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GRADIENT ESTIMATE AND HARNACK INEQUALITY ON

NON-COMPACT RIEMANNIAN MANIFOLDS

MARC ARNAUDON, ANTON THALMAIER, AND FENG-YU WANG∗

Abstract. A new type of gradient estimate is established for diffusion semi-
groups on non-compact complete Riemannian manifolds. As applications, a
global Harnack inequality with power and a heat kernel estimate are derived
for diffusion semigroups on arbitrary complete Riemannian manifolds.

1. The main result

Let M be a non-compact complete Riemannian manifold, and Pt be the Dirichlet
diffusion semigroup generated by L = ∆ +∇V for some C2 function V . We intend
to establish reasonable gradient estimates and Harnack type inequalities for Pt. In
case that Ric − HessV is bounded below, a dimension-free Harnack inequality was
established in [15], which according to [17], is indeed equivalent to the corresponding
curvature condition. See e.g. [2] for equivalent statements on heat kernel functional
inequalities; see also [8, 3, 9] for a parabolic Harnack inequality using the dimension-
curvature condition by shifting time, which goes back to the classical local parabolic
Harnack inequality of Moser [10].

Recently, some sharp gradient estimates have been derived in [13, 19] for the
Dirichlet semigroup on relatively compact domains. More precisely, for V = 0 and
a relatively compact open C2 domain D, the Dirichlet heat semigroup PDt satisfies

(1.1) |∇PDt f |(x) ≤ C(x, t)PDt f(x), x ∈ D, t > 0,

for some locally bounded function C : D × ]0,∞[ → ]0,∞[ and all f ∈ B
+
b , the

space of bounded non-negative measurable functions on M . Obviously, this implies
the Harnack inequality

(1.2) PDt f(x) ≤ C̃(x, y, t)PDt f(y), t > 0, x, y ∈ D, f ∈ B
+
b ,

for some function C̃ : M2×]0,∞[ → ]0,∞[. The purpose of this paper is to establish
inequalities analogous to (1.1) and (1.2) globally on the whole manifold M .

On the other hand however, both (1.1) and (1.2) are in general wrong for Pt
in place of PDt . A simple counter-example is already the standard heat semigroup
on Rd. Hence, we turn to search for the following slightly weaker version of gradient
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estimate:

|∇Ptf(x)| ≤ δ
(

Ptf log f − Ptf logPtf
)

(x) +
C(δ, x)

t ∧ 1
Ptf(x),(1.3)

x ∈M, t > 0, δ > 0, f ∈ B
+
b ,

for some positive function C : ]0,∞[ ×M → ]0,∞[. This kind of gradient estimate
is new and, in particular, implies the Harnack inequality with power introduced in
[15] (see Theorem 1.2 below).

Theorem 1.1. There exists a continuous positive function F on ]0, 1] ×M such

that

|∇Ptf(x)| ≤ δ
(

Ptf log f − Ptf logPtf
)

(x)

+

(

F (δ ∧ 1, x)

(

1

δ(t ∧ 1)
+ 1

)

+
2δ

e

)

Ptf(x),(1.4)

δ > 0, x ∈M, t > 0, f ∈ B
+
b .

Theorem 1.2. There exists a positive function C ∈ C(]1,∞[×M2) such that

(Ptf(x))α ≤ (Ptf
α(y)) exp

{

2(α− 1)

e
+ αC(α, x, y)

(

αρ2(x, y)

(α− 1)(t ∧ 1)
+ ρ(x, y)

)}

,

α > 1, t > 0, x, y ∈M, f ∈ B
+
b ,

where ρ is the Riemannian distance on M . Consequently, for any δ > 2 there exists

a positive function Cδ ∈ C([0,∞[ ×M) such that the transition density pt(x, y) of

Pt with respect to µ(dx) := eV (x)dx, where dx is the volume measure, satisfies

pt(x, y) ≤
exp

{

−ρ(x, y)2/(2δt) + Cδ(t, x) + Cδ(t, y)
}

√

µ(B(x,
√

2t))µ(B(y,
√

2t))
, x, y ∈M, t ∈ ]0, 1[ .

Remark 1.1. According to the Varadhan asymptotic formula for short time behav-
ior, one has limt→0 4t log pt(x, y) = −ρ(x, y)2, x 6= y. Hence, the above heat kernel
upper bound is sharp for short time.

The paper is organized as follows: In Section 2 we provide a formula expressing
Pt in terms of PDt and the joint distribution of (τ,Xτ ), where Xt is the L-diffusion
process and τ its hitting time to ∂D. Some necessary lemmas and technical re-
sults are collected. Proposition 2.5 is a refinement of a result in [19] to make the
coefficient of ρ(x, y)/t sharp and explicit. In Section 3 we use parallel coupling of
diffusions together with Girsanov transformation to obtain a gradient estimate for
Dirichlet heat semigroup. Finally, complete proofs of Theorems 1.1 and 1.2 are
presented in Section 4.

To prove the indicated theorems, besides stochastic arguments, we make use of
a local gradient estimate obtained in [13] for V = 0. For the convenience of the
reader, we include a brief proof for the case with drift in the Appendix.

2. Some Preparations

Let Xs(x) be an L-diffusion process with starting point x and explosion time
ξ(x). For any open C2 domain D ⊂ M such that x ∈ D, let τ(x) be the first
hitting time of Xs(x) at the boundary ∂D. We have

Ptf(x) = E
[

f(Xt(x)) 1{t<ξ(x)}
]

, PDt f(x) = E
[

f(Xt(x)) 1{t<τ(x)}
]

.
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Let pDt (x, y) be the transition density of PDt with respect to µ.
We first provide a formula for the density hx(t, z) of (τ(x), Xτ(x)(x)) with respect

to dt⊗ ν(dz), where ν is the measure on ∂D induced by µ(dy) := eV (y)dy.

Lemma 2.1. Let K(z, x) be the Poisson kernel in D with respect to ν. Then

(2.1) hx(t, z) =

∫

D

(

−∂tpDt (x, y)
)

K(z, y)µ(dy).

Consequently, the density s 7→ ℓx(s) of τ(x) satisfies the equation:

(2.2) ℓx(s) =

∫

D

(

−∂tpDt (x, y)
)

µ(dy).

