weizenböck formula,

$$
\left(L-\partial_{s}\right) \frac{|\nabla f|^{2}}{f} \geq-2 k \frac{|\nabla f|^{2}}{f}
$$

where $k \geq 0$ is such that Ric $-\nabla Z \geq-k$ on D. Then the function

$$
h:=\frac{s|\nabla f|^{2}}{(1+2 k s) f}-f \log \frac{b B}{f}
$$

satisfies

$$
\begin{equation*}
\left.\left(L-\partial_{s}\right) h \geq 0 \quad \text { on } D \times\right] 0, \infty[\tag{2.13}
\end{equation*}
$$

Obviously $h(\cdot, 0) \leq 0$, and (2.12) yields $h(x, s) \leq 0$ for $s=\rho_{\partial D}(x)^{2}$ provided the constant b is large enough. Then the maximum principle and inequality (2.13) imply $h \leq 0$ on Ω. Thus,

$$
\begin{equation*}
|\nabla \log f(x, s)|^{2} \leq\left(2 k+s^{-1}\right) \log \frac{b B}{f}, \quad(x, s) \in \Omega \tag{2.14}
\end{equation*}
$$

(c) If D is convex, by [16. Theorem 2.1] with $\delta=\sqrt{t}$ and $t=2 t_{0}$, we obtain (note the generator therein is $\frac{1}{2} L$)

$$
f\left(x, t_{0}\right)=p_{2 t_{0}}^{D}(x, y)=p_{2 t_{0}}^{D}(y, x) \geq c_{1} \varphi(y) t_{0}^{-d / 2} \mathrm{e}^{-\rho(x, y)^{2} / 8 t_{0}}, \quad x \in K, y \in D
$$

for some constant $c_{1}>0$, where $\varphi>0$ is the first Dirichlet eigenfunction of L on D. On the other hand, the intrinsic ultracontractivity for P_{t}^{D} implies (see e.g. 111)

$$
f(z, s)=p_{s+t_{0}}^{D}(z, y) \leq c_{2} \varphi(y) t_{0}^{-(d+2) / 2}, \quad z, y \in D, s \leq t_{0}
$$

for some constant $c_{2}>0$ depending on D, K and L. Combining these estimates we obtain

$$
\frac{B}{f(x, s)} \leq c_{3} t_{0}^{-1} \mathrm{e}^{\rho(x, y)^{2} / 8 t_{0}}, \quad x \in K, s \leq t_{0}
$$

for some constant $c_{3}>0$ depending on D, K and L. Hence by (2.14) for $s=t_{0}$ we get the existence of a constant $C>0$ such that

$$
\left|\nabla \log p_{2 t_{0}}^{D}(\cdot, y)\right|^{2} \leq\left(t_{0}^{-1}+2 k\right)\left(C+\log t_{0}^{-1}+\frac{\rho(x, y)^{2}}{8 t_{0}}\right)
$$

for all $y \in D, x \in K$ and $\left.t_{0} \in\right] 0,1\left[\right.$ with $t_{0} \leq \rho_{\partial D}(x)^{2}$. This completes the proof by noting that $t=2 t_{0}$.
(d) Finally, if D is not convex, then there exists a constant $\sigma>0$ such that

$$
\left\langle\nabla_{N} X, X\right\rangle \geq-\sigma|X|^{2}, \quad X \in T \partial D
$$

where N is the outward unit normal vector field of ∂D. Let $f \in C^{\infty}(\bar{D})$ such that $f=1$ for $\rho_{\partial D} \geq \varepsilon, 1 \leq f \leq \mathrm{e}^{2 \varepsilon \sigma}$ for $\rho_{\partial D} \leq \varepsilon$, and $\left.N \log f\right|_{\partial D} \geq \tilde{\sim}_{\tilde{\nabla}}$. By Lemma 2.1 in 18], ∂D is convex under the metric $\tilde{g}:=f^{-2}\langle\cdot, \cdot\rangle$. Let $\tilde{\Delta}, \tilde{\nabla}$ and $\tilde{\rho}$ be respectively the Laplacian, the gradient and the Riemannian distance induced by \tilde{g}. By Lemma 2.2 in 18,

$$
L:=\Delta+\nabla V=f^{-2}[\tilde{\Delta}+(d-2) f \nabla f]+\nabla V
$$

Since D is convex under \tilde{g}, as explained in the first paragraph in Section 2 of 16,

$$
\left.\tilde{g}(\tilde{\nabla} \tilde{\rho}(y, \cdot), \tilde{\nabla} \varphi)\right|_{\partial D}<0
$$

so that

$$
\tilde{\sigma}(y):=\sup _{D} \tilde{g}(\tilde{\nabla} \tilde{\rho}(y, \cdot), \tilde{\nabla} \varphi)<\infty, \quad y \in D
$$

Hence, repeating the proof of Theorem 2.1 in [16], but using $\tilde{\rho}$ and $\tilde{\nabla}$ in place of ρ and ∇ respectively, and taking into account that $f \rightarrow 1$ uniformly as $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
p_{2 t_{0}}^{D}(x, y) & \geq C_{1}(\varepsilon) \varphi(y) t_{0}^{-d / 2} \mathrm{e}^{-C_{2}(\varepsilon) \tilde{\rho}(x, y)^{2} / 8 t_{0}} \\
& \geq C_{1}(\varepsilon) \varphi(y) t_{0}^{-d / 2} \mathrm{e}^{-C_{2}(\varepsilon) C_{3}(\varepsilon) \rho(x, y)^{2} / 8 t_{0}}
\end{aligned}
$$

for some constants $C_{1}(\varepsilon), C_{2}(\varepsilon), C_{3}(\varepsilon)>1$ with $C_{2}(\varepsilon), C_{3}(\varepsilon) \rightarrow 1$ as $\varepsilon \rightarrow 0$. Hence the proof is completed.

3. Gradient estimate for Dirichlet heat semigroup using coupling of diffusion processes

Proposition 3.1. Let D be a relatively compact C^{2} domain in M. For every compact subset K of D, there exists a constant $C=C(K, D)>0$ such that for all $\delta>0, t>0, x_{0} \in K$ and for all bounded positive functions f on M,

$$
\begin{align*}
& \left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| \\
& \leq \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+C\left(\frac{1}{\delta(t \wedge 1)}+1\right) P_{t}^{D} f\left(x_{0}\right) . \tag{3.1}
\end{align*}
$$

Proof. We assume that $t \in] 0,1[$, the other case will be treated at the very end of the proof.

We write $\nabla V=Z$ so that $L=\Delta+Z$. Since P_{t}^{D} only depends on the Riemannian metric and the vector field Z on the domain D, by modifying the metric and Z outside of D we may assume that Ric $-\nabla Z$ is bounded below (see e.g. 14]); that is,

$$
\begin{equation*}
\operatorname{Ric}-\nabla Z \geq-\kappa \tag{3.2}
\end{equation*}
$$

for some constant $\kappa \geq 0$.

