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Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds

The main result

Let M be a non-compact complete Riemannian manifold, and P t be the Dirichlet diffusion semigroup generated by L = ∆ + ∇V for some C 2 function V . We intend to establish reasonable gradient estimates and Harnack type inequalities for P t . In case that Ric -Hess V is bounded below, a dimension-free Harnack inequality was established in [START_REF] Wang | Logarithmic Sobolev inequalities on noncompact Riemannian manifolds[END_REF], which according to [START_REF] Wang | Equivalence of dimension-free Harnack inequality and curvature condition[END_REF], is indeed equivalent to the corresponding curvature condition. See e.g. [START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF] for equivalent statements on heat kernel functional inequalities; see also [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF][START_REF] Bakry | Harnack inequalities on a manifold with positive or negative Ricci curvature[END_REF][START_REF] Li | Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds[END_REF] for a parabolic Harnack inequality using the dimensioncurvature condition by shifting time, which goes back to the classical local parabolic Harnack inequality of Moser [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF].

Recently, some sharp gradient estimates have been derived in [START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF][START_REF] Zhang | Some gradient estimates for the heat equation on domains and for an equation by Perelman[END_REF] for the Dirichlet semigroup on relatively compact domains. More precisely, for V = 0 and a relatively compact open C 2 domain D, the Dirichlet heat semigroup P D t satisfies

(1.1)

|∇P D t f |(x) ≤ C(x, t) P D t f (x), x ∈ D, t > 0,
for some locally bounded function C : D × ]0, ∞[ → ]0, ∞[ and all f ∈ B + b , the space of bounded non-negative measurable functions on M . Obviously, this implies the Harnack inequality (1.2) P D t f (x) ≤ C(x, y, t) P D t f (y), t > 0, x, y ∈ D, f ∈ B + b , for some function C : M 2 ×]0, ∞[ → ]0, ∞[. The purpose of this paper is to establish inequalities analogous to (1.1) and (1.2) globally on the whole manifold M . On the other hand however, both (1.1) and (1.2) are in general wrong for P t in place of P D t . A simple counter-example is already the standard heat semigroup on R d . Hence, we turn to search for the following slightly weaker version of gradient estimate:

|∇P t f (x)| ≤ δ P t f log f -P t f log P t f (x) + C(δ, x) t ∧ 1 P t f (x), (1.3) x ∈ M, t > 0, δ > 0, f ∈ B + b , for some positive function C : ]0, ∞[ × M → ]0, ∞[. This kind of gradient estimate is new and, in particular, implies the Harnack inequality with power introduced in [START_REF] Wang | Logarithmic Sobolev inequalities on noncompact Riemannian manifolds[END_REF] (see Theorem 1.2 below).

Theorem 1.1. There exists a continuous positive function F on ]0, 1] × M such that

|∇P t f (x)| ≤ δ P t f log f -P t f log P t f (x) + F (δ ∧ 1, x) 1 δ(t ∧ 1)
+ 1 + 2δ e P t f (x), (1.4) δ > 0, x ∈ M, t > 0, f ∈ B + b . Theorem 1.2. There exists a positive function C ∈ C(]1, ∞[×M 2 ) such that (P t f (x)) α ≤ (P t f α (y)) exp 2(α -1) e + αC(α, x, y) αρ 2 (x, y) (α -1)(t ∧ 1) + ρ(x, y) , α > 1, t > 0, x, y ∈ M, f ∈ B + b , where ρ is the Riemannian distance on M . Consequently, for any δ > 2 there exists a positive function

C δ ∈ C([0, ∞[ × M
) such that the transition density p t (x, y) of P t with respect to µ(dx) := e V (x) dx, where dx is the volume measure, satisfies

p t (x, y) ≤ exp -ρ(x, y) 2 /(2δt) + C δ (t, x) + C δ (t, y) µ(B(x, √ 2t))µ(B(y, √ 2t)) , x, y ∈ M, t ∈ ]0, 1[ . Remark 1.1.
According to the Varadhan asymptotic formula for short time behavior, one has lim t→0 4t log p t (x, y) = -ρ(x, y) 2 , x = y. Hence, the above heat kernel upper bound is sharp for short time.

The paper is organized as follows: In Section 2 we provide a formula expressing P t in terms of P D t and the joint distribution of (τ, X τ ), where X t is the L-diffusion process and τ its hitting time to ∂D. Some necessary lemmas and technical results are collected. Proposition 2.5 is a refinement of a result in [START_REF] Zhang | Some gradient estimates for the heat equation on domains and for an equation by Perelman[END_REF] to make the coefficient of ρ(x, y)/t sharp and explicit. In Section 3 we use parallel coupling of diffusions together with Girsanov transformation to obtain a gradient estimate for Dirichlet heat semigroup. Finally, complete proofs of Theorems 1.1 and 1.2 are presented in Section 4.

To prove the indicated theorems, besides stochastic arguments, we make use of a local gradient estimate obtained in [START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF] for V = 0. For the convenience of the reader, we include a brief proof for the case with drift in the Appendix.

Some Preparations

Let X s (x) be an L-diffusion process with starting point x and explosion time ξ(x). For any open C 2 domain D ⊂ M such that x ∈ D, let τ (x) be the first hitting time of X s (x) at the boundary ∂D. We have

P t f (x) = E f (X t (x)) 1 {t<ξ(x)} , P D t f (x) = E f (X t (x)) 1 {t<τ (x)} .
Let p D t (x, y) be the transition density of P D t with respect to µ. We first provide a formula for the density h x (t, z) of (τ (x), X τ (x) (x)) with respect to dt ⊗ ν(dz), where ν is the measure on ∂D induced by µ(dy) := e V (y) dy.