Proof. Every bounded continuous function f : ∂D → R extends continuously to a
function h on D̄ which is harmonic in D and represented by

h(x) =

∫

∂D

K(z, x)f(z) ν(dz).

Recall that z 7→ K(z, x) is the density of Xτ(x)(x). Hence

E[f(Xτ(x)(x))] = h(x) =

∫

∂D

K(z, x)f(z) ν(dz).

On the other hand, the identity

h(x) = E[h(Xt∧τ(x))]

yields

h(x) =

∫

D

pDt (x, y)h(y)µ(dy) +

∫

∂D

ν(dz)

∫ t

0

hx(s, z)f(z)ds

=

∫

D

pDt (x, y)

(
∫

∂D

K(z, y)f(z)ν(dz)

)

µ(dy) +

∫

∂D

ν(dz)

∫ t

0

hx(s, z)f(z)ds

=

∫

∂D

f(z)

(
∫

D

pDt (x, y)K(z, y)µ(dy) +

∫ t

0

hx(s, z)ds

)

ν(dz),

which implies that

(2.3) K(z, x) =

∫

D

pDt (x, y)K(z, y)µ(dy) +

∫ t

0

hx(s, z)ds.

Differentiating with respect to t gives

(2.4) hx(t, z) = −∂t
∫

D

pDt (x, y)K(z, y)µ(dy).

Since ∂tp
D
t (x, y) is bounded on [ε, ε−1]× D̄× D̄ for any ε ∈ ]0, 1[ , Eq. (2.1) follows

by the dominated convergence.
Finally, Eq. (2.2) is obtained by integrating (2.1) with respect to ν(dz). �

Lemma 2.2. The following formula holds:

Ptf(x) = PDt f(x) +

∫

]0,t]×∂D
Pt−sf(z)hx(s, z) dsν(dz)

= PDt f(x) +

∫

]0,t]×∂D
Pt−sf(z)PDs/2h.(s/2, z)(x) dsν(dz).
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Proof. By the strong Markov property we have

Ptf(x) = E
[

f(Xt(x))1{t<ξ(x)}
]

= E
[

f(Xt(x))1{t<τ(x)}
]

+ E
[

f(Xt(x))1{τ(x)<t<ξ(x)}
]

= PDt f(x) + E

[

E
[

f(Xt(x))1{τ(x)<t<ξ(x)}|(τ(x), Xτ(x)(x))
]

]

= PDt f(x) +

∫

]0,t]×∂D
Pt−sf(z)hx(s, z) ds ν(dz).

(2.5)

Next, since

∂sp
D
s (x, y) = LpDs (·, y)(x) = LPDs/2p

D
s/2(·, y)(x)

= PDs/2(Lp
D
s/2(·, y))(x) = PDs/2(∂up

D
u (·, y)|u=s/2)(x),

it follows from (2.1) that

(2.6) hx(s, z) = PDs/2h.(s/2, z)(x).

This completes the proof. �

We remark that formula (2.6) can also be derived from the strong Markov prop-
erty without invoking Eq. (2.1). Indeed, for any u < s and any measurable set
A ⊂ ∂D, the strong Markov property implies that

P
{

τ(x) > s, Xτ(x)(x) ∈ A
}

= E

[

(

1{u<τ(x)} P
{

τ(x) > s, Xτ(x)(x) ∈ A|Fu

}

]

=

∫

D

pDu (x, y) P
{

τ(y) > s− u, Xτ(y)(y) ∈ A
}

µ(dy),

and thus,

hx(s, z) = PDu h.(s− u, z)(x), s > u > 0, x ∈ D, z ∈ ∂D.

Lemma 2.3. Let D be a relatively compact open domain and ρ∂D be the Riemann-

ian distance to the boundary ∂D. Then there exists a constant C > 0 depending on

D such that

P{τ(x) ≤ t} ≤ Ce−ρ
2

∂D(x)/16t, x ∈ D, t > 0.

Proof. For x ∈ D, let R := ρ∂D(x) and ρx the Riemannian distance function to x.
Since D is relatively compact, there exists a constant c > 0 such that Lρ2

x ≤ c holds
on D outside the cut-locus of x. Let γt := ρx(Xt(x)), t ≥ 0. By Itô’s formula,
according to Kendall [7], there exists a one-dimensional Brownian motion bt such
that

dγ2
t ≤ 2

√
2γt dbt + c dt, t ≤ τ(x).

Thus, for fixed t > 0 and δ > 0,

Zs := exp

(

δ

t
γ2
s −

δ

t
cs− 4

δ2

t2

∫ s

0

γ2
udu

)

, s ≤ τ(x)

is a supermartingale. Therefore,

P{τ(x) ≤ t} = P

{

max
s∈[0,t]

γs∧τ(x) ≥ R

}

≤ P

{

max
s∈[0,t]

Zs∧τ(x) ≥ eδR
2/t−δc−4δ2R2/t

}

≤ exp

(

cδ − 1

t
(δR2 − 4δ2R2)

)

.

The proof is completed by taking δ := 1/8. �
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Lemma 2.4. On a measurable space (E,F , µ̃) satisfying µ̃(E) <∞, let f ∈ L1(µ̃)
be non-negative with µ̃(f) > 0. Then for every measurable function ψ such that

ψf ∈ L1(µ̃), there holds:

(2.7)

∫

E

ψf dµ̃ ≤
∫

E

f log
f

µ̃(f)
dµ̃+ µ̃(f) log

∫

E

eψ dµ̃.

Proof. This is a direct consequence of [12] Lemma 6.45. We give a proof for com-
pleteness. Multiplying f by a positive constant, we can assume that µ̃(f) = 1. If
∫

E
eψ dµ̃ = ∞, then (2.7) is clearly satisfied.

If
∫

E eψ dµ̃ < ∞, then since
∫

E eψ dµ̃ ≥
∫

{f>0} eψ dµ̃, we can assume that f > 0

everywhere. Now from the fact that eψ 1
f ∈ L1(fµ̃), we can apply Jensen’s inequality

to obtain

log

(
∫

E

eψ dµ̃

)

= log

(
∫

E

eψ
1

f
fdµ̃

)

≥
∫

E

log

(

eψ
1

f

)

fdµ̃

(note the right-hand-side belongs to R ∪ {−∞}). To finish we remark that since
ψf ∈ L1(µ̃),

∫

E

log

(

eψ
1

f

)

fdµ̃ =

∫

E

ψf dµ̃−
∫

E

f log f dµ̃.