Fix $x_{0} \in K$. Let f be a positive bounded function on M and X_{s} a diffusion with generator L, starting at x_{0}. For fixed $t \leq 1$, let

$$
v=\frac{\nabla P_{t}^{D} f\left(x_{0}\right)}{\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right|}
$$

and denote by $u \mapsto \varphi(u)$ the geodesics in M satisfying $\dot{\varphi}(0)=v$. Then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} u}\right|_{u=0} P_{t}^{D} f(\varphi(u))=\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| .
$$

To formulate the coupling used in [1], we introduce some notations.
If Y is a semimartingale in M, we denote by $\mathrm{d} Y$ its Itô differential and by $\mathrm{d}_{m} Y$ the martingale part of $\mathrm{d} Y$: in local coordinates,

$$
\mathrm{d} Y=\left(\mathrm{d} Y^{i}+\frac{1}{2} \Gamma_{j k}^{i}(Y) \mathrm{d}\left\langle Y^{j}, Y^{k}\right\rangle\right) \frac{\partial}{\partial x^{i}}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols of the Levi-Civita connection; if $\mathrm{d} Y^{i}=$ $\mathrm{d} M^{i}+\mathrm{d} A^{i}$ where M^{i} is a local martingale and A^{i} a finite variation process, then

$$
\mathrm{d}_{m} Y=\mathrm{d} M^{i} \frac{\partial}{\partial x^{i}}
$$

Alternatively, if $Q(Y): T_{Y_{0}} M \rightarrow T_{Y .} M$ is the parallel translation along Y, then

$$
\mathrm{d} Y_{t}=Q(Y)_{t} \mathrm{~d}\left(\int_{0}^{\cdot} Q(Y)_{s}^{-1} \circ \mathrm{~d} Y_{s}\right)_{t}
$$

and

$$
\mathrm{d}_{m} Y_{t}=Q(Y)_{t} \mathrm{~d} N_{t}
$$

where N_{t} is the martingale part of the Stratonovich integral $\int_{0}^{t} Q(Y)_{s}^{-1} \circ d Y_{s}$.
For $x, y \in M$, and y not in the cut-locus of x, let

$$
\begin{equation*}
I(x, y)=\sum_{i=1}^{d-1} \int_{0}^{\rho(x, y)}\left(\left|\nabla_{\dot{e}(x, y)} J_{i}\right|^{2}+\left\langle R\left(\dot{e}(x, y), J_{i}\right) J_{i}+\nabla_{\dot{e}(x, y)} Z, \dot{e}(x, y)\right\rangle\right)_{s} \mathrm{~d} s \tag{3.3}
\end{equation*}
$$

where $\dot{e}(x, y)$ is the tangent vector of the unit speed minimal geodesic $e(x, y)$ and $\left(J_{i}\right)_{i=1}^{d}$ are Jacobi fields along $e(x, y)$ which together with $\dot{e}(x, y)$ constitute an orthonormal basis of the tangent space at x and y :

$$
J_{i}(\rho(x, y))=P_{x, y} J_{i}(0), \quad i=1, \ldots, d-1
$$

here $P_{x, y}: T_{x} M \rightarrow T_{y} M$ is the parallel translation along the geodesic $e(x, y)$.
Let $c \in] 0,1[$. For $h>0$ but smaller than the injectivity radius of D, and $t>0$, let X^{h} be the semimartingale satisfying $X_{0}^{h}=\varphi(h)$ and

$$
\begin{equation*}
\mathrm{d} X_{s}^{h}=P_{X_{s}, X_{s}^{h}} \mathrm{~d}_{m} X_{s}+Z\left(X_{s}^{h}\right) \mathrm{d} s+\xi_{s}^{h} \mathrm{~d} s \tag{3.4}
\end{equation*}
$$

where

$$
\xi_{s}^{h}:=\left(\frac{h}{c t}+\kappa h\right) n\left(X_{s}^{h}, X_{s}\right)
$$

with $n\left(X_{s}^{h}, X_{s}\right)$ the derivative at time 0 of the unit speed geodesic from X_{s}^{h} to X_{s}, and $P_{X_{s}, X_{s}^{h}}: T_{X_{s}} M \rightarrow T_{X_{s}^{h}} M$ the parallel transport along the minimal geodesic from X_{s} to X_{s}^{h}. By convention, we put $n(x, x)=0$ and $P_{x, x}=\operatorname{Id}$ for all $x \in M$.

By the second variational formula and (3.2) (cf. [1]), we have

$$
\mathrm{d} \rho\left(X_{s}, X_{s}^{h}\right) \leq\left\{I\left(X_{s}, X_{s}^{h}\right)-\frac{h}{c t}-\kappa h\right\} \mathrm{d} s \leq-\frac{h}{c t} \mathrm{~d} s, \quad s \leq T_{h}
$$

where $T_{h}:=\inf \left\{s \geq 0: X_{s}=X_{s}^{h}\right\}$. Thus, $\left(X_{s}, X_{s}^{h}\right)$ never reaches the cut-locus. In particular, $T_{h} \leq c t$ and

$$
\begin{equation*}
X_{s}=X_{s}^{h}, \quad s \geq c t \tag{3.5}
\end{equation*}
$$

Moreover, we have $\rho\left(X_{s}, X_{s}^{h}\right) \leq h$ and

$$
\begin{equation*}
\left|\xi_{s}^{h}\right|^{2} \leq h^{2}\left(\kappa+\frac{1}{c t}\right)^{2} \tag{3.6}
\end{equation*}
$$

We want to compensate the additional drift of X^{h} by a change of probability. To this end, let

$$
M_{s}^{h}=-\int_{0}^{s \wedge c t}\left\langle\xi_{r}^{h}, P_{X_{r}, X_{r}^{h}} \mathrm{~d}_{m} X_{r}\right\rangle
$$

and

$$
R_{s}^{h}=\exp \left(M_{s}^{h}-\frac{1}{2}\left[M^{h}\right]_{s}\right)
$$

Clearly R^{h} is a martingale, and under $\mathbb{Q}^{h}=R^{h} \cdot \mathbb{P}$, the process X^{h} is a diffusion with generator L.