Lemma 2.1. Let K(z, x) be the Poisson kernel in D with respect to ν. Then

(2.1) h x (t, z) = D -∂ t p D t (x, y) K(z, y) µ(dy).
Consequently, the density s → ℓ x (s) of τ (x) satisfies the equation:

(2.2) ℓ x (s) = D -∂ t p D t (x, y) µ(dy).
Proof. Every bounded continuous function f : ∂D → R extends continuously to a function h on D which is harmonic in D and represented by

h(x) = ∂D K(z, x)f (z) ν(dz). Recall that z → K(z, x) is the density of X τ (x) (x). Hence E[f (X τ (x) (x))] = h(x) = ∂D K(z, x)f (z) ν(dz).
On the other hand, the identity

h(x) = E[h(X t∧τ (x) )] yields h(x) = D p D t (x, y)h(y) µ(dy) + ∂D ν(dz) t 0 h x (s, z)f (z)ds = D p D t (x, y) ∂D K(z, y)f (z)ν(dz) µ(dy) + ∂D ν(dz) t 0 h x (s, z)f (z)ds = ∂D f (z) D p D t (x, y)K(z, y) µ(dy) + t 0 h x (s, z)ds ν(dz),
which implies that

(2.3) K(z, x) = D p D t (x, y)K(z, y) µ(dy) + t 0 h x (s, z)ds.
Differentiating with respect to t gives (2.4) 

h x (t, z) = -∂ t D p D t (x, y)K(z, y) µ(dy). Since ∂ t p D t (x, y) is bounded on [ε, ε -1 ] × D × D for any ε ∈ ]0,
P t f (x) = P D t f (x) + ]0,t]×∂D P t-s f (z)h x (s, z) dsν(dz) = P D t f (x) + ]0,t]×∂D P t-s f (z)P D s/2 h . (s/2, z)(x) dsν(dz).
Proof. By the strong Markov property we have

P t f (x) = E f (X t (x))1 {t<ξ(x)} = E f (X t (x))1 {t<τ (x)} + E f (X t (x))1 {τ (x)<t<ξ(x)} = P D t f (x) + E E f (X t (x))1 {τ (x)<t<ξ(x)} |(τ (x), X τ (x) (x)) = P D t f (x) +
]0,t]×∂D P t-s f (z)h x (s, z) ds ν(dz).

(2.5)

Next, since

∂ s p D s (x, y) = Lp D s (•, y)(x) = LP D s/2 p D s/2 (•, y)(x) = P D s/2 (Lp D s/2 (•, y))(x) = P D s/2 (∂ u p D u (•, y)| u=s/2 )(x), it follows from (2.1) that (2.6) h x (s, z) = P D s/2 h . (s/2, z)(x)
. This completes the proof.

We remark that formula (2.6) can also be derived from the strong Markov property without invoking Eq. (2.1). Indeed, for any u < s and any measurable set A ⊂ ∂D, the strong Markov property implies that

P τ (x) > s, X τ (x) (x) ∈ A = E 1 {u<τ (x)} P τ (x) > s, X τ (x) (x) ∈ A|F u = D p D u (x, y) P τ (y) > s -u, X τ (y) (y) ∈ A µ(dy),
and thus,

h x (s, z) = P D u h . (s -u, z)(x), s > u > 0, x ∈ D, z ∈ ∂D. Lemma 2.3.
Let D be a relatively compact open domain and ρ ∂D be the Riemannian distance to the boundary ∂D. Then there exists a constant C > 0 depending on D such that P{τ (x) ≤ t} ≤ Ce -ρ 2 ∂D (x)/16t , x ∈ D, t > 0.

Proof. For x ∈ D, let R := ρ ∂D (x) and ρ x the Riemannian distance function to x. Since D is relatively compact, there exists a constant c > 0 such that Lρ 2 x ≤ c holds on D outside the cut-locus of x. Let γ t := ρ x (X t (x)), t ≥ 0. By Itô's formula, according to Kendall [START_REF] Kendall | The radial part of Brownian motion on a manifold: a semimartingale property[END_REF], there exists a one-dimensional Brownian motion b t such that dγ 2 t ≤ 2 √ 2γ t db t + c dt, t ≤ τ (x). Thus, for fixed t > 0 and δ > 0,

Z s := exp δ t γ 2 s - δ t cs -4 δ 2 t 2 s 0 γ 2 u du , s ≤ τ (x)
is a supermartingale. Therefore,

P{τ (x) ≤ t} = P max s∈[0,t] γ s∧τ (x) ≥ R ≤ P max s∈[0,t] Z s∧τ (x) ≥ e δR 2 /t-δc-4δ 2 R 2 /t ≤ exp cδ - 1 t (δR 2 -4δ 2 R 2 ) .
The proof is completed by taking δ := 1/8.

Lemma 2.4. On a measurable space (E, F , μ) satisfying μ(E) < ∞, let f ∈ L 1 (μ) be non-negative with μ(f ) > 0. Then for every measurable function ψ such that ψf ∈ L 1 (μ), there holds:

(2.7)

E ψf dμ ≤ E f log f μ(f ) dμ + μ(f ) log E e ψ dμ.
Proof. This is a direct consequence of [START_REF] Stroock | An Introduction to the Analysis of Paths on a Riemannian Manifold[END_REF] Lemma 6.45. We give a proof for completeness. Multiplying f by a positive constant, we can assume that μ(f ) = 1.