�

Finally, in order to obtain precise gradient estimate of the type (1.4), where
the constant in front of ρ(x, y)/t is explicit and sharp, we establish the following
revision of [19, Theorem 2.1].

Proposition 2.5. Let D be a relatively compact open C2 domain in M and K a

compact subset of D. For any ε > 0, there exists a constant C(ε) > 0 such that

|∇ log pDt (·, y)(x)| ≤ C(ε) log(1 + t−1)√
t

+
(1 + ε)ρ(x, y)

2t
,

t ∈ ]0, 1[, x ∈ K, y ∈ D.(2.8)

In addition, if D is convex, the above estimate holds for ε = 0 and some constant

C(0) > 0.

Proof. Since δ := minK ρ∂D > 0, it suffices to deal with the case where 0 < t ≤ 1∧δ.
To this end, we combine the argument in [19] with relevant results from [16, 18].

(a) Let t0 = t/2 and y ∈ D be fixed. Take

f(x, s) = pDs+t0(x, y), x ∈ D, s > 0.

Applying Theorem 5.1 of the Appendix to the cube

Q := B(x, ρ∂D(x)) × [s− ρ∂D(x)2/2, s] ⊂ D × [−t0, t0], s ≤ t0,

we obtain

(2.9) |∇ log f(x, s)| ≤ c0
ρ∂D(x)

(

1 + log
A

f(x, s)

)

, s ≤ t0,

where A := supQ f and c0 > 0 is a constant depending on the dimension and
curvature on D. By [9, Theorem 5.2],

(2.10) A ≤ c1f
(

x, s+ ρ∂D(x)2
)

, s ∈ ]0, 1], x ∈ D,
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holds for some constant c1 > 0 depending on D and L. Moreover, by the boundary
Harnack inequality of [4] (which treats Z = 0 but generalizes easily to non-zero C1

drift Z),

(2.11) f
(

x, s+ ρ∂D(x)2
)

≤ c2f(x, s), s ∈ ]0, 1], x ∈ D,

for some constant c2 > 0 depending on D and L. Combining (2.9), (2.10) and
(2.11), there exists a constant c > 0 depending on D and L such that

(2.12) |∇ log f(x, s)| ≤ c√
s
, x ∈ D, s ∈ ]0, t0] with ρ∂D(x)2 ≤ s.

(b) Let

Ω =
{

(x, s) : x ∈ D, s ∈ [0, t0], ρ∂D(x)2 ≥ s
}

and B = supΩ f . Since ∂sf = Lf , for any constant b ≥ 1, we have

(L− ∂s)
(

f log
bB

f

)

= −|∇f |2
f

.

Next, again by ∂sf = Lf and the Bochner-Weizenböck formula,

(L− ∂s)
|∇f |2
f

≥ −2k
|∇f |2
f

,

where k ≥ 0 is such that Ric −∇Z ≥ −k on D. Then the function

h :=
s|∇f |2

(1 + 2ks)f
− f log

bB

f

satisfies

(2.13) (L− ∂s)h ≥ 0 on D × ]0,∞[.

Obviously h(·, 0) ≤ 0, and (2.12) yields h(x, s) ≤ 0 for s = ρ∂D(x)2 provided the
constant b is large enough. Then the maximum principle and inequality (2.13)
imply h ≤ 0 on Ω. Thus,

(2.14) |∇ log f(x, s)|2 ≤ (2k + s−1) log
bB

f
, (x, s) ∈ Ω.

(c) If D is convex, by [16, Theorem 2.1] with δ =
√
t and t = 2t0, we obtain

(note the generator therein is 1
2L)

f(x, t0) = pD2t0(x, y) = pD2t0(y, x) ≥ c1ϕ(y) t
−d/2
0 e−ρ(x,y)

2/8t0 , x ∈ K, y ∈ D

for some constant c1 > 0, where ϕ > 0 is the first Dirichlet eigenfunction of L on D.
On the other hand, the intrinsic ultracontractivity for PDt implies (see e.g. [11])

f(z, s) = pDs+t0(z, y) ≤ c2 ϕ(y) t
−(d+2)/2
0 , z, y ∈ D, s ≤ t0,

for some constant c2 > 0 depending on D, K and L. Combining these estimates
we obtain

B

f(x, s)
≤ c3 t

−1
0 eρ(x,y)

2/8t0 , x ∈ K, s ≤ t0,

for some constant c3 > 0 depending on D, K and L. Hence by (2.14) for s = t0 we
get the existence of a constant C > 0 such that

|∇ log pD2t0(·, y)|2 ≤ (t−1
0 + 2k)

(

C + log t−1
0 +

ρ(x, y)2

8t0

)



GRADIENT ESTIMATE AND HARNACK INEQUALITY 7

for all y ∈ D, x ∈ K and t0 ∈ ]0, 1[ with t0 ≤ ρ∂D(x)2. This completes the proof
by noting that t = 2t0.

(d) Finally, if D is not convex, then there exists a constant σ > 0 such that

〈∇NX,X〉 ≥ −σ|X |2, X ∈ T∂D,

where N is the outward unit normal vector field of ∂D. Let f ∈ C∞(D̄) such
that f = 1 for ρ∂D ≥ ε, 1 ≤ f ≤ e2εσ for ρ∂D ≤ ε, and N log f |∂D ≥ σ. By

Lemma 2.1 in [18], ∂D is convex under the metric g̃ := f−2〈·, ·〉. Let ∆̃, ∇̃ and ρ̃
be respectively the Laplacian, the gradient and the Riemannian distance induced
by g̃. By Lemma 2.2 in [18],

L := ∆ + ∇V = f−2
[

∆̃ + (d− 2)f∇f
]

+ ∇V.

Since D is convex under g̃, as explained in the first paragraph in Section 2 of [18],

g̃(∇̃ρ̃(y, ·), ∇̃ϕ)|∂D < 0,

so that

σ̃(y) := sup
D
g̃(∇̃ρ̃(y, ·), ∇̃ϕ) <∞, y ∈ D.

