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Abstract. We study the large time behavior of solutions to the dissipative
Korteweg-de Vrie equations u¢ + Ugzyy + |D|*u 4+ uu, = 0 with 0 < a < 2.
We find v such that u—v decays like ¢ "(®) as t — oo in various Sobolev norm.
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1 Introduction

In this paper we study the asymptotic behavior of solutions to the following
dissipative KdV equations

{ Ut + Uggy + |D]|u 4+ uu, =0, t€Ry xR, (dKdV)

u(0,z) = up(z), z €R,

with 0 < a < 2 and where |D|* is the Lévy operator defined through its
Fourier transform by ]5\0‘\@(5) = [€|*@(€). Here u = u(t, x) is a real-valued
function.
The (HKdV]) equations are dissipative versions of the well-known KdV
equation
Up + Upge + Uty =0 (1.1)

which have been extensively studied. Equation ([.1) is completely integrable
and there exists an infinite sequence of conserved quantities. For sufficiently



smooth initial data, we know that global in time solutions exist and can be
asymptotically written as a sum of traveling wave solutions, called solitons,

see [1§], [i4].

Concerning the pure dissipative equation
ut + |D|%u 4 uuy = 0, (1.2)

it has been proposed to model a variety of physical phenomena, such that the
growth of molecular interfaces (cf. [[Z]). Also, in [[q], Jourdain, Méléard and
Woyczynski pointed out the main interest of equation (L) in probability
theory. Biler, Funaki and Woyczynski proved in [f] several local and global
well-posedness results, in particular in the general setting 0 < o < 2, they
obtained weak solutions of ([l.9). Using the Fourier splitting method first
introduced by Schonbek in [[L7], they showed that regular solutions satisfy
the estimate

lu(®)l g2 < (1 +8)71/2 (1.3)

for all t > 0. This result was improved by Biler, Karch and Woyczynski [{]
in the case of a diffusion operator of the form —82 + |D|*. See also [[I] for
asymptotic results concerning ([L.9) with 1 < o < 2.

Let us turn back to the (HKdV]) equation. The Cauchy problem (dKdV])

with 0 < a < 2 has been shown to be globally well-posed in the Sobolev
spaces H*(R) for all s > —3/4 and furthermore, the solution u(t) belongs
to H®(R) for any ¢t > 0 (cf. [3]). When o = 1/2, (HKdV]) models the
evolution of the free surface for shallow water waves damped by viscosity,
see [[G. When o = 2, (HKdV)) is the so-called KdV-Burgers equation which
models the propagation of weakly nonlinear dispersive long waves in some
contexts when dissipative effects occur (see [[[]). In the case a = 0, ([{KdV])
reads

Up + Upge + U+ vty =0 (1.4)

and it is easy to get the decay rate for the L2-norm of the solution. Indeed,
multiplying ([.4) by u and integrating over R give for regular solutions the
equality

1 o0 [e.e]

—3t/ u?(t, z)dx + / u’(t, x)dx = 0,

2 —00 —o0

and it follows immediately that

lu()||2 = O(e™) as t — oc.



Now consider the KdV-Burgers equation ((HKdV]) with o = 2). In a sharp
contrast with what occurs for ([.4), Amick, Bona and Schonbek [[] proved
that if ug € L'(R) N H%(R), then the corresponding solution satisfies

lu(®) 2 < e(1+¢) (1.5)

and furthermore, this estimate is optimal for a generic class of functions. The
proof of this result is based on a subtle use of the Hopf-Cole transformation.
Later, Karch [[[(] improved this result by showing that the asymptotic profile
of the solution with a mass M is given by the fundamental solution Ujys of
the viscous Burgers equation (eq. ([.9) with a = 2)

Ut — Upy + Uy =0
with the same mass. More precisely, we have
tA=YP)2) () — Ups(t)||r — 0 as t — oo

for each p € [1,00]. In other words, we can say that for large times, the
dispersion is negligible compared to dissipation and nonlinearity effects. His
method of proof is based on a scaling argument. This kind of behavior was
also heuristically observed by Dix in [f]. He called this situation the ”bal-
anced case” because both dissipation and nonlinearity contributions appear
in the long time behavior of the solution, this is formally expressed by the
relation a = 2.

In the present paper we study the so-called ”asymptotically weak nonlin-
earity case” « < 2. For a large class of equations, solution of the nonlinear
problem asymptotically looks like solution of the corresponding linear prob-
lem (with same initial data). One of the goals of this article is to show that
similar behaviors occur for (HKdV]) with 0 < o < 2.

Following the works of Karch [JJ], we shall mainly work on the integral

formulation of (AKdV]) :
u(t) = Sa(t) * up — %/Ot So(t — 5) % Opu(s)ds (1.6)
valid for any sufficiently regular solution, and where S, (t) is defined by
Sa(t,z) = % /_C: emfe(igg_ma)tdf, t>0.