If

E e ψ dμ = ∞, then (2.7) is clearly satisfied.
If E e ψ dμ < ∞, then since E e ψ dμ ≥ {f >0} e ψ dμ, we can assume that f > 0 everywhere. Now from the fact that e ψ 1 f ∈ L 1 (f μ), we can apply Jensen's inequality to obtain log

E e ψ dμ = log E e ψ 1 f f dμ ≥ E log e ψ 1 f f dμ (note the right-hand-side belongs to R ∪ {-∞}). To finish we remark that since ψf ∈ L 1 (μ), E log e ψ 1 f f dμ = E ψf dμ - E f log f dμ.
Finally, in order to obtain precise gradient estimate of the type (1.4), where the constant in front of ρ(x, y)/t is explicit and sharp, we establish the following revision of [19, Theorem 2.1].

Proposition 2.5. Let D be a relatively compact open C 2 domain in M and K a compact subset of D. For any ε > 0, there exists a constant C(ε) > 0 such that

|∇ log p D t (•, y)(x)| ≤ C(ε) log(1 + t -1 ) √ t + (1 + ε)ρ(x, y) 2t , t ∈ ]0, 1[, x ∈ K, y ∈ D. (2.8)
In addition, if D is convex, the above estimate holds for ε = 0 and some constant C(0) > 0.

Proof. Since δ := min K ρ ∂D > 0, it suffices to deal with the case where 0 < t ≤ 1∧δ. To this end, we combine the argument in [START_REF] Zhang | Some gradient estimates for the heat equation on domains and for an equation by Perelman[END_REF] with relevant results from [START_REF] Wang | Estimates of Dirichlet heat kernels[END_REF][START_REF] Wang | Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds[END_REF].

(a) Let t 0 = t/2 and y ∈ D be fixed. Take

f (x, s) = p D s+t0 (x, y), x ∈ D, s > 0. Applying Theorem 5.1 of the Appendix to the cube Q := B(x, ρ ∂D (x)) × [s -ρ ∂D (x) 2 /2, s] ⊂ D × [-t 0 , t 0 ], s ≤ t 0 , we obtain (2.9) |∇ log f (x, s)| ≤ c 0 ρ ∂D (x) 1 + log A f (x, s) , s ≤ t 0 ,
where A := sup Q f and c 0 > 0 is a constant depending on the dimension and curvature on D. By [9, Theorem 5.2],

(2.10)

A ≤ c 1 f x, s + ρ ∂D (x) 2 , s ∈ ]0, 1], x ∈ D,
holds for some constant c 1 > 0 depending on D and L. Moreover, by the boundary Harnack inequality of [START_REF] Fabes | A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations[END_REF] (which treats Z = 0 but generalizes easily to non-zero C 1 drift Z),

(2.11) f x, s + ρ ∂D (x) 2 ≤ c 2 f (x, s), s ∈ ]0, 1], x ∈ D,
for some constant c 2 > 0 depending on D and L. Combining (2.9), (2.10) and (2.11), there exists a constant c > 0 depending on D and L such that (2.12)

|∇ log f (x, s)| ≤ c √ s , x ∈ D, s ∈ ]0, t 0 ] with ρ ∂D (x) 2 ≤ s. (b) Let Ω = (x, s) : x ∈ D, s ∈ [0, t 0 ], ρ ∂D (x) 2 ≥ s and B = sup Ω f . Since ∂ s f = Lf , for any constant b ≥ 1, we have (L -∂ s ) f log bB f = - |∇f | 2 f .
Next, again by ∂ s f = Lf and the Bochner-Weizenböck formula,

(L -∂ s ) |∇f | 2 f ≥ -2k |∇f | 2 f ,
where k ≥ 0 is such that Ric -∇Z ≥ -k on D. Then the function

h := s|∇f | 2 (1 + 2ks)f -f log bB f satisfies (2.13) (L -∂ s )h ≥ 0 on D × ]0, ∞[.
Obviously h(•, 0) ≤ 0, and (2.12) yields h(x, s) ≤ 0 for s = ρ ∂D (x) 2 provided the constant b is large enough. Then the maximum principle and inequality (2.13) imply h ≤ 0 on Ω. Thus,

(2.14) |∇ log f (x, s)| 2 ≤ (2k + s -1 ) log bB f , (x, s) ∈ Ω. (c) If D is convex, by [16, Theorem 2.1] with δ = √ t and t = 2t 0 , we obtain (note the generator therein is 1 2 L) f (x, t 0 ) = p D 2t0 (x, y) = p D 2t0 (y, x) ≥ c 1 ϕ(y) t -d/2 0 e -ρ(x,y) 2 /8t0 , x ∈ K, y ∈ D
for some constant c 1 > 0, where ϕ > 0 is the first Dirichlet eigenfunction of L on D.

On the other hand, the intrinsic ultracontractivity for P D t implies (see e.g. [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1,αdomains[END_REF])

f (z, s) = p D s+t0 (z, y) ≤ c 2 ϕ(y) t -(d+2)/2 0 , z, y ∈ D, s ≤ t 0 ,
for some constant c 2 > 0 depending on D, K and L. Combining these estimates we obtain

B f (x, s) ≤ c 3 t -1 0 e ρ(x,y) 2 /8t0 , x ∈ K, s ≤ t 0 ,
for some constant c 3 > 0 depending on D, K and L. Hence by (2.14) for s = t 0 we get the existence of a constant C > 0 such that

|∇ log p D 2t0 (•, y)| 2 ≤ (t -1 0 + 2k) C + log t -1 0 + ρ(x, y) 2 8t 0
for all y ∈ D, x ∈ K and t 0 ∈ ]0, 1[ with t 0 ≤ ρ ∂D (x) 2 . This completes the proof by noting that t = 2t 0 .