Letting $\tau\left(x_{0}\right)$ (resp. τ^{h}) be the hitting time of ∂D by X (resp. by X^{h}), we have

$$
1_{\left\{t<\tau^{h}\right\}} \leq 1_{\left\{t<\tau\left(x_{0}\right)\right\}}+1_{\left\{\tau\left(x_{0}\right) \leq t<\tau^{h}\right\}} .
$$

But, since $X_{s}^{h}=X_{s}$ for $s \geq c t$, we obtain

$$
1_{\left\{\tau\left(x_{0}\right) \leq t<\tau^{h}\right\}}=1_{\left\{\tau\left(x_{0}\right) \leq c t\right\}} 1_{\left\{t<\tau^{h}\right\}} .
$$

Consequently,

$$
\begin{aligned}
\frac{1}{h}\left(P_{t}^{D} f(\varphi(h))-P_{t}^{D} f\left(x_{0}\right)\right)= & \frac{1}{h} \mathbb{E}\left[f\left(X_{t}^{h}\right) R_{t}^{h} 1_{\left\{t<\tau^{h}\right\}}-f\left(X_{t}(0)\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}}\right] \\
\leq & \frac{1}{h} \mathbb{E}\left[f\left(X_{t}^{h}\right) R_{t}^{h} 1_{\left\{t<\tau\left(x_{0}\right)\right\}}-f\left(X_{t}(0)\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}}\right] \\
& +\frac{1}{h} \mathbb{E}\left[f\left(X_{t}^{h}\right) R_{t}^{h} 1_{\left\{\tau\left(x_{0}\right) \leq c t\right\}} 1_{\left\{t<\tau^{h}\right\}}\right]
\end{aligned}
$$

and since $X_{t}^{h}=X_{t}$ this yields

$$
\begin{align*}
\frac{1}{h}\left(P_{t}^{D} f(\varphi(h))-P_{t}^{D} f\left(x_{0}\right)\right) \leq \mathbb{E} & {\left[f\left(X_{t}\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}} \frac{1}{h}\left(R_{t}^{h}-1\right)\right] } \\
& +\frac{1}{h} \mathbb{E}\left[f\left(X_{t}^{h}\right) R_{t}^{h} 1_{\left\{\tau\left(x_{0}\right) \leq c t\right\}} 1_{\left\{t<\tau^{h}\right\}}\right] \tag{3.7}
\end{align*}
$$

The left hand side converges to the quantity to be evaluated as h goes to 0 . Hence, it is enough to find appropriate lim sup's for the two terms of the right hand side. We begin with the first term. Letting

$$
Y_{s}^{h}=\left|M_{s}^{h}-\frac{1}{2}\left[M^{h}\right]_{s}\right|
$$

and noting that $\left\langle n\left(X_{r}^{h}, X_{r}\right), P_{X_{r}, X_{r}^{h}} \mathrm{~d}_{m} X_{r}\right\rangle=\sqrt{2} \mathrm{~d} b_{r}$ up to the coupling time T_{h} for some one-dimensional Brownian motion b_{r}, we have

$$
\begin{aligned}
R_{t}^{h} & =\exp \left(M_{t}^{h}-\frac{1}{2}\left[M^{h}\right]_{t}\right) \leq 1+M_{t}^{h}-\frac{1}{2}\left[M^{h}\right]_{t}+\left(Y_{t}^{h}\right)^{2} \exp \left(Y_{t}^{h}\right) \\
& =1+M_{t}^{h}-\int_{0}^{t}\left|\xi_{s}^{h}\right|^{2} \mathrm{~d} s+\left(Y_{t}^{h}\right)^{2} \exp \left(Y_{t}^{h}\right)
\end{aligned}
$$

From the assumptions, $\exp \left(Y_{t}^{h}\right)$ and Y_{t}^{h} / h have all their moments bounded, uniformly in $h>0$. Consequently, since f is bounded,

$$
\limsup _{h \rightarrow 0} \mathbb{E}\left[f\left(X_{t}\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}} \frac{1}{h}\left(\int_{0}^{t}\left|\xi_{r}^{h}\right|^{2} d r+\left(Y_{t}^{h}\right)^{2} \exp \left(Y_{t}^{h}\right)\right)\right]=0
$$

which implies

$$
\begin{aligned}
\limsup _{h \rightarrow 0} \mathbb{E} & {\left[f\left(X_{t}\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}} \frac{1}{h}\left(R_{t}^{h}-1\right)\right] } \\
& \leq \limsup _{h \rightarrow 0} \mathbb{E}\left[f\left(X_{t}\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}} \frac{1}{h} \int_{0}^{s}\left\langle\xi_{r}^{h}, P_{X_{r}, X_{r}^{h}} \mathrm{~d}_{m} X_{r}\right\rangle\right] .
\end{aligned}
$$

Using Lemma 2.4 and estimate (3.6), we have for $\delta>0$

$$
\begin{aligned}
\mathbb{E} & {\left[f\left(X_{t}\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}} \frac{1}{h} \int_{0}^{s}\left\langle\xi_{r}^{h}, P_{X_{r}, X_{r}^{h}} \mathrm{~d}_{m} X_{r}\right\rangle\right] } \\
\leq & \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right) \\
& +\delta P_{t}^{D} f\left(x_{0}\right) \log \mathbb{E}\left[1_{\left\{t<\tau\left(x_{0}\right)\right\}} \exp \left(\frac{1}{\delta h} \int_{0}^{c t}\left\langle\xi_{s}^{h}, P_{X_{s}, X_{s}^{h}} \mathrm{~d}_{m} X_{s}\right\rangle\right)\right] \\
\leq & \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right) \\
& +\delta P_{t}^{D} f\left(x_{0}\right) \log \mathbb{E}\left[\exp \left(\frac{1}{\delta^{2} h^{2}} \int_{0}^{c t}\left|\xi_{s}^{h}\right|^{2} \mathrm{~d} s\right)\right] \\
\leq & \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+\delta P_{t}^{D} f\left(x_{0}\right) \frac{c t}{\delta^{2}}\left(\frac{1}{c^{2} t^{2}}+\kappa^{2}\right) \\
\leq & \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+\frac{C^{\prime}}{c \delta t} P_{t}^{D} f\left(x_{0}\right),
\end{aligned}
$$

where $C^{\prime}=1+(c \kappa)^{2}$ (recall that $t \leq 1$). Since the last expression is independent of h, this proves that

$$
\begin{align*}
\limsup _{h \rightarrow 0} \mathbb{E} & {\left[f\left(X_{t}\right) 1_{\left\{t<\tau\left(x_{0}\right)\right\}} \frac{1}{h}\left(R_{t}^{h}-1\right)\right] } \\
& \leq \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+\frac{C^{\prime}}{c \delta t} P_{t}^{D} f\left(x_{0}\right) \tag{3.8}
\end{align*}
$$

We are now going to estimate lim sup of the second term in (3.7). By the strong Markov property, we have

$$
\begin{align*}
\mathbb{E}\left[f\left(X_{t}^{h}\right) R_{t}^{h} 1_{\left\{\tau\left(x_{0}\right) \leq c t\right\}} 1_{\left\{t<\tau^{h}\right\}}\right] & =\mathbb{E}_{\mathbb{Q}^{h}}\left[P_{t-c t}^{D} f\left(X_{c t}^{h}\right) 1_{\left\{\tau\left(x_{0}\right) \leq c t<\tau^{h}\right\}}\right] \\
& \leq\left\|P_{t-c t}^{D} f\right\|_{\infty} \mathbb{Q}^{h}\left\{\tau\left(x_{0}\right) \leq c t<\tau^{h}\right\} . \tag{3.9}
\end{align*}
$$