First, using the properties of the generalized heat kernel, we give a complete
asymptotic expansion of the free solution S, (t)*ug. After deriving the decay



rates estimates of the solution in various Sobolev norms || - ||, we show that
|u(t) — Sa(t) * ug|| is bounded by ¢t~ (a) > 0. Next, we improve this
result by finding terms w = w(t,z) such that |u(t) — Sa(t) * uop — w(t)||
decays to zero faster than ¢~"(®).

Notation. The notation to be used are standard. The letter ¢ denotes a
constant which may change at each occurrence. For p € [1,00] we define

the Lebesgue space LP(R) by its norm || f||zr = <ffooo |f(a3)|pdx> v with
the usual modification for p = co. If f = f(¢,x) is a space-time function,
the LP-norm of f will be taken in the z-variable. For j > 0 and p € [1, o¢],
the Sobolev spaces HP/(IR) and HPJ(R) are respectively endowed with the
norms [fles = 120+ 108fllz0 and ||f]l s = [94f o When p = 2,
we simplify by the notation H’(R) and H7(R). If f € S'(R), we define its
Fourier transform by setting f(&) = Ff(¢) = [ e f(x)da.

We introduce G, the fundamental solution of the equation u; + |D|%u = 0,

1

oo .
—/ e e qe > 0.
21 J_o ’

It is clear that G, has the self-similarity property

i.e.

Ga(t,x) =

Go(t,z) = t7YGo (1, 2tV zeR,t>0. (1.7)

On the other hand, we know that G, (t) € HP?(R) for any p € [1,00] and
j >0, see for instance [[LJ].
Finally, for f € L' (a7dz), j € N, we set M;(f) = [*_ f(z)aida.

2 Main results

As we are going to show, the solution of (HKdV]) can be approximated by
the solution of the corresponding linear equation. We first give a complete
asymptotic expansion of S, (t) * ug, which will be used in the proof of the
main theorem.

Theorem 2.1. Let p € [1,00] and j,N € N. Then for allt > 1 and
uo € LH((1 + |o)) V1),

N—

—_

tk

! 4
177 =0

k
< ot~ (-Vp)/amj/a-(N+Dja (9 1)

- (1" . - (1) 00y
Salt)rio—Y_ =M (u0)2}Ga(t)=d_ 1 Mo(ug)d (—8y) Ga(t)‘

HPJ



Remark 2.1. When N = 0, the sum Zszl in (B4) has to be understood
as 0, and thus (1) reads

150 (t) * wo = Mo(ug)Ga(t)ll gy < et~ 7P amsfamta (2.9

If N =1, we have the following asymptotic expansion for S, (t) * ug,

[1Sa(t) % uo — Mo(u0)Ga(t) + Mi(110)02Ga (t) + tMo(110)D2Ga (t) 0.
< ct—(1=1/p)/a=j/a=2/a

Remark 2.2. The term ZnNzo (711!)n./\/ln(uo)8gGa(t) in (B-1) corresponds
to the asymptotic expansion of G, (t) * ug, solution to the generalized heat
equation u; + |D|*u = 0. The other terms are due to the dispersive effects

and appear only for N > 1.

Now we consider the nonlinear equation (AKdV]) with 0 < o < 2.
Throughout this paper, we make the following assumptions :

ug € L*(R) N L*(R), (2.3)

u € C(]0,00[; H(R)), (2.4)

if ug € H(R), then sup ||0%u(t)|| 2 < oo. (2.5)
>0

For ug € L?(R), existence of global solutions satisfying (.4) was proved for
example in [[§]. Moreover, if ug € H’(R), it was shown that the solution is
continuous from [0, oo[ to H’(R). In Section [, we will show that assumption
(B-5) is verified for such solutions when ug € L'(R) N L°°(R), at least in the

case o > 1.

Theorem 2.2. Let p € [2,00] and j € N. Assume that ug € H’TH(R) N
LY(R) and (2.4)-([2.3) hold true. Then we have

[u(®)l oy < c(1 4 )" U7HP/amile g s, (2.6)

When j =0, (2.4) is valid for all p € [1, 00].

Next we find the first term in the asymptotic expansion of the solution.



Theorem 2.3. Let p € [2,00] and j € N. We assume that ug € H/T3(R) N
LY(R) and that the solution u satisfies (2.4)-(2.3). Then, for all t > 0,

(1+4t)(-0- 1/p)/a j/e)—1/a for 0<a<l1,
lu(t)=Sa(t)xuoll gy < cq (1L+HTETP=D N og(148) for a=1,
(1 +¢)-(=/p/a=j/e)=@2/a=1)  for 1 < < 2.

In view of Theorems .4 and R.3 it is clear that decay rate of u(t)—Sq(t)*
ug in HPJ-norm is better than when considering only w(t). In order to find
other terms in the asymptotic expansion, we need to consider separately the
cases 0<a<l,a=land 1l <a<?2.