Hence, repeating the proof of Theorem 2.1 in [16], but using ρ̃ and ∇̃ in place of
ρ and ∇ respectively, and taking into account that f → 1 uniformly as ε → 0, we
obtain

pD2t0(x, y) ≥ C1(ε)ϕ(y)t
−d/2
0 e−C2(ε)ρ̃(x,y)

2/8t0

≥ C1(ε)ϕ(y)t
−d/2
0 e−C2(ε)C3(ε)ρ(x,y)

2/8t0

for some constants C1(ε), C2(ε), C3(ε) > 1 with C2(ε), C3(ε) → 1 as ε → 0. Hence
the proof is completed. �

3. Gradient estimate for Dirichlet heat semigroup using coupling of

diffusion processes

Proposition 3.1. Let D be a relatively compact C2 domain in M . For every

compact subset K of D, there exists a constant C = C(K,D) > 0 such that for all

δ > 0, t > 0, x0 ∈ K and for all bounded positive functions f on M ,

|∇PDt f(x0)|

≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0) + C

(

1

δ(t ∧ 1)
+ 1

)

PDt f(x0).
(3.1)

Proof. We assume that t ∈]0, 1[, the other case will be treated at the very end of
the proof.

We write ∇V = Z so that L = ∆+Z. Since PDt only depends on the Riemannian
metric and the vector field Z on the domain D, by modifying the metric and Z
outside of D we may assume that Ric −∇Z is bounded below (see e.g. [14]); that
is,

(3.2) Ric −∇Z ≥ −κ

for some constant κ ≥ 0.
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Fix x0 ∈ K. Let f be a positive bounded function on M and Xs a diffusion with
generator L, starting at x0. For fixed t ≤ 1, let

v =
∇PDt f(x0)

|∇PDt f(x0)|
and denote by u 7→ ϕ(u) the geodesics in M satisfying ϕ̇(0) = v. Then

d

du

∣

∣

∣

∣

u=0

PDt f(ϕ(u)) =
∣

∣∇PDt f(x0)
∣

∣.

To formulate the coupling used in [1], we introduce some notations.
If Y is a semimartingale in M , we denote by dY its Itô differential and by dmY

the martingale part of dY : in local coordinates,

dY =

(

dY i +
1

2
Γijk(Y ) d〈Y j , Y k〉

)

∂

∂xi

where Γijk are the Christoffel symbols of the Levi-Civita connection; if dY i =

dM i + dAi where M i is a local martingale and Ai a finite variation process, then

dmY = dM i ∂

∂xi
.

Alternatively, if Q(Y ) : TY0
M → TY.M is the parallel translation along Y , then

dYt = Q(Y )t d

(
∫ .

0

Q(Y )−1
s ◦ dYs

)

t

and

dmYt = Q(Y )t dNt

where Nt is the martingale part of the Stratonovich integral
∫ t

0 Q(Y )−1
s ◦ dYs.

For x, y ∈M , and y not in the cut-locus of x, let
(3.3)

I(x, y) =

d−1
∑

i=1

∫ ρ(x,y)

0

(

|∇ė(x,y)Ji|2 +
〈

R(ė(x, y), Ji)Ji + ∇ė(x,y)Z, ė(x, y)
〉)

s
ds

where ė(x, y) is the tangent vector of the unit speed minimal geodesic e(x, y) and
(Ji)

d
i=1 are Jacobi fields along e(x, y) which together with ė(x, y) constitute an

orthonormal basis of the tangent space at x and y:

Ji(ρ(x, y)) = Px,yJi(0), i = 1, . . . , d− 1;

here Px,y : TxM → TyM is the parallel translation along the geodesic e(x, y).
Let c ∈ ]0, 1[. For h > 0 but smaller than the injectivity radius of D, and t > 0,

let Xh be the semimartingale satisfying Xh
0 = ϕ(h) and

(3.4) dXh
s = PXs,Xh

s
dmXs + Z(Xh

s ) ds+ ξhs ds,

where

ξhs :=

(

h

ct
+ κh

)

n(Xh
s , Xs)

with n(Xh
s , Xs) the derivative at time 0 of the unit speed geodesic from Xh

s to Xs,
and PXs,Xh

s
: TXs

M → TXh
s
M the parallel transport along the minimal geodesic

from Xs to Xh
s . By convention, we put n(x, x) = 0 and Px,x = Id for all x ∈M .
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By the second variational formula and (3.2) (cf. [1]), we have

dρ(Xs, X
h
s ) ≤

{

I(Xs, X
h
s ) − h

ct
− κh

}

ds ≤ − h

ct
ds, s ≤ Th,

where Th := inf{s ≥ 0 : Xs = Xh
s }. Thus, (Xs, X

h
s ) never reaches the cut-locus. In

particular, Th ≤ ct and

(3.5) Xs = Xh
s , s ≥ ct.

Moreover, we have ρ(Xs, X
h
s ) ≤ h and

(3.6) |ξhs |2 ≤ h2
(

κ+
1

ct

)2

.

We want to compensate the additional drift of Xh by a change of probability. To
this end, let

Mh
s = −

∫ s∧ct

0

〈

ξhr , PXr ,Xh
r

dmXr

〉

,

and

Rhs = exp

(

Mh
s − 1

2
[Mh]s

)

.

Clearly Rh is a martingale, and under Qh = Rh · P, the process Xh is a diffusion
with generator L.

Letting τ(x0) (resp. τh) be the hitting time of ∂D by X (resp. by Xh), we have

1{t<τh} ≤ 1{t<τ(x0)} + 1{τ(x0)≤t<τh}.

But, since Xh
s = Xs for s ≥ ct, we obtain

1{τ(x0)≤t<τh} = 1{τ(x0)≤ct}1{t<τh}.

Consequently,

1

h

(

PDt f(ϕ(h)) − PDt f(x0)
)

=
1

h
E

[

f(Xh
t )Rht 1{t<τh} − f(Xt(0))1{t<τ(x0)}

]

≤ 1

h
E

[

f(Xh
t )Rht 1{t<τ(x0)} − f(Xt(0))1{t<τ(x0)}

]

+
1

h
E

[

f(Xh
t )Rht 1{τ(x0)≤ct}1{t<τh}

]

,

and since Xh
t = Xt this yields

1

h

(

PDt f(ϕ(h)) − PDt f(x0)
)

≤ E

[

f(Xt)1{t<τ(x0)}
1

h
(Rht − 1)

]

+
1

h
E

[

f(Xh
t )Rht 1{τ(x0)≤ct}1{t<τh}

]

.