Since $\rho\left(X_{s}^{h}, X_{s}\right) \leq h \frac{c t-s}{c t}$ for $s \in[0, c t]$, we have on $\left\{\tau\left(x_{0}\right) \leq c t<\tau^{h}\right\}$:

$$
\rho_{\partial D}\left(X_{\tau\left(x_{0}\right)}^{h}\right) \leq h \frac{c t-\tau\left(x_{0}\right)}{c t} .
$$

For $s \in\left[0, \tau^{h}-\tau\left(x_{0}\right)\right]$, define

$$
Y_{s}^{\prime}=\rho\left(X_{\tau\left(x_{0}\right)+s}^{h}, \partial D\right)
$$

and for fixed small $\varepsilon>0$ (but $\varepsilon>h$), let $S^{\prime}=\inf \left\{s \geq 0, Y_{s}^{\prime}=\varepsilon\right.$ or $\left.Y_{s}^{\prime}=0\right\}$. Since under \mathbb{Q}^{h} the process X_{s}^{h} is generated by L, the drift of $\rho\left(X_{s}^{h}, \partial D\right)$ is $L \rho(\cdot, \partial D)$ which is bounded in a neighborhood of ∂D. Thus, for a sufficiently small $\varepsilon>0$, there exists a \mathbb{Q}^{h}-Brownian motion β started at 0 , and a constant $N>0$ such that

$$
Y_{s}:=h \frac{c t-\tau\left(x_{0}\right)}{c t}+\sqrt{2} \beta_{s}+N s \geq Y_{s}^{\prime}, \quad s \in\left[0, S^{\prime}\right]
$$

Let

$$
S=\inf \left\{u \geq 0, Y_{u}=\varepsilon \text { or } Y_{u}=0\right\} .
$$

Taking into account that on $\left\{\tau\left(x_{0}\right)=u\right\}$,

$$
\left\{Y_{S^{\prime}}^{\prime}=\varepsilon\right\} \cup\left\{S^{\prime}>c t-u\right\} \subset\left\{Y_{S}=\varepsilon\right\} \cup\{S>c t-u\}
$$

we have for $u \in[0, c t]$,

$$
\begin{aligned}
\mathbb{Q}^{h}\left\{c t<\tau^{h} \mid \tau\left(x_{0}\right)=u\right\} & \leq \mathbb{Q}^{h}\left\{Y_{S^{\prime}}=\varepsilon \mid \tau\left(x_{0}\right)=u\right\}+\mathbb{Q}^{h}\left\{S^{\prime} \geq c t-u \mid \tau\left(x_{0}\right)=u\right\} \\
& \leq \mathbb{Q}^{h}\left\{Y_{S}=\varepsilon \mid \tau\left(x_{0}\right)=u\right\}+\mathbb{Q}^{h}\left\{S \geq c t-u \mid \tau\left(x_{0}\right)=u\right\} \\
& \leq \mathbb{Q}^{h}\left\{Y_{S}=\varepsilon \mid \tau\left(x_{0}\right)=u\right\}+\frac{1}{c t-u} \mathbb{E}_{\mathbb{Q}^{h}}\left[S \mid \tau\left(x_{0}\right)=u\right] .
\end{aligned}
$$

Now using the fact that $\mathrm{e}^{-N Y_{s}}$ is a martingale and $Y_{s}^{2}-2 s$ a submartingale, we get

$$
\mathbb{Q}^{h}\left\{Y_{S}=\varepsilon \mid \tau\left(x_{0}\right)=u\right\}=\frac{1-\mathrm{e}^{-N h \frac{c t-u}{c t}}}{1-\mathrm{e}^{-N \varepsilon}} \leq C_{1} h
$$

and

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}^{h}}\left[S \mid \tau\left(x_{0}\right)=u\right] & \leq \mathbb{E}_{\mathbb{Q}^{h}}\left[Y_{S}^{2} \mid \tau\left(x_{0}\right)=u\right] \\
& \leq \varepsilon^{2} \mathbb{Q}^{h}\left\{Y_{S}=\varepsilon \mid \tau\left(x_{0}\right)=u\right\} \\
& =\varepsilon^{2} \frac{1-\mathrm{e}^{-N h \frac{c t-u}{c t}}}{1-\mathrm{e}^{-N \varepsilon}} \leq C_{2} \frac{h(c t-u)}{c t}
\end{aligned}
$$

for some constants $C_{1}, C_{2}>0$. Thus,

$$
\begin{aligned}
\mathbb{Q}^{h}\left\{c t<\tau^{h} \mid \tau\left(x_{0}\right)=u\right\} & \leq C_{1} h+\frac{1}{c t-u} C_{2} \frac{h(c t-u)}{c t} \\
& \leq C_{1} h+C_{3} \frac{h}{c t} \leq C_{4} \frac{h}{t}
\end{aligned}
$$

for some constants $C_{3}, C_{4}>0$ (recall that $t \leq 1$). Denoting by ℓ^{h} the density of $\tau\left(x_{0}\right)$ under \mathbb{Q}^{h}, this implies

$$
\begin{aligned}
\mathbb{Q}^{h}\left\{\tau\left(x_{0}\right) \leq c t<\tau^{h}\right\} & =\int_{0}^{c t} \ell^{h}(u) \mathbb{Q}^{h}\left\{c t<\tau^{h} \mid \sigma^{h}=u\right\} \mathrm{d} u \\
& \leq C_{4} \frac{h}{t} \int_{0}^{c t} \ell^{h}(u) \mathrm{d} u \\
& =C_{4} \frac{h}{t} \mathbb{Q}^{h}\left\{\tau\left(x_{0}\right) \leq c t\right\} .
\end{aligned}
$$

In terms of $D^{-h}=\left\{x \in D, \rho_{\partial D}(x)>h\right\}$ and $\sigma^{h}=\inf \left\{s>0, X_{s}^{h} \in \partial D^{-h}\right\}$, we have $\sigma^{h} \leq \tau\left(x_{0}\right)$ a.s. Hence, by Lemma 2.3,

$$
\mathbb{Q}^{h}\left\{\tau\left(x_{0}\right) \leq c t\right\} \leq \mathbb{Q}^{h}\left\{\sigma^{h} \leq c t\right\} \leq C \exp \left\{-\frac{\rho_{\partial D^{-h}}(\varphi(h))}{16 c t}\right\}
$$

where we used that X_{s}^{h} is generated by L under \mathbb{Q}^{h}. This implies

$$
\begin{equation*}
\mathbb{Q}^{h}\left\{\tau\left(x_{0}\right) \leq c t<\tau^{h}\right\} \leq C_{5} \frac{h}{t} \exp \left\{-\frac{\rho_{\partial D^{-h}}(\varphi(h))}{16 c t}\right\} \tag{3.10}
\end{equation*}
$$