When 0 < a < 1 or a = 1, the difference between the asymptotic behav-
ior of the first and second term is subtle. For the first term, we have ||u(t) —
Sa(t)|l gp; = Ot~ (A71/P)/azi/a=1/a) (when a < 1), whereas for the second
one, say w(t), we have |[u(t) — Sq(t) — w(t)|| gp; = o(t=(171/Pazi/a=1/a),
The following result holds for a < 1.

Theorem 2.4. Suppose p € [2,00], j €N, ug € H'T3(R) N LY(R) and that

©A4)-2-3) are verified.

(i) If 0 < o < 1, then

$((A=1/p)/atj/a)+1/c

u(t)—S *uo—i— / / sydyds)@G ()‘Hmﬁo
(2.7)
ast — oo.
(ii) If o« =1, then
+(1=1/p)+j+1 2
Tuu(ﬂ — S1(t) % ug + E(log 1)0,G1 (75)‘ P 0 (2.8)

where M = Mo(ug) = [ uo.

Remark 2.3. In the case o < 1, the integral [;° [0 u?(s,y)dyds which
appears in (B.7) is convergent due to Theorem 22 :

/ / (s,y)dyds = / [u(s)||22ds < c/ (1+s) Vs < 0.
0 0

Now we deal with the case 1 < a < 2. In this situation we get an
asymptotic expansion of the solution at the rate O(t~(1=1/P)/a=i/a=1/a) (i



HPJ-norm, and for almost every «) but we need more than two terms in
this expansion to derive it. The main idea is to use the successive terms
F"(t) which appear in the Picard iterative scheme applied to the Duhamel
formulation ([L.6), i.e.

{ FO(t) = S, (t) * u,
FHL(t) = S, (t) * ug — 2f0 s) * O (F™(s))?ds.

Theorem 2.5. Let 1 < a <2, p€ [2,], j €N andug € HT3(R)NLY(R).
Suppose that conditions (2.4) and ([.3) are satisfied.

(i) If 2]<,V_:r11 <a< 2]]\>[f23 for a N € N, then
lu(t) = ENTH )| gy < c(1 )~ Pamdlomt/e,

(ii) If a = 2}9{:23 for a N € N, then

u(t) — FNFL(t) c(1 + t)~UUp/a=i/a=1/a60(1 4 ¢).

H HpJ <
Remark 2.4. The results obtained in this paper for (dKdV|) could be cer-
tainly adapted to more general dispersive dissipative equations taking the
form

— |D|"0zu + |D|“u+ 0, f (u) =0, (2.9)

where f is sufficiently smooth function behaving like u|u|9=' at the origin.
Such general models were studied by Diz in [§]. Similar asymptotic expan-
sion for solutions to (£.9) could be obtained in certain cases, when dissipation
18 not negligible in comparison with dispersion and nonlinearity :

a<lr+1,
0<a<aqg.

The remainder of this paper is organized as follows. In Section [, we
derive linear estimates and prove Theorem P.J. Uniform estimates of the
nonlinear solution are obtained in Section []. The decay rate (.6) is estab-
lished in Section f|. Finally, Section [f is devoted to the proof of Theorems

R.3, .4 and R.5.
3 Linear estimates

In this section, we prove some estimates related with S, () and G4 (t). Our
first lemma is a direct consequence of the self-similarity of G,.



Lemma 3.1. For any p € [1,00] and j € N,
|Ga()|l g = ct™ P ezl (3.1)

Proof. Equality ([[.7) and a change of variables yield

* ol i “1/a 1/p
1GalOlns = ([ 60700 (1,0 /) P

— 00

:f(ﬁl)/atl/ap( / yagGa(l,y)\pdy) "

The case p = oo is straightforward. U

Let us recall the following elementary result which will be extensively
used in our future considerations. A proof of (B.J) can be found in [§].

Lemma 3.2. If 1 <k <j and f € H'(R), then
1-k/9 1 k/j
1F120 < I Fll2llfullizs  and 05 Flle < IFIL"7N00 0155, (3.2)
Moreover, for any f € L*((1 + |x|)dz), one has

1£121 < el fll22]|0e f 22 (3.3)

Next lemma describes the asymptotic behavior of S, (t).

Lemma 3.3. For any p € [1,00] and j,N € N,

N
" 3n —(1-1/p)/a—j/a—(3/a—1)(N+1)
‘Sa(t) - Zom(—ax) Ga(t)‘ iy St p)/a=j . (3.4)
Proof. Setting A(t) = Su(t) — ZnNzo %(—8;,;)3"Ga(t), we obtain
. . e
FOAM)E) = (i e 81" (" =3~ —(=ig)™).
n=0

Using the Taylor expansion of the exponential function, we have

N .
ited @)™ _ )N
e _ZO P gy




Thus, Plancherel theorem and the change of variables & = ¢t~/ give

JO2AW s < c [ lePie>r e POV g
_ 2N /Oo |€[2UH+BN+3) o —211€[" g
— ot~ V/a=2/a=23/a=1)(N+1)
which yields the result for p = 2. Now the case p = oo follows immediately
from (B.2). When p = 1, we use estimate (B.J). One has

|’35f(3%A(t))“L2 < c(/oo [’jfjfl(t§3)N+1‘2 4 ‘t§j+a71(t§3)N+1’2

+ (€[ [3ite?ee" — EN: Snit)e ! -2l gg)

n!
n=0

o0 . . _ o 1/2
<V (( [ jjgpun v e ge)

+ctN+2</OO ’5‘2(j+a_1+3(N+1))e_2t|f|ad§) 1/2

— 00

0 . o« N\ 1/2
+ct(/ |£|2(]+2)|t£3|2N672t\5\ d{) /

< ct*1/2047]'/047(3/0:71)(N+1)+1/a.