(d) Finally, if D is not convex, then there exists a constant σ > 0 such that

∇ N X, X ≥ -σ|X| 2 , X ∈ T ∂D,
where N is the outward unit normal vector field of ∂D. [START_REF] Wang | Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds[END_REF], ∂D is convex under the metric g := f -2 •, • . Let ∆, ∇ and ρ be respectively the Laplacian, the gradient and the Riemannian distance induced by g. By Lemma 2.2 in [START_REF] Wang | Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds[END_REF],

Let f ∈ C ∞ ( D) such that f = 1 for ρ ∂D ≥ ε, 1 ≤ f ≤ e 2εσ for ρ ∂D ≤ ε, and N log f | ∂D ≥ σ. By Lemma 2.1 in
L := ∆ + ∇V = f -2 ∆ + (d -2)f ∇f + ∇V.
Since D is convex under g, as explained in the first paragraph in Section 2 of [START_REF] Wang | Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds[END_REF],

g( ∇ρ(y, •), ∇ϕ)| ∂D < 0, so that σ(y) := sup D g( ∇ρ(y, •), ∇ϕ) < ∞, y ∈ D.
Hence, repeating the proof of Theorem 2.1 in [START_REF] Wang | Estimates of Dirichlet heat kernels[END_REF], but using ρ and ∇ in place of ρ and ∇ respectively, and taking into account that f → 1 uniformly as ε → 0, we obtain

p D 2t0 (x, y) ≥ C 1 (ε)ϕ(y)t -d/2 0 e -C2(ε) ρ(x,y) 2 /8t0 ≥ C 1 (ε)ϕ(y)t -d/2 0 e -C2(ε)C3(ε)ρ(x,y) 2 /8t0
for some constants

C 1 (ε), C 2 (ε), C 3 (ε) > 1 with C 2 (ε), C 3 (ε) → 1 as ε → 0.
Hence the proof is completed.

3. Gradient estimate for Dirichlet heat semigroup using coupling of diffusion processes Proposition 3.1. Let D be a relatively compact C 2 domain in M . For every compact subset K of D, there exists a constant C = C(K, D) > 0 such that for all δ > 0, t > 0, x 0 ∈ K and for all bounded positive functions f on M ,

|∇P D t f (x 0 )| ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + C 1 δ(t ∧ 1) + 1 P D t f (x 0 ). (3.1) 
Proof. We assume that t ∈]0, 1[, the other case will be treated at the very end of the proof.

We write ∇V = Z so that L = ∆+Z. Since P D t only depends on the Riemannian metric and the vector field Z on the domain D, by modifying the metric and Z outside of D we may assume that Ric -∇Z is bounded below (see e.g. [START_REF] Thalmaier | Gradient estimates for harmonic functions on regular domains in Riemannian manifolds[END_REF]); that is,

(3.2) Ric -∇Z ≥ -κ
for some constant κ ≥ 0.

Fix x 0 ∈ K. Let f be a positive bounded function on M and X s a diffusion with generator L, starting at x 0 . For fixed t ≤ 1, let

v = ∇P D t f (x 0 ) |∇P D t f (x 0 )| and denote by u → ϕ(u) the geodesics in M satisfying φ(0) = v. Then d du u=0 P D t f (ϕ(u)) = ∇P D t f (x 0 ) .
To formulate the coupling used in [START_REF] Arnaudon | Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below[END_REF], we introduce some notations.

If Y is a semimartingale in M , we denote by dY its Itô differential and by d m Y the martingale part of dY : in local coordinates,

dY = dY i + 1 2 Γ i jk (Y ) d Y j , Y k ∂ ∂x i
where Γ i jk are the Christoffel symbols of the Levi-Civita connection; if dY i = dM i + dA i where M i is a local martingale and A i a finite variation process, then

d m Y = dM i ∂ ∂x i . Alternatively, if Q(Y ) : T Y0 M → T Y. M is the parallel translation along Y , then dY t = Q(Y ) t d . 0 Q(Y ) -1 s • dY s t and d m Y t = Q(Y ) t dN t
where N t is the martingale part of the Stratonovich integral t 0 Q(Y ) -1 s • dY s . For x, y ∈ M , and y not in the cut-locus of x, let (3.3)

I(x, y) = d-1 i=1 ρ(x,y) 0 |∇ ė(x,y) J i | 2 + R( ė(x, y), J i )J i + ∇ ė(x,y) Z, ė(x, y) s ds
where ė(x, y) is the tangent vector of the unit speed minimal geodesic e(x, y) and (J i ) d i=1 are Jacobi fields along e(x, y) which together with ė(x, y) constitute an orthonormal basis of the tangent space at x and y: J i (ρ(x, y)) = P x,y J i (0), i = 1, . . . , d -1; here P x,y : T x M → T y M is the parallel translation along the geodesic e(x, y).

Let c ∈ ]0, 1[. For h > 0 but smaller than the injectivity radius of D, and t > 0, let X h be the semimartingale satisfying X h 0 = ϕ(h) and (3.4) dX h s = P Xs,X h s d m X s + Z(X h s ) ds + ξ h s ds, where

ξ h s := h ct + κh n(X h s , X s )
with n(X h s , X s ) the derivative at time 0 of the unit speed geodesic from X h s to X s , and P Xs,X h s : T Xs M → T X h s M the parallel transport along the minimal geodesic from X s to X h s . By convention, we put n(x, x) = 0 and P x,x = Id for all x ∈ M .