(3.7)

The left hand side converges to the quantity to be evaluated as h goes to 0.
Hence, it is enough to find appropriate lim sup’s for the two terms of the right hand
side. We begin with the first term. Letting

Y hs =

∣

∣

∣

∣

Mh
s − 1

2
[Mh]s

∣

∣

∣

∣
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and noting that 〈n(Xh
r , Xr), PXr ,Xh

r
dmXr〉 =

√
2 dbr up to the coupling time Th

for some one-dimensional Brownian motion br, we have

Rht = exp

(

Mh
t − 1

2
[Mh]t

)

≤ 1 +Mh
t − 1

2
[Mh]t + (Y ht )2 exp(Y ht )

= 1 +Mh
t −

∫ t

0

|ξhs |2ds+ (Y ht )2 exp(Y ht ).

From the assumptions, exp(Y ht ) and Y ht /h have all their moments bounded, uni-
formly in h > 0. Consequently, since f is bounded,

lim sup
h→0

E

[

f(Xt)1{t<τ(x0)}
1

h

(
∫ t

0

|ξhr |2 dr + (Y ht )2 exp(Y ht )

)]

= 0,

which implies

lim sup
h→0

E

[

f(Xt)1{t<τ(x0)}
1

h
(Rht − 1)

]

≤ lim sup
h→0

E

[

f(Xt)1{t<τ(x0)}
1

h

∫ s

0

〈

ξhr , PXr ,Xh
r

dmXr

〉

]

.

Using Lemma 2.4 and estimate (3.6), we have for δ > 0

E

[

f(Xt)1{t<τ(x0)}
1

h

∫ s

0

〈

ξhr , PXr ,Xh
r
dmXr

〉

]

≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0)

+ δPDt f(x0) log E

[

1{t<τ(x0)} exp

(

1

δh

∫ ct

0

〈

ξhs , PXs,Xh
s
dmXs

〉

)]

≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0)

+ δPDt f(x0) log E

[

exp

(

1

δ2h2

∫ ct

0

∣

∣ξhs
∣

∣

2
ds

)]

≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0) + δPDt f(x0)
ct

δ2

(

1

c2t2
+ κ2

)

≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0) +
C′

cδt
PDt f(x0),

where C′ = 1 + (cκ)2 (recall that t ≤ 1). Since the last expression is independent
of h, this proves that

lim sup
h→0

E

[

f(Xt)1{t<τ(x0)}
1

h
(Rht − 1)

]

≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0) +
C′

cδt
PDt f(x0).(3.8)

We are now going to estimate lim sup of the second term in (3.7). By the strong
Markov property, we have

E
[

f(Xh
t )Rht 1{τ(x0)≤ct}1{t<τh}

]

= EQh

[

PDt−ctf(Xh
ct)1{τ(x0)≤ct<τh}

]

≤ ‖PDt−ctf‖∞ Qh
{

τ(x0) ≤ ct < τh
}

.(3.9)
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Since ρ(Xh
s , Xs) ≤ h

ct− s

ct
for s ∈ [0, ct], we have on {τ(x0) ≤ ct < τh}:

ρ∂D(Xh
τ(x0)

) ≤ h
ct− τ(x0)

ct
.

For s ∈ [0, τh − τ(x0)], define

Y ′
s = ρ(Xh

τ(x0)+s
, ∂D),

and for fixed small ε > 0 (but ε > h), let S′ = inf{s ≥ 0, Y ′
s = ε or Y ′

s = 0}. Since
under Qh the process Xh

s is generated by L, the drift of ρ(Xh
s , ∂D) is Lρ(·, ∂D)

which is bounded in a neighborhood of ∂D. Thus, for a sufficiently small ε > 0,
there exists a Qh-Brownian motion β started at 0, and a constant N > 0 such that

Ys := h
ct− τ(x0)

ct
+
√

2βs +Ns ≥ Y ′
s , s ∈ [0, S′].

Let

S = inf
{

u ≥ 0, Yu = ε or Yu = 0
}

.

Taking into account that on {τ(x0) = u},

{Y ′
S′ = ε} ∪ {S′ > ct− u} ⊂ {YS = ε} ∪ {S > ct− u},

we have for u ∈ [0, ct],

Qh
{

ct < τh|τ(x0) = u
}

≤ Qh
{

YS′ = ε|τ(x0) = u
}

+ Qh
{

S′ ≥ ct− u|τ(x0) = u
}

≤ Qh
{

YS = ε|τ(x0) = u
}

+ Qh
{

S ≥ ct− u|τ(x0) = u
}

≤ Qh
{

YS = ε|τ(x0) = u
}

+
1

ct− u
EQh

[

S|τ(x0) = u
]

.

Now using the fact that e−NYs is a martingale and Y 2
s −2s a submartingale, we get

Qh {YS = ε|τ(x0) = u} =
1 − e−Nh

ct−u
ct

1 − e−Nε
≤ C1h

and

EQh

[

S|τ(x0) = u
]

≤ EQh

[

Y 2
S |τ(x0) = u

]

≤ ε2 Qh
{

YS = ε|τ(x0) = u
}

= ε2
1 − e−Nh

ct−u
ct

1 − e−Nε
≤ C2

h(ct− u)

ct

for some constants C1, C2 > 0. Thus,

Qh
{

ct < τh|τ(x0) = u
}

≤ C1h+
1

ct− u
C2

h(ct− u)

ct

≤ C1h+ C3
h

ct
≤ C4

h

t
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for some constants C3, C4 > 0 (recall that t ≤ 1). Denoting by ℓh the density of
τ(x0) under Qh, this implies

Qh
{

τ(x0) ≤ ct < τh
}

=

∫ ct

0

ℓh(u) Qh{ct < τh|σh = u} du

≤ C4
h

t

∫ ct

0

ℓh(u) du

= C4
h

t
Qh

{

τ(x0) ≤ ct
}

.

In terms of D−h = {x ∈ D, ρ∂D(x) > h} and σh = inf{s > 0, Xh
s ∈ ∂D−h}, we

have σh ≤ τ(x0) a.s. Hence, by Lemma 2.3,

Qh
{

τ(x0) ≤ ct
}

≤ Qh
{

σh ≤ ct
}

≤ C exp

{

−ρ∂D−h(ϕ(h))

16ct

}

,

where we used that Xh
s is generated by L under Qh. This implies

(3.10) Qh
{

τ(x0) ≤ ct < τh
}

≤ C5
h

t
exp

{

−ρ∂D−h(ϕ(h))

16ct

}

.