It follows that (B.4) holds true for p = 1 and then for all p € [1,00] by
interpolation. U

Lemma 3.4. For allp € [2,00] and j € N,
1Sa ()l s < et~ (/PO (3.5)

and |
[Sa®) 1.5 < ct*J/a(l + t1*3/a)‘

Proof. For p =2, ||Sa ()|l 55 = |Ga(t)||z; = ct~1/?¢73/% Then (BF) follows
by the first inequality in (B.J) and by interpolation. Concerning the L-
norm, (B.4) with N = 0 and (B.1) provide

1Sa()ll 15 < 150 (t) = Ga®)ll 15 + 1Ga (Ol g5 < et/ (1 +¢175/).

g



Now we state a decomposition lemma for convolution products.

Lemma 3.5. Let p € [1,00] and N € N. For any h € L'((1 + |z|)N*1dx)
and g € CNTLR) N HPVTL(R),

|

Proof. 1t is an easy consequence of the Taylor formula as well as Young
inequality. O

n

g, < el glrllbls o,

Applying Lemma B.J with g = B%Ga(t) and using estimate (B.1), we
deduce the

Corollary 3.1. Ifp € [1,00] and j,N € N, then

< ct~(=1/p)/a—j/a=(N+1)/o A £t 9+ 1)

HG £)h— Z n, ;;G()\.

HP»J

for any h € L*((1 + |z|)N*+1dx).
We are now in a position to prove Theorem P.1].

Proof of Theorem [2.1. By the triangle inequality,

N (_1)n N tk N*l )g
a(t) 10— > M ()9 Galt) = > 1 Me(uo)h (=0 Ga(t)|
n=0 k=1"" =0 ’
N tk
< HSa(t)*uO— JEX Z ' Ox) BkGa t)*uo‘H”

+HGa(t) g — i (_1)nMn(uo)5’;Ga(t)‘

= n! HPp.j
N— 1
+Z - H 0,)2K Gl (£) % g — EZ% )0 (=0, )3’“Ga(t)‘ .

:zI—l—II—i—III.

10



I is estimated with the help of (B-4),

N tk
1= |04 (Salt) = Y (=0 Ga®)) o |
k;o tk
< [01(5a0) = D2 (=00 Ga®) || ol
k=0

< et~ (-1/p)/a=ija=(3/a=D(N+1) < y=(1-1/p)/a=j/a~(N+1)/a,

since a < 2. Concerning II, we use Corollary B.]] as follows :

II< Ct—(l—l/p)/a—j/a—(NH)/a||uOHL1(|m|N+1dI)_

Finally for the term I11, Corollary B.1] allows us to conclude
N tk
<y E‘
k=1
N

< et (1D amifa=Nja § (1-3/ak
k=1
< Ct*(lfl/p)/afj/afN/aJrlf?)/a

< et~(-1p)ja—j/a~(N+1)/a

. = (1)
8§’k+] (Ga(t) * Uy — Z 7 Mz(uo)aﬁGa(t)) ‘

Lr

4 Uniform estimates of solutions to (dKdV))

We begin by the proof of Theorem B.9 in the case j = 0 and p = 1.
Lemma 4.1. Let ug € L*(R) N L?(R) and u be a solution of satis-
fying (2.4). Then for allt >0,
[u(®)][rr < fuollzr-
Proof. Multiply ({KdV]) by sgnu and then integrate over R :
oo
Ol|u(t)||pr = —/ (Ugzz + |D]%u + uuy) sgn u. (4.1)
—0o0

We are going to show that for each ¢ > 0, the right-hand side of ({I.])) is
negative. Note that assumption (R.4) means that for each ¢ > 0, there exists
¢ = ¢(t) such that

Vi >0, [|0fu(t)llz2 < c. (4.2)

11



Since —|D|* is the generator of contraction semigroup in L!(R), for each
u € D(—|DI|*) (the domain of —|D|%),

_ «
0o N ] o o s|D| U—u
— |D|*usgnu = lim ————sgnu
s—0 PN

oo S

1 [ a
= lim — <€78|D| usgnu — |u|)
s—=08 J_

1 e o e
§limsup—(/ le=sIP1y —/ |u|>
s—0 S —00 —c0

<0.