By the second variational formula and (3.2) (cf. [START_REF] Arnaudon | Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below[END_REF]), we have

dρ(X s , X h s ) ≤ I(X s , X h s ) - h ct -κh ds ≤ - h ct ds, s ≤ T h ,
where T h := inf{s ≥ 0 : X s = X h s }. Thus, (X s , X h s ) never reaches the cut-locus. In particular, T h ≤ ct and (3.5)

X s = X h s , s ≥ ct. Moreover, we have ρ(X s , X h s ) ≤ h and

(3.6) |ξ h s | 2 ≤ h 2 κ + 1 ct 2 .
We want to compensate the additional drift of X h by a change of probability. To this end, let

M h s = - s∧ct 0 ξ h r , P Xr ,X h r d m X r , and 
R h s = exp M h s - 1 2 [M h ] s .
Clearly R h is a martingale, and under Q h = R h • P, the process X h is a diffusion with generator L.

Letting τ (x 0 ) (resp. τ h ) be the hitting time of ∂D by X (resp. by X h ), we have

1 {t<τ h } ≤ 1 {t<τ (x0)} + 1 {τ (x0)≤t<τ h } .
But, since X h s = X s for s ≥ ct, we obtain

1 {τ (x0)≤t<τ h } = 1 {τ (x0)≤ct} 1 {t<τ h } .
Consequently,

1 h P D t f (ϕ(h)) -P D t f (x 0 ) = 1 h E f (X h t )R h t 1 {t<τ h } -f (X t (0))1 {t<τ (x0)} ≤ 1 h E f (X h t )R h t 1 {t<τ (x0)} -f (X t (0))1 {t<τ (x0)} + 1 h E f (X h t )R h t 1 {τ (x0)≤ct} 1 {t<τ h } ,
and since

X h t = X t this yields 1 h P D t f (ϕ(h)) -P D t f (x 0 ) ≤ E f (X t )1 {t<τ (x0)} 1 h (R h t -1) + 1 h E f (X h t )R h t 1 {τ (x0)≤ct} 1 {t<τ h } . (3.7) 
The left hand side converges to the quantity to be evaluated as h goes to 0. Hence, it is enough to find appropriate lim sup's for the two terms of the right hand side. We begin with the first term. Letting

Y h s = M h s - 1 2 [M h ] s
and noting that n(X h r , X r ), P Xr ,X h r d m X r = √ 2 db r up to the coupling time T h for some one-dimensional Brownian motion b r , we have

R h t = exp M h t - 1 2 [M h ] t ≤ 1 + M h t - 1 2 [M h ] t + (Y h t ) 2 exp(Y h t ) = 1 + M h t - t 0 |ξ h s | 2 ds + (Y h t ) 2 exp(Y h t ).
From the assumptions, exp(Y h t ) and Y h t /h have all their moments bounded, uniformly in h > 0. Consequently, since f is bounded,

lim sup h→0 E f (X t )1 {t<τ (x0)} 1 h t 0 |ξ h r | 2 dr + (Y h t ) 2 exp(Y h t ) = 0, which implies lim sup h→0 E f (X t )1 {t<τ (x0)} 1 h (R h t -1) ≤ lim sup h→0 E f (X t )1 {t<τ (x0)} 1 h s 0 ξ h r , P Xr ,X h r d m X r .
Using Lemma 2.4 and estimate (3.6), we have for δ > 0

E f (X t )1 {t<τ (x0)} 1 h s 0 ξ h r , P Xr ,X h r d m X r ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + δP D t f (x 0 ) log E 1 {t<τ (x0)} exp 1 δh ct 0 ξ h s , P Xs,X h s d m X s ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + δP D t f (x 0 ) log E exp 1 δ 2 h 2 ct 0 ξ h s 2 ds ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + δP D t f (x 0 ) ct δ 2 1 c 2 t 2 + κ 2 ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + C ′ cδt P D t f (x 0 ),
where C ′ = 1 + (cκ) 2 (recall that t ≤ 1). Since the last expression is independent of h, this proves that

lim sup h→0 E f (X t )1 {t<τ (x0)} 1 h (R h t -1) ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + C ′ cδt P D t f (x 0 ). (3.8)
We are now going to estimate lim sup of the second term in (3.7). By the strong Markov property, we have

E f (X h t )R h t 1 {τ (x0)≤ct} 1 {t<τ h } = E Q h P D t-ct f (X h ct )1 {τ (x0)≤ct<τ h } ≤ P D t-ct f ∞ Q h τ (x 0 ) ≤ ct < τ h . (3.9) Since ρ(X h s , X s ) ≤ h ct -s ct for s ∈ [0, ct], we have on {τ (x 0 ) ≤ ct < τ h }: ρ ∂D (X h τ (x0) ) ≤ h ct -τ (x 0 ) ct .
For s ∈ [0, τ h -τ (x 0 )], define

Y ′ s = ρ(X h τ (x0)+s , ∂D),
and for fixed small ε > 0 (but

ε > h), let S ′ = inf{s ≥ 0, Y ′ s = ε or Y ′ s = 0}. Since under Q h the process X h
s is generated by L, the drift of ρ(X h s , ∂D) is Lρ(•, ∂D) which is bounded in a neighborhood of ∂D. Thus, for a sufficiently small ε > 0, there exists a Q h -Brownian motion β started at 0, and a constant N > 0 such that