Since $\frac{1}{h}\left(P_{t}^{D}(\varphi(h))-P_{t}^{D}\left(x_{0}\right)\right)$ converges to $\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right|$, we obtain from (3.7), (3.8), (3.9) and (3.10),

$$
\begin{align*}
\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| \leq & \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right) \\
& +\frac{C^{\prime}}{c \delta t} P_{t}^{D} f\left(x_{0}\right)+C_{5}\left\|P_{t-c t}^{D} f\right\|_{\infty} \frac{1}{t} \exp \left\{-\frac{\rho_{\partial D}\left(x_{0}\right)}{16 c t}\right\} . \tag{3.11}
\end{align*}
$$

Finally, as explained in steps c) and d) of the proof of Proposition 2.5, for any compact set $K \subset D$, there exists a constant $C(K, D)>0$ such that

$$
\left.\left.\left\|P_{t-c t}^{D} f\right\|_{\infty} \leq \mathrm{e}^{C(K, D) / t} P_{t}^{D} f\left(x_{0}\right), \quad c \in[0,1 / 2], x_{0} \in K, t \in\right] 0,1\right]
$$

Combining this with (3.11), we arrive at

$$
\begin{align*}
\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| \leq & \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+\frac{C^{\prime}}{c \delta t} P_{t}^{D} f\left(x_{0}\right) \tag{3.12}\\
& +C_{5} \frac{1}{t} \exp \left\{-\frac{\rho_{\partial D}\left(x_{0}\right)}{16 c t}\right\} \exp \left\{\frac{C(K, D)}{t}\right\} P_{t}^{D} f\left(x_{0}\right)
\end{align*}
$$

Finally, choosing c such that

$$
0<c<\frac{1}{2} \wedge \frac{\operatorname{dist}(K, \partial D)}{16 C(K, D)}
$$

we get for some constant $C>0$,

$$
\begin{array}{r}
\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| \leq \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+C\left(\frac{1}{\delta t}+1\right) P_{t}^{D} f\left(x_{0}\right) \tag{3.13}\\
x_{0} \in K, \delta>0
\end{array}
$$

which implies the desired inequality.

To finish we consider the case $t>1$. From the semigroup property, we have $P_{t}^{D} f=P_{1}^{D}\left(P_{t-1}^{D} f\right)$. So letting $g=P_{t-1}^{D} f$ and applying (3.13) to g at time 1 , we obtain

$$
\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| \leq \delta P_{1}^{D}\left(g \log \left(\frac{g}{P_{1}^{D} g\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+C\left(\frac{1}{\delta}+1\right) P_{1}^{D} g\left(x_{0}\right)
$$

Now using $P_{1}^{D} g=P_{t}^{D} f$, we get

$$
\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| \leq \delta P_{1}^{D}(g \log g)\left(x_{0}\right)-P_{t}^{D} f\left(x_{0}\right) \log P_{t}^{D} f\left(x_{0}\right)+C\left(\frac{1}{\delta}+1\right) P_{t}^{D} f\left(x_{0}\right)
$$

Letting $\varphi(x)=x \log x$, we have for $z \in D$

$$
\begin{aligned}
g \log g(z) & =\varphi\left(\mathbb{E}\left[f\left(X_{t-1}(z)\right) 1_{\{t-1<\tau(z)\}}\right]\right) \\
& \leq \mathbb{E}\left[\varphi\left(f\left(X_{t-1}(z)\right) 1_{\{t-1<\tau(z)\}}\right)\right] \\
& =\mathbb{E}\left[\varphi(f)\left(X_{t-1}(z)\right) 1_{\{t-1<\tau(z)\}}\right] \\
& =P_{t-1}^{D}(f \log f)(z),
\end{aligned}
$$

where we successively used the convexity of φ and the fact that $\varphi(0)=0$. This implies

$$
\left|\nabla P_{t}^{D} f\left(x_{0}\right)\right| \leq \delta P_{t}^{D}\left(f \log \left(\frac{f}{P_{t}^{D} f\left(x_{0}\right)}\right)\right)\left(x_{0}\right)+C\left(\frac{1}{\delta}+1\right) P_{t}^{D} f\left(x_{0}\right)
$$

which is the desired inequality for $t>1$.

4. Proof of Theorems 1.1 and Theorem 1.2

of Theorem 1.1. We assume that $t \in] 0,1[$ and refer to the end of the proof of Proposition 3.1 for the case $t>1$. Fixing $\delta>0$ and $x_{0} \in M$, we take $R=160 /(\delta \wedge$ 1). Let D be a relatively compact open domain with C^{2} boundary containing $B\left(x_{0}, 2 R\right)$ and contained in $B\left(x_{0}, 2 R+\varepsilon\right)$ for some small $\varepsilon>0$. By the countable compactness of M, it suffices to prove that there exists a constant $C=C(D)$ such that (1.4) holds on $B\left(x_{0}, R\right)$ with C in place of $F\left(\delta \wedge 1, x_{0}\right)$. We now fix $\left.\left.x \in B\left(x_{0}, R\right), t \in\right] 0,1\right]$ and $f \in \mathscr{B}_{b}^{+}$. Without loss of generality, we may and will assume that $P_{t} f(x)=1$.
(a) Let $P_{s}(x, \mathrm{~d} y)$ be the transition kernel of the L-diffusion process, and for $x \in D, z \in M$, let

$$
\nu_{s}(x, \mathrm{~d} z)=\int_{\partial D} h_{x}(s / 2, y) P_{t-s}(y, \mathrm{~d} z) \nu(\mathrm{d} y)
$$

where ν is the measure on ∂D induced by $\mu(\mathrm{d} y)=\mathrm{e}^{V(y)} \mathrm{d} y$. By Lemma 2.2 we have

$$
P_{t} f(x)=P_{t}^{D} f(x)+\int_{\mathrm{j0,t]} \mathrm{\times D} \mathrm{\times M}} p_{s / 2}^{D}(x, y) f(z) \mathrm{d} s \mu(\mathrm{~d} y) \nu_{s}(y, \mathrm{~d} z)
$$

Then

$$
\begin{align*}
\left|\nabla P_{t} f(x)\right| \leq & \left|\nabla P_{t}^{D} f(x)\right| \\
& +\int_{j 0, t] \times D \times M}\left|\nabla \log p_{s / 2}^{D}(\cdot, y)(x)\right| p_{s / 2}^{D}(x, y) f(z) \mathrm{d} s \mu(d y) \nu_{s}(y, \mathrm{~d} z) \\
= & I_{1}+I_{2} . \tag{4.1}
\end{align*}
$$