This last inequality is sometimes called Kato inequality, see [J]-[H]. To show
that the other terms in the right-hand side of ([.1]) are also negative, we
introduce the following smooth regularization of the sgn function

1 it &>nm/2,
sgn, (§) = ¢ sin(¢/n) if [§] <nm/2,
-1 if &< —nm/2.
Then, an integration by parts gives
o o 1 o
— / Uy sgn u = — lim uug sgn, u = - lim u?ug sgn; U.
—00 n—YJ —o0o 21-0 ) o

On the other hand, sgn; has its support in [-nr/2,77/2] and |sgn; | < 1/7,
hence setting M, = {z : |u| < n7/2,u, # 0}, one has mes(M,) — 0 (mes
denotes the Lebesgue measure) and

< / 1 2 1/2
‘/ u ux.sgnnu‘ < —/ luug| < CUHUmHB(/ > — 0
—c0 nJm, M,

as 1 — 0 by (f£3). Thus ffooo uug sgnu = 0. We proceed similarly for the
last term,

o (o] o
— Uppr SEN U = — lim Uy SGN,) U = lim Uz U Sgn; U
—00 n—0 J_ n—0

o.] , 1
‘/ U Uy sgnnu‘ < —/ Ut |
—00 n My,

Now we define u by setting u = u on M, and u = 0 elsewhere. Then by
Cauchy-Schwartz,

—00

and

00 1 [ 1
/ ~ ~ ~ ~
[ verassyof < 0 [ ] < 2
oo nJ - n

12



The second estimate in (B.2) and ({.J) yield

- _1/20~ 1/2 1/4 1/4
ol < W = ([ 12) ([ heaal?) " < ont mes(ar)
M, M,
and
- 11/2 )~ 1/2 1/4 1/4
[aallie < 1 raaal 2 = ([ ) ([ i) < cnt” mes(as, )12
M, M,

Gathering these two last estimates we infer
o
‘/ U U sgn;u‘ < cmes(M,) — 0
—0o0

and so ffooo Uzrr Sgnu = 0. Finally
Olu®)]|r <0,
which complete the proof of Proposition [.1]. O

Corollary 4.1. Let ug € L*(R) N L?(R) and u be a solution of
satisfying (£-4). Then,

VE>0, |u(t)]pe < e +t)712% (4.3)
Proof. If we multiply (HKdV]) by u and then integrate the result over R,
rllu(®)72 = =2Il[D|**ul72 < 0.

In particular, ||u(t)||z2 < |Jug||z2. For all ¢ > 0, last equality allow us to
write

2
A/ u®)3:] = S/ u@lF: + o0 u(t) I3

2 /e P N
= 2ol (3 - 20 [ ot oPds

2 _ o0 ~ a s

< Zg2le 1/ ja(t, &)[2dg — 2 / €1 lat, €)|%dg
a o 61> (at)=1/
2 > 2

< 2ot [ i, gPag - 2ot | ja(t,€)|dg
« —c0 @ |€]>(at) =1/

2 _ .
= =~/ / la(t, €)|2de
@ €] < (at) =1/

< et [u(t)[|72 mes{lé] < (at)"H/*}
Sctl/a_l.

The integration of this inequality over [0, ¢] provides the desired result. O

13



Now we show that if @ > 1, solutions of (HKdV]) satisfy the maximum
principle. The restriction on « is mainly due to the fact that one has |D|*1 =
0 only if o > 1.

Lemma 4.2. If u is a solution to ([dKdV]) with o > 1 associated with initial
data ug € L>®(R), then

infuy < u(t,z) <supug (4.4)
for a.e. (t,x) € [0, 00[xR.

Proof. Let m = infug, M = supugp and u* = max(0,u — M — &), u~ =
min (0, u +m+¢€) for some £ > 0. We multiply ({KdV)) by u* and integrate
over R to get

o0
/ (g + Uz + | D|*u + uug)u™ = 0. (4.5)
—0o0

On the support of u™, it is clear that u; = uf, u, = uf and |D|*u =
|D|*u™, this last equality follows from the relation |[D|*1 = 0 for o > 1.
We deduce [ wu® = 30, [lut ()2, [T upgeu® = [T uf,u™ =0 and
[ DM uut = [ |D|*utut = |||D|O‘/2u+\|%2 by Plancherel. On the
other hand, one has [ wuut = [* (uT + M + e)ufut = 0. Inserting

this into (.§) and integrating over [0,t] we get
t
o 12 +2 | 11D 0) s = (O) = 0

and thus u™(t) = 0 a.e.. Consequently, we have u(t) < M + ¢ for all € > 0,
and the second part of (f4) is proved. The same arguments hold with ™
replaced by u~ and give the first inequality. U

Following [[[d], we introduce for A > 1 the following rescaled solution
ux(t, x) = Mu(\’t, \x).
Obviously, u) satisfies the equation
Oy + AN 0paptiy + AT DUy 4 upOpuy =0
with initial data ug \(z) = Aug(Azx).