Y s := h ct -τ (x 0 ) ct + √ 2β s + N s ≥ Y ′ s , s ∈ [0, S ′ ]. Let S = inf u ≥ 0, Y u = ε or Y u = 0 .
Taking into account that on {τ (x 0 ) = u},

{Y ′ S ′ = ε} ∪ {S ′ > ct -u} ⊂ {Y S = ε} ∪ {S > ct -u},
we have for u ∈ [0, ct],

Q h ct < τ h |τ (x 0 ) = u ≤ Q h Y S ′ = ε|τ (x 0 ) = u + Q h S ′ ≥ ct -u|τ (x 0 ) = u ≤ Q h Y S = ε|τ (x 0 ) = u + Q h S ≥ ct -u|τ (x 0 ) = u ≤ Q h Y S = ε|τ (x 0 ) = u + 1 ct -u E Q h S|τ (x 0 ) = u .
Now using the fact that e -N Ys is a martingale and Y 2 s -2s a submartingale, we get

Q h {Y S = ε|τ (x 0 ) = u} = 1 -e -N h ct-u ct 1 -e -N ε ≤ C 1 h and E Q h S|τ (x 0 ) = u ≤ E Q h Y 2 S |τ (x 0 ) = u ≤ ε 2 Q h Y S = ε|τ (x 0 ) = u = ε 2 1 -e -N h ct-u ct 1 -e -N ε ≤ C 2 h(ct -u) ct for some constants C 1 , C 2 > 0. Thus, Q h ct < τ h |τ (x 0 ) = u ≤ C 1 h + 1 ct -u C 2 h(ct -u) ct ≤ C 1 h + C 3 h ct ≤ C 4 h t
for some constants C 3 , C 4 > 0 (recall that t ≤ 1). Denoting by ℓ h the density of τ (x 0 ) under Q h , this implies

Q h τ (x 0 ) ≤ ct < τ h = ct 0 ℓ h (u) Q h {ct < τ h |σ h = u} du ≤ C 4 h t ct 0 ℓ h (u) du = C 4 h t Q h τ (x 0 ) ≤ ct .
In terms of

D -h = {x ∈ D, ρ ∂D (x) > h} and σ h = inf{s > 0, X h s ∈ ∂D -h }, we have σ h ≤ τ (x 0 ) a.s. Hence, by Lemma 2.3, Q h τ (x 0 ) ≤ ct ≤ Q h σ h ≤ ct ≤ C exp - ρ ∂D -h (ϕ(h)) 16ct ,
where we used that X h s is generated by L under Q h . This implies

(3.10) Q h τ (x 0 ) ≤ ct < τ h ≤ C 5 h t exp - ρ ∂D -h (ϕ(h)) 16ct . Since 1 h P D t (ϕ(h)) -P D t (x 0 ) converges to |∇P D t f (x 0 )|, we obtain from (3.7), (3.8) 
, (3.9) and (3.10),

|∇P D t f (x 0 )| ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + C ′ cδt P D t f (x 0 ) + C 5 P D t-ct f ∞ 1 t exp - ρ ∂D (x 0 ) 16ct . (3.11)
Finally, as explained in steps c) and d) of the proof of Proposition 2.5, for any compact set K ⊂ D, there exists a constant C(K, D) > 0 such that

P D t-ct f ∞ ≤ e C(K,D)/t P D t f (x 0 ), c ∈ [0, 1/2], x 0 ∈ K, t ∈ ]0, 1]
. Combining this with (3.11), we arrive at

|∇P D t f (x 0 )| ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + C ′ cδt P D t f (x 0 ) + C 5 1 t exp - ρ ∂D (x 0 ) 16ct exp C(K, D) t P D t f (x 0 ). (3.12) 
Finally, choosing c such that

0 < c < 1 2 ∧ dist(K, ∂D) 16C(K, D) ,
we get for some constant C > 0,

|∇P D t f (x 0 )| ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + C 1 δt + 1 P D t f (x 0 ), (3.13) 
x 0 ∈ K, δ > 0, which implies the desired inequality.

To finish we consider the case t > 1. From the semigroup property, we have P D t f = P D 1 (P D t-1 f ). So letting g = P D t-1 f and applying (3.13) to g at time 1, we obtain

|∇P D t f (x 0 )| ≤ δP D 1 g log g P D 1 g(x 0 ) (x 0 ) + C 1 δ + 1 P D 1 g(x 0 ). Now using P D 1 g = P D t f , we get |∇P D t f (x 0 )| ≤ δP D 1 (g log g)(x 0 ) -P D t f (x 0 ) log P D t f (x 0 ) + C 1 δ + 1 P D t f (x 0 ). Letting ϕ(x) = x log x, we have for z ∈ D g log g(z) = ϕ E f (X t-1 (z))1 {t-1<τ (z)} ≤ E ϕ f (X t-1 (z))1 {t-1<τ (z)} = E ϕ(f )(X t-1 (z))1 {t-1<τ (z)} = P D t-1 (f log f )(z)
, where we successively used convexity of ϕ and the fact that ϕ(0) = 0. This implies

|∇P D t f (x 0 )| ≤ δP D t f log f P D t f (x 0 ) (x 0 ) + C 1 δ + 1 P D t f (x 0 ),
which is the desired inequality for t > 1.