(b) By Proposition 3.1, we have
(4.2) $\left.I_{1} \leq \delta P_{t}^{D}(f \log f)(x)+\frac{\delta}{\mathrm{e}}+C\left(\frac{1}{\delta t}+1\right), \quad x \in B\left(x_{0}, R\right), t \in\right] 0,1[, \delta>0$
for some $C=C(D)>0$.
(c) By Proposition 2.5 with $\varepsilon=1$, we have
(4.3) $\quad I_{2} \leq \int_{j 0, t] \times M \times D}\left[\frac{C \log \left(\mathrm{e}+s^{-1}\right)}{\sqrt{s}}+\frac{2 \rho(x, y)}{s}\right] p_{s / 2}^{D}(x, y) f(z) \mathrm{d} s \nu_{s}(y, \mathrm{~d} z) \mu(\mathrm{d} y)$
for some $C=C(D)>0$ and all $t \in] 0,1]$. Applying Lemma 2.4 to the measure $\tilde{\mu}:=p_{s / 2}^{D}(x, y) \mathrm{d} s \nu_{s}(y, \mathrm{~d} z) \mu(\mathrm{d} y)$ on $\left.\left.E:=\right] 0, t\right] \times M \times D$ so that

$$
\tilde{\mu}(E)=\mathbb{P}(\tau(x) \leq t<\xi(x)) \leq 1
$$

we obtain

$$
\begin{aligned}
I_{2} & \leq \delta \mathbb{E}\left[(f \log f)\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right]+\frac{\delta}{\mathrm{e}}+\delta \mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right] \\
& \times \log \int_{10, t] \times M \times D} \exp \left\{\frac{C \log \left(\mathrm{e}+s^{-1}\right)}{\delta \sqrt{s}}+\frac{2 \rho(x, y)}{s \delta}\right\} \mathrm{d} s p_{s / 2}^{D}(x, y) \nu_{s}(y, \mathrm{~d} z) \mu(\mathrm{d} y) \\
& \leq \delta \mathbb{E}\left[(f \log f)\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right]+\frac{\delta}{\mathrm{e}}+\delta \mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right]
\end{aligned}
$$

$$
\begin{equation*}
\times \log \int_{j 0, t] \times M \times D} \exp \left\{\frac{A}{\delta}+\frac{9 R}{s \delta}\right\} \mathrm{d} s p_{s / 2}^{D}(x, y) \nu_{s}(y, \mathrm{~d} z) \mu(\mathrm{d} y) \tag{4.4}
\end{equation*}
$$

where

$$
A:=\sup _{r>0}\{C \sqrt{r} \log (\mathrm{e}+r)-r\}<\infty
$$

We get

$$
\begin{align*}
I_{2} \leq & \delta \mathbb{E}\left[(f \log f)\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right]+\frac{\delta}{\mathrm{e}} \\
& +\delta \mathbb{E}\left[f\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right]\left(\log \mathbb{E}[\exp (9 R / \delta \tau(x))]+\frac{A}{\delta}\right) \\
\leq & \delta \mathbb{E}\left[(f \log f)\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right]+\frac{\delta}{\mathrm{e}}+\delta \log \mathbb{E}[\exp (9 R / \delta \tau(x))]+A \\
\leq & \delta \mathbb{E}\left[(f \log f)\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right] \\
& +\delta \log \mathbb{E}\left[\exp \left(\frac{9 R}{(\delta \wedge 1) \tau(x)}\right)^{\frac{\delta \wedge 1}{\delta}}\right]+A+\frac{\delta}{\mathrm{e}} \\
= & \delta \mathbb{E}\left[(f \log f)\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right] \\
& +(\delta \wedge 1) \log \mathbb{E}\left[\exp \left(\frac{9 R}{(\delta \wedge 1) \tau(x)}\right)\right]+A+\frac{\delta}{\mathrm{e}} \tag{4.5}
\end{align*}
$$

By Lemma 2.3 and noting that $\rho_{\partial}(x) \geq R$, we have

$$
\begin{aligned}
\mathbb{E} & {\left[\exp \left(\frac{9 R}{(\delta \wedge 1) \tau(x)}\right)\right] \leq 1+\mathbb{E}\left[\frac{9 R}{(\delta \wedge 1) \tau(x)} \exp \left(\frac{9 R}{(\delta \wedge 1) \tau(x)}\right)\right] } \\
& =1+\int_{0}^{\infty} \frac{9 R s}{(\delta \wedge 1)} \exp \left(\frac{9 R s}{(\delta \wedge 1)}\right) \frac{\mathrm{d}}{\mathrm{~d} s}\left(-\mathbb{P}\left\{\tau(x) \leq s^{-1}\right\}\right) \mathrm{d} s \\
& =1+\frac{9 R}{(\delta \wedge 1)} \int_{0}^{\infty}\left(\frac{9 R}{(\delta \wedge 1)} s+1\right) \exp \left(\frac{9 R s}{(\delta \wedge 1)}\right) \mathbb{P}\left\{\tau(x) \leq s^{-1}\right\} \mathrm{d} s \\
& \leq 1+\frac{9 R}{(\delta \wedge 1)} \int_{0}^{\infty}\left(\frac{9 R}{(\delta \wedge 1)} s+1\right) \exp \left(\frac{9 R s}{(\delta \wedge 1)}\right) \exp \left(\frac{-R^{2} s}{16}\right) \mathrm{d} s \\
& =1+\frac{9 R}{(\delta \wedge 1)} \int_{0}^{\infty}\left(\frac{9 R}{(\delta \wedge 1)} s+1\right) \exp \left(\frac{-R s}{(\delta \wedge 1)}\right) \mathrm{d} s \\
& =1+9 \int_{0}^{\infty}(9 u+1) \exp (-u) d u=: A^{\prime}
\end{aligned}
$$

since $R=160 /(\delta \wedge 1)$. This along with (4.5) yields

$$
\begin{equation*}
I_{2} \leq \delta \mathbb{E}\left[(f \log f)\left(X_{t}(x)\right) 1_{\{\tau(x) \leq t<\xi(x)\}}\right]+\log A^{\prime}+A+\frac{\delta}{\mathrm{e}} \tag{4.6}
\end{equation*}
$$

The proof is completed by combining (4.6) with (4.1), (4.2) and (4.4).
of Theorem 1.8. By Theorem 1.1,

$$
\left|\nabla P_{t} f(x)\right| \leq \delta\left(P_{t}(f \log f)(x)-\left(P_{t} f\right)(x) \log P_{t} f(x)\right)
$$

$$
\begin{equation*}
+\left(F(\delta \wedge 1, x)\left(\frac{1}{\delta(t \wedge 1)}+1\right)+\frac{2 \delta}{e}\right) P_{t} f(x), \quad \delta>0, x \in M \tag{4.7}
\end{equation*}
$$