Lemma 4.3. Let ug € L'(R) N L¥(R) and u be a solution of (KdV) with
1 < a < 2 satisfying (£4). For j >0, T >0 and 0 <t < T, there exists
c=c(t,T) such that for all X\ > 1, one has ||0%ux(t)| 2 < c.
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Proof. The method of proof is based on an induction on j. If j = 0, one
easily deduce from Corollary [L] and Lemma [£J that ||u(t)||p» < ct—1/oP
for 2 < p < oo and thus

lua(®)||r < eAL=(H2/)/pg=1/ap, (4.6)

In particular for p = 2 and A > 1, |lux(t)||z2 < ¢(t). Suppose now that the
result is true for all & < j. Consider SA(t) (resp. GA(t)), the semigroup
generated by A7 10... + A27%|D|* (resp. A27%|D|*) so that we have for
0<t,t/<T

up(t + 1) = SN(t) x up(t') — % /Ot SA(t — s) * Opul (s +t')ds. (4.7

It is worth noticing that [|SX(¢) * fllz2 = ||GA(t) * f]|12 and
102GR(0)|e = [[85Ga(A*1)]|n (4.8)

for all 1 < p < co. Application of & to (1) and computing the L?-norm
lead to

102un(t + 1) g2 < D2GA(E) * un(t')] 2

J t
ey / 19.GA (= 5)  Fun(s + )0 Fun(s + 1) pads.  (4.9)
=0"0

By the inductive hypothesis, the first term in the right-hand side of ({.9) is
bounded by

10:GA (1) * 0L ua ()2 < et |0 ua(t) 2 < ety

By symmetry, it is sufficient in the sum Zizo in (f.9) to consider the indexes
k =0,..E(j/2). The case k = 0 is a special case and has to be treated
separately. Using Young and Holder inequalities and next estimates (f.§)
and ([.6), we obtain
|0:Ga(t — 8) % un(s + 1) up(s + 1) 2
< 102Gt = 8) | p2re-o (s + )| g2 [8Fun(s + 1)l 2
< [AQ—a(t _ S)]—(a+1)/2a)\1—(04—1)(1—}—2/04)/2 (S + tl)(l—a)/Zoz ||a%U)\(S + t,)HLQ
<c(s+1)(t —s)" T2 0T uy (s + 1) 2 (4.10)

15



since —(2—a)(a+1)/2a+1—(a—1)(14+2/a)/2 =0. When k£ > 1, we use
the inductive hypothesis combined with (B.9) to get

|0:GA(t — 8) % Ouy(s + ) up(s + 1) 2
< 0:GA (¢ = $)|[ L [05un(s + )| oo |05 Fun(s + )| 2
<els+t)(t—s)~ Ve (4.11)

Bounding ¢(s + t') in (E10)- (1)) by supg< <7 c(s +t') and inserting these
inequalities into ({.9) let us conclude that

10ur(t + )2 < (@)t + et T)

t
+e(t) / (t = )"V DT uy (s + 1)]| 2 ds,
0

This implies by the generalized Gronwall lemma [f] that for ¢’ = ¢,
102ux(2t)]| 2 < (t,T)
where ¢(t,T) is independent of A > 1. O

As noticed in Section [, these uniform estimates (in \) imply uniform
estimates in time of the solution.

Corollary 4.2. Let ug € L'(R) N L>®(R) N H(R) for some j > 0. Assume

that u is a solution of with 1 < o < 2 satisfying ([2.4). Then
assumption (B-3) is satisfied, i.e.

sup [u(t)] 2 < oc.
>0

Proof. First since ug € H’(R), we have u € C([0,00[; H/(R)) and thus
supg<i<1 |0u(t)||r2 < oo. On the other hand, one easily verifies that

103y (t)||f2 = MVTY2||&u(N2t)|| ;2. Taking ¢ = 1 and A = /2 in this
equality we deduce

/204190 u(t) || 2 = [[ua(1)]l 2 < ¢

by Lemma [L.3 This implies for ¢ > 1 that 8%u(t)]| 12 < c as desired. O

16



5 Decay of solutions to (AKdV])

In this section we prove Theorem P.J which has already been shown in the
special cases (p,7) = (1,0) and (p,j) = (2,0) in the previous section.

Lemma 5.1. Let ug € H¥(R) N LY(R) and u be a solution satisfying (B.4)-
©-3). Then, for allt >1 and N > 1,

HI

H/OtSa(t—s)*Bxuz(s)ds‘ ,

< P ™ sup ()Y 1 sup [u(s)p (5.0)

t/2<s<t t/2<s<t
with v = y(a) > 0.
Corollary 5.1. Ifug € HY(R) N LY(R) and if (B4)-(B-]) hold true,
()] s < e(1+ )71 /207/0
for any t > 0.