4. Proof of Theorems 1.1 and Theorem 1.2 of Theorem 1.1. We assume that t ∈]0, 1[ and refer to the end of the proof of Proposition 3.1 for the case t > 1. Fixing δ > 0 and x 0 ∈ M , we take R = 160/(δ ∧ 1). Let D be a relatively compact open domain with C 2 boundary containing B(x 0 , 2R) and contained in B(x 0 , 2R + ε) for some small ε > 0. By the countable compactness of M , it suffices to prove that there exists a constant C = C(D) such that (1.4) holds on B(x 0 , R) with C in place of F (δ ∧ 1, x 0 ). We now fix x ∈ B(x 0 , R), t ∈ ]0, 1] and f ∈ B + b . Without loss of generality, we may and will assume that P t f (x) = 1.

(a) Let P s (x, dy) be the transition kernel of the L-diffusion process, and for x ∈ D, z ∈ M , let ν s (x, dz) = ∂D h x (s/2, y) P t-s (y, dz) ν(dy), where ν is the measure on ∂D induced by µ(dy) = e V (y) dy. By Lemma 2.2 we have

P t f (x) = P D t f (x) + ]0,t]×D×M p D s/2 (x, y) f (z) dsµ(dy)ν s (y, dz).
Then 

|∇P t f (x)| ≤ |∇P D t f (x)| + ]0,t]×D×M |∇ log p D s/2 (•, y)(x)| p D s/2 (x,
I 2 ≤ δ E (f log f )(X t (x))1 {τ (x)≤t<ξ(x)} + δ e + δE f (X t (x))1 {τ (x)≤t<ξ(x)} × log ]0,t]×M×D exp C log(e + s -1 ) δ √ s + 2ρ(x, y) sδ ds p D s/2 (x, y)ν s (y, dz) µ(dy) ≤ δE (f log f )(X t (x))1 {τ (x)≤t<ξ(x)} + δ e + δE f (X t (x))1 {τ (x)≤t<ξ(x)} × log ]0,t]×M×D exp A δ + 9R sδ ds p D s/2 (x, y)ν s (y, dz) µ(dy), (4.4) 
where

A := sup r>0 C √ r log(e + r) -r < ∞.
We get

I 2 ≤ δE (f log f )(X t (x))1 {τ (x)≤t<ξ(x)} + δ e + δE f (X t (x))1 {τ (x)≤t<ξ(x)} log E exp (9R/δτ (x)) + A δ ≤ δE (f log f )(X t (x))1 {τ (x)≤t<ξ(x)} + δ e + δ log E exp (9R/δτ (x)) + A ≤ δE (f log f )(X t (x))1 {τ (x)≤t<ξ(x)} + δ log E exp 9R (δ ∧ 1)τ (x) δ∧1 δ + A + δ e = δE (f log f )(X t (x))1 {τ (x)≤t<ξ(x)} + (δ ∧ 1) log E exp 9R (δ ∧ 1)τ (x) + A + δ e . ( 4 
.5) By Lemma 2.3 and noting that ρ ∂ (x) ≥ R, we have

E exp 9R (δ ∧ 1)τ (x) ≤ 1 + E 9R (δ ∧ 1)τ (x) exp 9R (δ ∧ 1)τ (x) = 1 + ∞ 0 9Rs (δ ∧ 1) exp 9Rs (δ ∧ 1) d ds -P{τ (x) ≤ s -1 } ds = 1 + 9R (δ ∧ 1) ∞ 0 9R (δ ∧ 1) s + 1 exp 9Rs (δ ∧ 1) P{τ (x) ≤ s -1 } ds ≤ 1 + 9R (δ ∧ 1) ∞ 0 9R (δ ∧ 1) s + 1 exp 9Rs (δ ∧ 1) exp -R 2 s 16 ds = 1 + 9R (δ ∧ 1) ∞ 0 9R (δ ∧ 1) s + 1 exp -Rs (δ ∧ 1) ds = 1 + 9 ∞ 0 (9u + 1) exp (-u) du =: A ′ ,
since R = 160/(δ ∧ 1). This along with (4.5) yields (4.6)

I 2 ≤ δ E (f log f )(X t (x))1 {τ (x)≤t<ξ(x)} + log A ′ + A + δ e .
The proof is completed by combining (4.6) with (4.1), (4.2) and (4.4).

of Theorem 1.2. By Theorem 1.1,

|∇P t f (x)| ≤ δ P t (f log f )(x) -(P t f )(x) log P t f (x) + F (δ ∧ 1, x) 1 δ(t ∧ 1) + 1 + 2δ e P t f (x), δ > 0, x ∈ M. (4.7)
For α > 1 and x = y, let β(s) = 1 + s(α -1) and let γ : [0, 1] → M be the minimal geodesic from x to y. Then | γ| = ρ(x, y). Applying (4.7) with δ = α-1 αρ(x,y) , we obtain d ds log Then choosing T > t such that q := p/2(p -1)

(P t f β(s) ) α/β(s) (γ s ) = α(α -1) β(s) 2 P t (f β(s) log f β(s) ) -(P t f β(s) ) log P t f β(s) P t f β(s) (γ s ) + α β(s) ∇P t f β(s) , γs P t f β(s) (γ s ) ≥ αρ(x, y) β(s)P t f β(s) (γ s ) α -1 αρ(x, y) P t (f β(s) log f β(s) ) -(P t f β(s) ) log P t f β(s) (γ s ) -|∇P t f β(s) (γ s )| ≥ -F α -1 αρ(x, y) ∧ 1, γ s α 2 ρ 2 (x, y) β(s)(α -1)(t ∧ 1) + αρ(x, y) β(s) - 2(α -1) eβ(s) ≥ -C(α, x, y) αρ 2 (x, y) (α -1)(t ∧ 1) + ρ(x, y) - 2(α - 
< T /t, µ B(x, √ 2t) exp - 2(2 -p) e -2K(α, t, x) 2α α -1 + √ 2t - t T -qt (P t f (x)) 2 ≤ B(x, √ 2t 
)