Since
1

h

(

PDt (ϕ(h)) − PDt (x0)
)

converges to |∇PDt f(x0)|, we obtain from (3.7),

(3.8), (3.9) and (3.10),

|∇PDt f(x0)| ≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0)

+
C′

cδt
PDt f(x0) + C5 ‖PDt−ctf‖∞

1

t
exp

{

−ρ∂D(x0)

16ct

}

.(3.11)

Finally, as explained in steps c) and d) of the proof of Proposition 2.5, for any
compact set K ⊂ D, there exists a constant C(K,D) > 0 such that

‖PDt−ctf‖∞ ≤ eC(K,D)/tPDt f(x0), c ∈ [0, 1/2], x0 ∈ K, t ∈ ]0, 1].

Combining this with (3.11), we arrive at

|∇PDt f(x0)| ≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0) +
C′

cδt
PDt f(x0)

+ C5
1

t
exp

{

−ρ∂D(x0)

16ct

}

exp

{

C(K,D)

t

}

PDt f(x0).

(3.12)

Finally, choosing c such that

0 < c <
1

2
∧ dist(K, ∂D)

16C(K,D)
,

we get for some constant C > 0,

|∇PDt f(x0)| ≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0) + C

(

1

δt
+ 1

)

PDt f(x0),(3.13)

x0 ∈ K, δ > 0,

which implies the desired inequality.
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To finish we consider the case t > 1. From the semigroup property, we have
PDt f = PD1 (PDt−1f). So letting g = PDt−1f and applying (3.13) to g at time 1, we
obtain

|∇PDt f(x0)| ≤ δPD1

(

g log

(

g

PD1 g(x0)

))

(x0) + C

(

1

δ
+ 1

)

PD1 g(x0).

Now using PD1 g = PDt f , we get

|∇PDt f(x0)| ≤ δPD1 (g log g)(x0) − PDt f(x0) logPDt f(x0) + C

(

1

δ
+ 1

)

PDt f(x0).

Letting ϕ(x) = x log x, we have for z ∈ D

g log g(z) = ϕ
(

E
[

f(Xt−1(z))1{t−1<τ(z)}
])

≤ E
[

ϕ
(

f(Xt−1(z))1{t−1<τ(z)}
)]

= E
[

ϕ(f)(Xt−1(z))1{t−1<τ(z)}
]

= PDt−1(f log f)(z),

where we successively used the convexity of ϕ and the fact that ϕ(0) = 0. This
implies

|∇PDt f(x0)| ≤ δPDt

(

f log

(

f

PDt f(x0)

))

(x0) + C

(

1

δ
+ 1

)

PDt f(x0),

which is the desired inequality for t > 1. �

4. Proof of Theorems 1.1 and Theorem 1.2

of Theorem 1.1. We assume that t ∈]0, 1[ and refer to the end of the proof of
Proposition 3.1 for the case t > 1. Fixing δ > 0 and x0 ∈M , we take R = 160/(δ∧
1). Let D be a relatively compact open domain with C2 boundary containing
B(x0, 2R) and contained in B(x0, 2R+ ε) for some small ε > 0. By the countable
compactness of M , it suffices to prove that there exists a constant C = C(D)
such that (1.4) holds on B(x0, R) with C in place of F (δ ∧ 1, x0). We now fix
x ∈ B(x0, R), t ∈ ]0, 1] and f ∈ B

+
b . Without loss of generality, we may and will

assume that Ptf(x) = 1.

(a) Let Ps(x, dy) be the transition kernel of the L-diffusion process, and for
x ∈ D, z ∈M , let

νs(x, dz) =

∫

∂D

hx(s/2, y)Pt−s(y, dz) ν(dy),

where ν is the measure on ∂D induced by µ(dy) = eV (y)dy. By Lemma 2.2 we have

Ptf(x) = PDt f(x) +

∫

]0,t]×D×M
pDs/2(x, y) f(z) dsµ(dy)νs(y, dz).

Then

|∇Ptf(x)| ≤ |∇PDt f(x)|

+

∫

]0,t]×D×M
|∇ log pDs/2(·, y)(x)| pDs/2(x, y)f(z) dsµ(dy)νs(y, dz)

=: I1 + I2.(4.1)
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(b) By Proposition 3.1, we have

(4.2) I1 ≤ δPDt (f log f)(x) +
δ

e
+ C

(

1

δt
+ 1

)

, x ∈ B(x0, R), t ∈]0, 1[, δ > 0

for some C = C(D) > 0.

(c) By Proposition 2.5 with ε = 1, we have

(4.3) I2 ≤
∫

]0,t]×M×D

[C log(e + s−1)√
s

+
2ρ(x, y)

s

]

pDs/2(x, y) f(z) dsνs(y, dz)µ(dy)

for some C = C(D) > 0 and all t ∈ ]0, 1]. Applying Lemma 2.4 to the measure
µ̃ := pDs/2(x, y) ds νs(y, dz)µ(dy) on E := ]0, t] ×M ×D so that

µ̃(E) = P(τ(x) ≤ t < ξ(x)) ≤ 1,

we obtain

I2 ≤ δ E
[

(f log f)(Xt(x))1{τ(x)≤t<ξ(x)}
]

+
δ

e
+ δE

[

f(Xt(x))1{τ(x)≤t<ξ(x)}
]

× log

∫

]0,t]×M×D
exp

{

C log(e + s−1)

δ
√
s

+
2ρ(x, y)

sδ

}

ds pDs/2(x, y)νs(y, dz)µ(dy)

≤ δE
[

(f log f)(Xt(x))1{τ(x)≤t<ξ(x)}
]

+
δ

e
+ δE

[

f(Xt(x))1{τ(x)≤t<ξ(x)}
]

× log

∫

]0,t]×M×D
exp

{

A

δ
+

9R

sδ

}

ds pDs/2(x, y)νs(y, dz)µ(dy),

(4.4)

where

A := sup
r>0

{

C
√
r log(e + r) − r

}

<∞.