Proof of Lemma [B.]. One proceeds by induction on j. For j = 0 we use the
integral formulation ([.§) and estimates (B.5) and ([£.3) :

t
H /0 Salt —s) = axu2(s)dsHL2 — 2f[u(t) — Sa(t) * o] 2
< 2l|u(t) g2 + 2/ Sa(®)l| 2 lluoll 1 < ct ™2,

Now assume the statement (and thus Corollary f.1)) is true for the k < j.
We split the left-hand side of (p.1) into

t/2 t
,_g/ ...d5+/ co.ds=T+11.
Hy 0 t/2

By the Young inequality and estimates (B.F), (E.3), we have

H /Ot Sy (t — s) x Opu’(s)ds

t)2
I< / 105150 (t — 5|12 u(s)|Zadls
0
t/2 .
< C/ (t— 8)—1/204—(]—1—1)/04(1 +s)—1/ads
0

t
Sct—l/Qa—j/a(t—l/a/ (1+s)—1/ads)
0

17



and for ¢ > 1,

‘ t—1/e if a<l
t_l/o‘/ (1+ s)_l/o‘ds <c{ tllogt if a=1 <ec.
0 =2/ if a>1

To estimate II, we use Plancherel and we split low and high frequencies,

t 00 o oy~ 1/2
e[ ([ oo, o pa) s
t/2 —0o0

t 1/2 t 1/2
gc/ </ ...d§>/ds+c/ </ ...dg)/ds::HlJrHQ.
t/2 \Jjgl<1 t/2 \Jjg>1

If |¢] < 1, then e 2" > ¢=2, hence

¢ o a s 1/2
I < c/ (/ e 2(1+t=s)[¢] ‘5’2(J+1)’u2(8’§)’2d§)
t

/2 —o0o

t
_ c/ 190 S + 1 — ) + Du2(s)|| 2 ds
t

/2
t

<o 0Sattt = 8) a0 (o) |ads
t/2
t J ‘

<o (rem s S [0ku(s) a0 u(s)ads
t/2 k=0

Corollary p.1] with k& < j implies that

J ‘ Jj—1 ‘
Y losu(s) 210 uls) |2 < ) (14 s) 727 (1 4 )71 /2em =/
k=0 k=1

+ cflu(s)| g2 18] uls) | 2
< e(148) 7073 4 (14 5) 72| Duls) | 2
(5.2)

For the contribution of the first term in (5.9), we have
t ‘ ' t
/ (L) 720 (1) o0 s < gt/ 20mio (412 / (1+35)73/2as)
t/2 0
and for ¢ > 1,
t=1/2 if a<3/2

t
t—1/204/ (1+s)32%ds < el t73logt if a=3/2 <ec (5.3)
0 t1=2/a if a>3/2

18



For the second one, one can write

t
/ (11— 5)73/20(1 4 8712 0 u(s)| 2 ds
t/2

t .
Y / (1+5)792ds) sup D3u(s)llp2 < ™ sup [lu(s)]l
0 t/2<s<t t/2<s<t

in view of (5.9). Term I, is bounded by

t o] . — 1/2
s [ ([ g, o) Cas
t/2 —00

t
—c [ N )]s
t/2

Jj+1

gc/ *MZHa’f (5)08 1R (5) | Lads.

By symmetry, it suffices in the previous sum to consider the values k =
0,1,...,E((j+1)/2). When k = 0, assumption (P.§) and Lemma B.2 provide

()3 u(s) | g2 < [u(s)| oo |05 uls)|| 2
< cllu(s) |35 e ()15 103 u(s) |1 0+ Nu(s) |5
< e(1+5) V) 0du(s)| 1,

for any N > 1. For k = 1, we have by similar calculations

e (8)83u(s)|| 12 < [lue(s)[| o< [Hu(s)|l 12
) |
< clfu(s) || o wwe () 125 |03 (s) || 2
< e(1+8) V380 u(s)]| 2
Note that if &k = 2, we must have j > 3. If j > 4, one has by the inductive
hypothesis
102u(s)33 u(s)| 12 < el|0?uls) po |02 uls)|| 2
1/2 1/2 —1/2a—(i—1)/a
< c|82u(s)|| 2103 u(s) |15 (1 + s) Y/ =D/
< C(1+8) 1/2047]'/04.
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If j = 3, then

etz (8)thz () 12 < ([t (5)| ov 11 (5) | 2
<t (5) 15 Ntaaa ()15 1t ()15 etz ()] 127
< c(1+ )72 00u(s)| 2.
In the end for k£ > 3 (and thus j > 5),
10k u(s)D Fu(s)| 2 < |0Fu(s)] 20 u(s) | L
< [0 u(s) |2 102 Fu(s) | 1072 Fu(s) |4
)~
5)”

< (1 4 5)"M20 /o (=1/20= (1) f0) [2+(=1/20=(+2-k)/a) /2

<c(l+

This allows us to conclude that

5/2a—j/a < C(1+S) 1/2a—j/«

t
L <ec / e [(1 4 5)"2emil L s Ddu(s) | g2 + (14 8) 7 (|00u(s)]| vV ds
t/2

t
Sc[t71/2a*j/a+t77 sup Ha%u(S)HLQ_{_t*’Y sup ||ag: ()Hl I/N]/ e,(t,s)ds
0

t/2<s<t t/2<s<t

<tV LT sup [Ou(s) e+t sup (| uls)| b .
t/2<s<t t/2<s<t

O

In order to prove Corollary f.1], we need the following elementary result.