(P t f α (y)) p exp - ρ(x, y) 2 2(T -qt) µ(dy).
Similarly to the proof of [1, Corollary 3], we obtain that for any δ > 2, choosing α = 2δ 2+δ ∈]1, 2[ such that δ > 2 2-α = p p-1 > 2, there is a constant c(δ) > 0 such that the following estimate holds: 

Appendix

The aim of the Appendix is to explain that the arguments in Souplet-Zhang [START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF] and Zhang [START_REF] Zhang | Some gradient estimates for the heat equation on domains and for an equation by Perelman[END_REF] for gradient estimates of solutions to heat equations work as well in the case with drift. (1-f ) 2 . By (5.2) we have

Lf + |∇f | 2 -∂ t f = 0 so that ∂ t ω = 2 ∇f, ∇∂ t f (1 -f ) 2 + 2 |∇f | 2 ∂ t f (1 -f ) 3 = 2 ∇f, ∇(Lf + |∇f | 2 ) (1 -f ) 2 + 2 |∇f | 2 (Lf + |∇f | 2 ) (1 -f ) 3 = 2 ∇f, ∇(∆f + |∇f | 2 ) (1 -f ) 2 + 2 |∇f | 2 (∆f + |∇f | 2 ) (1 -f ) 3 + 2 ∇ ∇f Z, ∇f + 2Hess f (∇f, Z) (1 -f ) 2 + 2 |∇f | 2 Z, ∇f (1 -f ) 3 .
(5.3)

Moreover,

Lω = ∆ω + Z, ∇|f | 2 (1 -f ) 2 + 2|∇f | 2 Z, ∇f (1 -f ) 3 = ∆ω + 2 Hess f (∇f, Z) (1 -f ) 2 + 2 |∇f | 2 Z, ∇f (1 -f ) 3 .
(5.4)

Finally, by the proof of [13, (2.9)] with -k replaced by Ric(∇f, ∇f )/|∇f | 2 , we obtain ∆ω -2 ∇f, ∇(∆f

+ |∇f | 2 ) (1 -f ) 2 + 2 |∇f | 2 (∆f + |∇f | 2 ) (1 -f ) 3 ≥ 2f 1 -f ∇f, ∇ω + 2(1 -f )ω 2 + 2ω Ric(∇f, ∇f ) |∇f | 2 .
(5.5)

Combining (5.1), (5.3), (5.4) and (5.5), we arrive at

Lω -∂ t ω ≥ 2f 1 -f ∇f, ∇ω + 2(1 -f )ω 2 -2Kω.
This implies the desired estimate by the Li-Yau cut-off argument as in [START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF]; the only difference is, using the notation in [START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF], in the calculation of -(∆ψ)ω after Eq. (2.13) in [START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF]. By The remainder of the proof is the same as in the proof of [13, Theorem 1.1], using Lψ in place of ∆ψ.
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 12 y)f (z) dsµ(dy)ν s (y, dz) =: I 1 + I 2 . (4.1) (b) By Proposition 3.1, we have (4.2)I 1 ≤ δP D t (f log f )(x) + , x ∈ B(x 0 , R), t ∈]0, 1[, δ > 0 for some C = C(D) > 0.(c) By Proposition 2.5 with ε = 1, we have (4.3) I 2 ≤ ]0,t]×M×D C log(e + s -1 ) (x, y) f (z) dsν s (y, dz)µ(dy) for some C = C(D) > 0 and all t ∈ ]0, 1]. Applying Lemma 2.4 to the measure μ := p D s/2 (x, y) ds ν s (y, dz)µ(dy) on E := ]0, t] × M × D so that μ(E) = P(τ (x) ≤ t < ξ(x)) ≤ 1, we obtain

EBy [ 6 ,

 6 δ (x, t) := M p t (x, y) 2 exp ρ(x, y) 2 δt µ(dy) ≤ exp c(δ)K(α, t, x)Eq. (3.4)],this implies the desired heat kernel upper bound for C δ (t, x) := c(δ)K(α, t, x)(1 + √ 2t).

Theorem 5 . 1 .

 51 Let L = ∆+Z for a C 1 vector field Z. Fix x 0 ∈ M and R, T, t 0 > 0 such that B(x 0 , R) ⊂ M . Assume that (5.1) Ric -∇Z ≥ -K on B(x 0 , R). There exists a constant c depending only on d, the dimension of the manifold, such that for any positive solution u of (5.2)∂ t u = Lu on Q R,T := B(x 0 , R) × [t 0 -T, t 0 ], the estimate |∇ log u| ≤ c 1 R + T -1/2 + √ K 1 + log sup QR,T u u holds on Q R/2,T /2 .Proof. Without loss of generality, let N := sup QT,R u = 1; otherwise replace u by u/N . Let f = log u and ω = |∇f | 2

( 5 . 1 )

 51 and the generalized Laplacian comparison theorem (see [3, Theorem 4.2]), we have )ω = -(∂ 2 r ψ + (∂ r ψ)Lr)ω ≤ |∂ r ψ| 2 + |∂ r ψ| d r + √ Kd |∂ r ψ| ω.