We get

I2 ≤ δE
[

(f log f)(Xt(x))1{τ(x)≤t<ξ(x)}
]

+
δ

e

+ δE
[

f(Xt(x))1{τ(x)≤t<ξ(x)}
]

(

log E
[

exp (9R/δτ(x))
]

+
A

δ

)

≤ δE
[

(f log f)(Xt(x))1{τ(x)≤t<ξ(x)}
]

+
δ

e
+ δ log E

[

exp (9R/δτ(x))
]

+A

≤ δE
[

(f log f)(Xt(x))1{τ(x)≤t<ξ(x)}
]

+ δ log E

[

exp

(

9R

(δ ∧ 1)τ(x)

)
δ∧1

δ

]

+A+
δ

e

= δE
[

(f log f)(Xt(x))1{τ(x)≤t<ξ(x)}
]

+ (δ ∧ 1) log E

[

exp

(

9R

(δ ∧ 1)τ(x)

)]

+A+
δ

e
.(4.5)
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By Lemma 2.3 and noting that ρ∂(x) ≥ R, we have

E

[

exp

(

9R

(δ ∧ 1)τ(x)

)]

≤ 1 + E

[

9R

(δ ∧ 1)τ(x)
exp

(

9R

(δ ∧ 1)τ(x)

)]

= 1 +

∫ ∞

0

9Rs

(δ ∧ 1)
exp

(

9Rs

(δ ∧ 1)

)

d

ds

(

−P{τ(x) ≤ s−1}
)

ds

= 1 +
9R

(δ ∧ 1)

∫ ∞

0

(

9R

(δ ∧ 1)
s+ 1

)

exp

(

9Rs

(δ ∧ 1)

)

P{τ(x) ≤ s−1} ds

≤ 1 +
9R

(δ ∧ 1)

∫ ∞

0

(

9R

(δ ∧ 1)
s+ 1

)

exp

(

9Rs

(δ ∧ 1)

)

exp

(−R2s

16

)

ds

= 1 +
9R

(δ ∧ 1)

∫ ∞

0

(

9R

(δ ∧ 1)
s+ 1

)

exp

( −Rs
(δ ∧ 1)

)

ds

= 1 + 9

∫ ∞

0

(9u+ 1) exp (−u) du =: A′,

since R = 160/(δ ∧ 1). This along with (4.5) yields

(4.6) I2 ≤ δ E
[

(f log f)(Xt(x))1{τ(x)≤t<ξ(x)}
]

+ logA′ +A+
δ

e
.

The proof is completed by combining (4.6) with (4.1), (4.2) and (4.4). �

of Theorem 1.2. By Theorem 1.1,

|∇Ptf(x)| ≤ δ
(

Pt(f log f)(x) − (Ptf)(x) logPtf(x)
)

+

(

F (δ ∧ 1, x)

(

1

δ(t ∧ 1)
+ 1

)

+
2δ

e

)

Ptf(x), δ > 0, x ∈M.(4.7)

For α > 1 and x 6= y, let β(s) = 1 + s(α− 1) and let γ : [0, 1] → M be the minimal
geodesic from x to y. Then |γ̇| = ρ(x, y). Applying (4.7) with δ = α−1

αρ(x,y) , we

obtain

d

ds
log(Ptf

β(s))α/β(s)(γs)

=
α(α − 1)

β(s)2
Pt(f

β(s) log fβ(s)) − (Ptf
β(s)) logPtf

β(s)

Ptfβ(s)
(γs)

+
α

β(s)

〈∇Ptfβ(s), γ̇s〉
Ptfβ(s)

(γs)

≥ αρ(x, y)

β(s)Ptfβ(s)(γs)

{

α− 1

αρ(x, y)

(

Pt(f
β(s) log fβ(s)) − (Ptf

β(s)) logPtf
β(s)

)

(γs)

− |∇Ptfβ(s)(γs)|
}

≥ −F
(

α− 1

αρ(x, y)
∧ 1, γs

) (

α2ρ2(x, y)

β(s)(α − 1)(t ∧ 1)
+
αρ(x, y)

β(s)

)

− 2(α− 1)

eβ(s)

≥ −C(α, x, y)

(

αρ2(x, y)

(α− 1)(t ∧ 1)
+ ρ(x, y)

)

− 2(α− 1)

e

where C(α, x, y) := sups∈[0,1]
1
αF

(

α−1
αρ(x,y) ∧ 1, γs

)

. This implies the desired Har-

nack inequality.
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Next, for fixed α ∈]1, 2[, let

K(α, t, x) = sup
{

C(α, x, y) : y ∈ B(x,
√

2t)
}

, t > 0, x ∈M.

Note K(α, t, x) is finite and continuous in (α, t, x) ∈]1, 2[×]0, 1[×M . Let p := 2/α.

For fixed t ∈]0, 1[, the Harnack inequality gives for y ∈ B(x,
√

2t),

(Ptf(x))2 ≤ (Ptf
α(y))p exp

{

2(2 − p)

e
+ 2K(α, t, x)

(

2α

α− 1
+
√

2t

)}

.

Then choosing T > t such that q := p/2(p− 1) < T/t,

µ
(

B(x,
√

2t)
)

exp

{

−2(2 − p)

e
− 2K(α, t, x)

(

2α

α− 1
+
√

2t

)

− t

T − qt

}

(Ptf(x))2

≤
∫

B(x,
√

2t)

(Ptf
α(y))p exp

{

− ρ(x, y)2

2(T − qt)

}

µ(dy).

Similarly to the proof of [1, Corollary 3], we obtain that for any δ > 2, choosing
α = 2δ

2+δ ∈]1, 2[ such that δ > 2
2−α = p

p−1 > 2, there is a constant c(δ) > 0 such

that the following estimate holds:

Eδ(x, t) :=

∫

M

pt(x, y)
2 exp

{

ρ(x, y)2

δt

}

µ(dy)

≤ exp
{

c(δ)K(α, t, x)(1 +
√

2t)
}

µ(B(x,
√

2t)
, t > 0, x ∈M.

By [6, Eq. (3.4)], this implies the desired heat kernel upper bound for Cδ(t, x) :=

c(δ)K(α, t, x)(1 +
√

2t). �

5. Appendix

The aim of the Appendix is to explain that the arguments in Souplet-Zhang [13]
and Zhang [19] for gradient estimates of solutions to heat equations work as well
in the case with drift.