For $\alpha>1$ and $x \neq y$, let $\beta(s)=1+s(\alpha-1)$ and let $\gamma:[0,1] \rightarrow M$ be the minimal geodesic from x to y. Then $|\dot{\gamma}|=\rho(x, y)$. Applying (4.7) with $\delta=\frac{\alpha-1}{\alpha \rho(x, y)}$, we obtain

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} s} \log \left(P_{t} f^{\beta(s)}\right)^{\alpha / \beta(s)}\left(\gamma_{s}\right) \\
& =\frac{\alpha(\alpha-1)}{\beta(s)^{2}} \frac{P_{t}\left(f^{\beta(s)} \log f^{\beta(s)}\right)-\left(P_{t} f^{\beta(s)}\right) \log P_{t} f^{\beta(s)}}{P_{t} f^{\beta(s)}}\left(\gamma_{s}\right) \\
& \quad+\frac{\alpha}{\beta(s)} \frac{\left\langle\nabla P_{t} f^{\beta(s)}, \dot{\gamma}_{s}\right\rangle}{P_{t} f^{\beta(s)}\left(\gamma_{s}\right)} \\
& \geq \\
& \quad \frac{\alpha \rho(x, y)}{\beta(s) P_{t} f^{\beta(s)}\left(\gamma_{s}\right)}\left\{\frac{\alpha-1}{\alpha \rho(x, y)}\left(P_{t}\left(f^{\beta(s)} \log f^{\beta(s)}\right)-\left(P_{t} f^{\beta(s)}\right) \log P_{t} f^{\beta(s)}\right)\left(\gamma_{s}\right)\right. \\
& \left.\quad-\left|\nabla P_{t} f^{\beta(s)}\left(\gamma_{s}\right)\right|\right\} \\
& \geq \\
& -F\left(\frac{\alpha-1}{\alpha \rho(x, y)} \wedge 1, \gamma_{s}\right)\left(\frac{\alpha^{2} \rho^{2}(x, y)}{\beta(s)(\alpha-1)(t \wedge 1)}+\frac{\alpha \rho(x, y)}{\beta(s)}\right)-\frac{2(\alpha-1)}{\mathrm{e} \beta(s)} \\
& \geq \\
&
\end{aligned}
$$

where $C(\alpha, x, y):=\sup _{s \in[0,1]} \frac{1}{\alpha} F\left(\frac{\alpha-1}{\alpha \rho(x, y)} \wedge 1, \gamma_{s}\right)$. This implies the desired Harnack inequality.

Next, for fixed $\alpha \in] 1,2[$, let

$$
K(\alpha, t, x)=\sup \{C(\alpha, x, y): y \in B(x, \sqrt{2 t})\}, \quad t>0, x \in M
$$

Note $K(\alpha, t, x)$ is finite and continuous in $(\alpha, t, x) \in] 1,2[\times] 0,1[\times M$. Let $p:=2 / \alpha$. For fixed $t \in] 0,1[$, the Harnack inequality gives for $y \in B(x, \sqrt{2 t})$,

$$
\left(P_{t} f(x)\right)^{2} \leq\left(P_{t} f^{\alpha}(y)\right)^{p} \exp \left\{\frac{2(2-p)}{\mathrm{e}}+2 K(\alpha, t, x)\left(\frac{2 \alpha}{\alpha-1}+\sqrt{2 t}\right)\right\}
$$

Then choosing $T>t$ such that $q:=p / 2(p-1)<T / t$,

$$
\begin{aligned}
& \mu(B(x, \sqrt{2 t})) \exp \left\{-\frac{2(2-p)}{\mathrm{e}}-2 K(\alpha, t, x)\left(\frac{2 \alpha}{\alpha-1}+\sqrt{2 t}\right)-\frac{t}{T-q t}\right\}\left(P_{t} f(x)\right)^{2} \\
& \leq \int_{B(x, \sqrt{2 t})}\left(P_{t} f^{\alpha}(y)\right)^{p} \exp \left\{-\frac{\rho(x, y)^{2}}{2(T-q t)}\right\} \mu(\mathrm{d} y) .
\end{aligned}
$$

Similarly to the proof of [1] Corollary 3], we obtain that for any $\delta>2$, choosing $\left.\alpha=\frac{2 \delta}{2+\delta} \in\right] 1,2\left[\right.$ such that $\delta>\frac{2}{2-\alpha}=\frac{p}{p-1}>2$, there is a constant $c(\delta)>0$ such that the following estimate holds:

$$
\begin{aligned}
E_{\delta}(x, t) & :=\int_{M} p_{t}(x, y)^{2} \exp \left\{\frac{\rho(x, y)^{2}}{\delta t}\right\} \mu(\mathrm{d} y) \\
& \leq \frac{\exp \{c(\delta) K(\alpha, t, x)(1+\sqrt{2 t})\}}{\mu(B(x, \sqrt{2 t})}, \quad t>0, x \in M .
\end{aligned}
$$

By [6, Eq. (3.4)], this implies the desired heat kernel upper bound for $C_{\delta}(t, x):=$ $c(\delta) K(\alpha, t, x)(1+\sqrt{2 t})$.

5. Appendix

The aim of the Appendix is to explain that the arguments in Souplet-Zhang 13 and Zhang 19] for gradient estimates of solutions to heat equations work as well in the case with drift.

Theorem 5.1. Let $L=\Delta+Z$ for a C^{1} vector field Z. Fix $x_{0} \in M$ and $R, T, t_{0}>0$ such that $B\left(x_{0}, R\right) \subset M$. Assume that

$$
\begin{equation*}
\text { Ric }-\nabla Z \geq-K \tag{5.1}
\end{equation*}
$$

on $B\left(x_{0}, R\right)$. There exists a constant c depending only on d, the dimension of the manifold, such that for any positive solution u of

$$
\begin{equation*}
\partial_{t} u=L u \tag{5.2}
\end{equation*}
$$

on $Q_{R, T}:=B\left(x_{0}, R\right) \times\left[t_{0}-T, t_{0}\right]$, the estimate

$$
|\nabla \log u| \leq c\left(\frac{1}{R}+T^{-1 / 2}+\sqrt{K}\right)\left(1+\log \frac{\sup _{Q_{R, T}} u}{u}\right)
$$

holds on $Q_{R / 2, T / 2}$.
Proof. Without loss of generality, let $N:=\sup _{Q_{T, R}} u=1$; otherwise replace u by u / N. Let $f=\log u$ and $\omega=\frac{|\nabla f|^{2}}{(1-f)^{2}}$. By (5.2) we have

$$
L f+|\nabla f|^{2}-\partial_{t} f=0
$$

so that

$$
\begin{align*}
\partial_{t} \omega= & \frac{2\left\langle\nabla f, \nabla \partial_{t} f\right\rangle}{(1-f)^{2}}+\frac{2|\nabla f|^{2} \partial_{t} f}{(1-f)^{3}} \\
= & \frac{2\left\langle\nabla f, \nabla\left(L f+|\nabla f|^{2}\right)\right\rangle}{(1-f)^{2}}+\frac{2|\nabla f|^{2}\left(L f+|\nabla f|^{2}\right)}{(1-f)^{3}} \\
= & \frac{2\left\langle\nabla f, \nabla\left(\Delta f+|\nabla f|^{2}\right)\right\rangle}{(1-f)^{2}}+\frac{2|\nabla f|^{2}\left(\Delta f+|\nabla f|^{2}\right)}{(1-f)^{3}} \tag{5.3}\\
& \quad+\frac{2\left\langle\nabla_{\nabla f} Z, \nabla f\right\rangle+2 \operatorname{Hess}_{f}(\nabla f, Z)}{(1-f)^{2}}+\frac{2|\nabla f|^{2}\langle Z, \nabla f\rangle}{(1-f)^{3}} .
\end{align*}
$$

Moreover,

$$
\begin{align*}
L \omega & =\Delta \omega+\frac{\left.\left.\langle Z, \nabla| f\right|^{2}\right\rangle}{(1-f)^{2}}+\frac{2|\nabla f|^{2}\langle Z, \nabla f\rangle}{(1-f)^{3}} \\
& =\Delta \omega+\frac{2 \operatorname{Hess}_{f}(\nabla f, Z)}{(1-f)^{2}}+\frac{2|\nabla f|^{2}\langle Z, \nabla f\rangle}{(1-f)^{3}} . \tag{5.4}
\end{align*}
$$

Finally, by the proof of [13, (2.9)] with $-k$ replaced by $\operatorname{Ric}(\nabla f, \nabla f) /|\nabla f|^{2}$, we obtain

$$
\begin{align*}
\Delta \omega & -\left\{\frac{2\left\langle\nabla f, \nabla\left(\Delta f+|\nabla f|^{2}\right)\right\rangle}{(1-f)^{2}}+\frac{2|\nabla f|^{2}\left(\Delta f+|\nabla f|^{2}\right)}{(1-f)^{3}}\right\} \\
& \geq \frac{2 f}{1-f}\langle\nabla f, \nabla \omega\rangle+2(1-f) \omega^{2}+\frac{2 \omega \operatorname{Ric}(\nabla f, \nabla f)}{|\nabla f|^{2}} \tag{5.5}
\end{align*}
$$

Combining (5.1), (5.3), (5.4) and (5.5), we arrive at

$$
L \omega-\partial_{t} \omega \geq \frac{2 f}{1-f}\langle\nabla f, \nabla \omega\rangle+2(1-f) \omega^{2}-2 K \omega .
$$

This implies the desired estimate by the Li-Yau cut-off argument as in [13]; the only difference is, using the notation in [13], in the calculation of $-(\Delta \psi) \omega$ after Eq. (2.13) in (13]. By (5.1) and the generalized Laplacian comparison theorem (see (3. Theorem 4.2]), we have

$$
L r \leq \sqrt{K d} \operatorname{coth}(\sqrt{K / d} r) \leq \frac{d}{r}+\sqrt{K d}
$$

and then

$$
-(L \psi) \omega=-\left(\partial_{r}^{2} \psi+\left(\partial_{r} \psi\right) L r\right) \omega \leq\left(\left|\partial_{r} \psi\right|^{2}+\left|\partial_{r} \psi\right| \frac{d}{r}+\sqrt{K d}\left|\partial_{r} \psi\right|\right) \omega
$$

The remainder of the proof is the same as in the proof of 13. Theorem 1.1], using $L \psi$ in place of $\Delta \psi$.

References

[1] Arnaudon, M., Thalmaier, A., Wang, F.-Y.: Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below, Bull. Sci. Math. 130 (2006), no. 3, 223-233.
[2] Bakry, D.: On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, In: K. D. Elworthy, S. Kusuoka, I. Shigekawa (Eds.), New trends in stochastic analysis (Charingworth, 1994), World Sci. Publ., River Edge, NJ, 1997, pp. 43-75.
[3] Bakry, D., Qian, Z.: Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Math. Iberoamericana 15 (1999), 143-179.
[4] Fabes, E. B., Garofalo, N., Salsa, S.: A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536-565.
[5] Gong, F.-Z., Wang, F.-Y.: Heat kernel estimates with application to compactness of manifolds, Quart. J. Math. 52 (2001), 171-180.
[6] Grigor'yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom. 45 (1997), 33-52.
[7] Kendall, W. S.: The radial part of Brownian motion on a manifold: a semimartingale property, Ann. of Probab. 15 (1987), 1491-1500.
[8] Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201.
[9] Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 (2005), 1295-1361.
[10] Moser, J.: A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. Correction: Comm. Pure Appl. Math. 20 (1967), 231-236.
[11] Ouhabaz, E. M., Wang, F.-Y.: Sharp estimates for intrinsic ultracontractivity on $C^{1, \alpha_{-}}$ domains, Manu. Math. 122 (2007), 229-244.
[12] Stroock, D. W.: An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs 74, American Mathematical Society (1991).
[13] Souplet, P., Zhang, Qi S.: Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), 1045-1053
[14] Thalmaier, A., Wang, F.-Y.: Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155 (1998), 109-124.
[15] Wang, F.-Y.: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Related Fields 109 (1997), no. 3, 417-424.
[16] Wang, F.-Y.: Estimates of Dirichlet heat kernels, Stoch. Proc. Appl. 74 (1998), 217-234.
[17] Wang, F.-Y.: Equivalence of dimension-free Harnack inequality and curvature condition, Integral Equations Operator Theory 48 (2004), no. 4, 547-552.
[18] Wang, F.-Y.: Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds, Math. Nachr. 280 (2007), no. 12, 1431-1439.
[19] Zhang, Qi S.: Some gradient estimates for the heat equation on domains and for an equation by Perelman, International Mathematics Research Notices (2006), Article ID 92314, 39 pages.

DÉPARTEMENT DE MATHÉMATIQUES
Université de Poitiers, Téléport 2 - BP 30179
F-86962 Futuroscope Chasseneuil Cedex, France
E-mail address: arnaudon@math.univ-poitiers.fr
Institute of Mathematics, University of Luxembourg
162A, avenue de la Faïencerie
L-1511 Luxembourg, Grand-Duchy of Luxembourg
E-mail address: anton.thalmaier@uni.lu
School of Mathematics, Beijing Normal University, Beijing 100875, China
Current address: WIMCS, Department of Mathematics, University of Wales Swansea
Singleton Park, Swansea, SA2 8 PP, UK
E-mail address: wangfy@bnu.edu.cn

[^0]: 1991 Mathematics Subject Classification. 58J65 58J35 60H30.
 Key words and phrases. Harnack inequality, heat equation, gradient estimate, diffusion semigroup.

 Supported in part by NNSFC (10121101), RFDP (20040027009) and the 973-Project in China.

 * Corresponding author.