Theorem 5.1. Let L = ∆+Z for a C1 vector field Z. Fix x0 ∈M and R, T, t0 > 0
such that B(x0, R) ⊂M . Assume that

(5.1) Ric −∇Z ≥ −K
on B(x0, R). There exists a constant c depending only on d, the dimension of the

manifold, such that for any positive solution u of

(5.2) ∂tu = Lu

on QR,T := B(x0, R) × [t0 − T, t0], the estimate

|∇ log u| ≤ c
( 1

R
+ T−1/2 +

√
K

)(

1 + log
supQR,T

u

u

)

holds on QR/2,T/2.

Proof. Without loss of generality, let N := supQT,R
u = 1; otherwise replace u by

u/N . Let f = log u and ω = |∇f |2
(1−f)2 . By (5.2) we have

Lf + |∇f |2 − ∂tf = 0
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so that

∂tω =
2〈∇f,∇∂tf〉

(1 − f)2
+

2 |∇f |2∂tf
(1 − f)3

=
2〈∇f,∇(Lf + |∇f |2)〉

(1 − f)2
+

2 |∇f |2(Lf + |∇f |2)
(1 − f)3

=
2〈∇f,∇(∆f + |∇f |2)〉

(1 − f)2
+

2 |∇f |2(∆f + |∇f |2)
(1 − f)3

+
2〈∇∇fZ,∇f〉 + 2Hessf (∇f, Z)

(1 − f)2
+

2 |∇f |2〈Z,∇f〉
(1 − f)3

.

(5.3)

Moreover,

Lω = ∆ω +
〈Z,∇|f |2〉
(1 − f)2

+
2|∇f |2〈Z,∇f〉

(1 − f)3

= ∆ω +
2 Hessf (∇f, Z)

(1 − f)2
+

2 |∇f |2〈Z,∇f〉
(1 − f)3

.

(5.4)

Finally, by the proof of [13, (2.9)] with −k replaced by Ric(∇f,∇f)/|∇f |2, we
obtain

∆ω −
{

2 〈∇f,∇(∆f + |∇f |2)〉
(1 − f)2

+
2 |∇f |2(∆f + |∇f |2)

(1 − f)3

}

≥ 2f

1 − f
〈∇f,∇ω〉 + 2(1 − f)ω2 +

2ωRic(∇f,∇f)

|∇f |2 .

(5.5)

Combining (5.1), (5.3), (5.4) and (5.5), we arrive at

Lω − ∂tω ≥ 2f

1 − f
〈∇f,∇ω〉 + 2(1 − f)ω2 − 2Kω.

This implies the desired estimate by the Li-Yau cut-off argument as in [13]; the
only difference is, using the notation in [13], in the calculation of −(∆ψ)ω after
Eq. (2.13) in [13]. By (5.1) and the generalized Laplacian comparison theorem (see
[3, Theorem 4.2]), we have

Lr ≤
√
Kd coth

(
√

K/dr
)

≤ d

r
+
√
Kd,

and then

−(Lψ)ω = −(∂2
rψ + (∂rψ)Lr)ω ≤

(

|∂rψ|2 + |∂rψ|
d

r
+
√
Kd |∂rψ|

)

ω.

The remainder of the proof is the same as in the proof of [13, Theorem 1.1], using
Lψ in place of ∆ψ. �

References

[1] Arnaudon, M., Thalmaier, A., Wang, F.-Y.: Harnack inequality and heat kernel estimates

on manifolds with curvature unbounded below, Bull. Sci. Math. 130 (2006), no. 3, 223–233.
[2] Bakry, D.: On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, In: K. D.

Elworthy, S. Kusuoka, I. Shigekawa (Eds.), New trends in stochastic analysis (Charingworth,
1994), World Sci. Publ., River Edge, NJ, 1997, pp. 43–75.

[3] Bakry, D., Qian, Z.: Harnack inequalities on a manifold with positive or negative Ricci

curvature, Rev. Math. Iberoamericana 15 (1999), 143–179.
[4] Fabes, E. B., Garofalo, N., Salsa, S.: A backward Harnack inequality and Fatou theorem for

nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536–565.



18 M. ARNAUDON, A. THALMAIER, AND F.-Y. WANG

[5] Gong, F.-Z., Wang, F.-Y.: Heat kernel estimates with application to compactness of mani-

folds, Quart. J. Math. 52 (2001), 171–180.
[6] Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff.

Geom. 45 (1997), 33–52.
[7] Kendall, W. S.: The radial part of Brownian motion on a manifold: a semimartingale

property, Ann. of Probab. 15 (1987), 1491–1500.
[8] Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator, Acta Math. 156

(1986), 153–201.
[9] Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian

manifolds, J. Math. Pures Appl. 84 (2005), 1295–1361.
[10] Moser, J.: A Harnack inequality for parabolic differential equations, Comm. Pure Appl.

Math. 17 (1964), 101–134. Correction: Comm. Pure Appl. Math. 20 (1967), 231–236.
[11] Ouhabaz, E. M., Wang, F.-Y.: Sharp estimates for intrinsic ultracontractivity on C1,α-

domains, Manu. Math. 122 (2007), 229–244.
[12] Stroock, D. W.: An Introduction to the Analysis of Paths on a Riemannian Manifold, Math-

ematical Surveys and Monographs 74, American Mathematical Society (1991).
[13] Souplet, P., Zhang, Qi S.: Sharp gradient estimate and Yau’s Liouville theorem for the heat

equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), 1045–1053
[14] Thalmaier, A., Wang, F.-Y.: Gradient estimates for harmonic functions on regular domains

in Riemannian manifolds, J. Funct. Anal. 155 (1998), 109–124.
[15] Wang, F.-Y.: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds,

Probab. Theory Related Fields 109 (1997), no. 3, 417–424.
[16] Wang, F.-Y.: Estimates of Dirichlet heat kernels, Stoch. Proc. Appl. 74 (1998), 217–234.
[17] Wang, F.-Y.: Equivalence of dimension-free Harnack inequality and curvature condition,

Integral Equations Operator Theory 48 (2004), no. 4, 547–552.
[18] Wang, F.-Y.: Estimates of the first Neumann eigenvalue and the log-Sobolev constant on

non-convex manifolds, Math. Nachr. 280 (2007), no. 12, 1431–1439.
[19] Zhang, Qi S.: Some gradient estimates for the heat equation on domains and for an equation

by Perelman, International Mathematics Research Notices (2006), Article ID 92314, 39 pages.
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