Lemma 5.2. Let f : RT — R bounded, and 0 < v < 3 and N > 1. We
assume
VE>1, f(t) <ct™P + et sup fs) VN,

s~t

Then fort and N large enough, f(t) < ct™5.

Proof. We show by induction that for alln > 0, f(¢) < ¢t~ min(B,y(1-N)(1= )" +yN)
Thus for n large enough, one obtains f(t) < ¢t~ min(ByN+1) and it suffices
to choose N so that § <N + 1. O

Proof of Corollary [5.3. By (R.5), we only need to consider ¢ large enough.
Using (B.H) and Lemma p.1, it follows that

t
|O%u(t) 2 < 035a(t) * wollz + | 5 /0 D1Salt — 5) + Dyu’(s)ds

L2
<t V2l L sup | u(s)| e + et sup [|@du(s)||hs N
t/2<s<t t/2<s<t
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Letting ¢ — oo, we deduce |02u(t)||;2 — 0. For t > 1, we thus have
|0%u(t)||r2 <1 and

1-1/N

|0u(t)ll 2 < et 4 et™ sup (|u(s)]]

t/2<s<t
Applying Lemma f.4 with f(t) = ||0Ju(t)||z2 and 8 = 1/2a+ j /v, we obtain
the desired result. O

Proof of Theorem [2.3. The result is already proved in the case p = 2. When
p = oo, we use (B.3) and Corollary 5.1 to get

1/2 1/2 1a—ij
lu®ll o < ellu® g Tl < et 1)~
The other cases follow by an interpolation argument. O

6 Asymptotic expansion

6.1 First order

In this subsection we prove Theorem B.3. As previously, it suffices to show
the result when p = 2 and ugp € H/*2(R) N LY(R).
First, since u € Cp(RT, H/(R)),
Jut) = Sa(t) * uoll gy < @)l s + 1Ga (@)1 lluollgs < ¢

and we reduce to consider the case t > 1. Using the integral formulation of

(HKdV]), we have

L[t
Ju®) = Salt) # w0l s < 5 [ 102t = 5) 4] ads
0

t/2 t
:/ ...ds—{—/ ..ds:=1+11.
0 t/2
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Term I is bounded by
t/2
I<e [0 Sat - o)l fu)ds
0
t/2 )
<e / (t — )~ Y2a-GHD/0(] 4 g1/ gy
0

t
< ct1/2a(j+1)/a/ (1+s)"Yds
0

t(_1/2a—j/a)—1/04 if « < 15
t(=1/2=9) =1 og(t) i a=1,
t(—1/20=j/a)=(2/a=1) if o > 1.

<c

To estimate 11 we use Plancherel and we split low and high frequencies,

t 00 o . —~ 1/2
e[ ([ e g pag) s
t/2 —o0

t 1/2 t 1/2
gc/ (/ ...d§>/d5+c/ (/ ...dg)/d5:111+112.
t/2 [€l<1 t/2 [€l>1

11 is treated as follows
t -
11, < c/ 10(1+ £ — 8[| g2 |07 u2(s) | 1 ds
£2

t
< c/ (14t — )" Y221 4 5)"2/edlogs
1/2

t
Sct—Z/a—j/a/ (1+S)—1/2ad8
0

t—2/a—j/a if a<1/2,
=42 1og ¢ if a=1/2,
t(-12a—j/e)t1=2/a if o 5 1/2,

t(=1/2=0)=1og(t) if a=1,

t(=1/20=j/a)=1/a if a<l,
{ H—1/20-j/)-2/a=1) §f o> 1
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For the last term, we have
t -
II, < c/ e~ =987 2 (s) | 2 ds
t/2

t
< C/ ef(tfs)(l_}_5)71/2047]'/0472/04
2

< Ct(*l/%ﬁj/a)*?/a’

which is acceptable.

6.2 Higher orders

Here we find higher orders terms in the asymptotic expansion of the solution
o ([AKdV), i.e. we give a demonstration of Theorems R.4 and R.5.

6.2.1 Thecase 0<a<1

First consider the case 0 < o < 1, our proof follows Karch’s one [{] (see also
[H)-

Proof of Theorem (i). By interpolation, we only need to consider the
case p = 2 and uy € H/T2(R). Split the quantity

Hu(t) Sa(t) * uo + 5 // Sydyd8>3G()‘

i

_QH/a alt = 8) = Galt = )] s u?(s)ds||

2”/0(: (t — ) wu2(s)ds — // *(s,y)dyds ) 0:Ca(r) |

=1+1I.

To estimate I, we write

e [ 105780t = 9) = Gt = )] x*(s) | 2ds

t/2 t
:/ ds+/ ...ds::Il—i-IQ.
0 t/2
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Concerning I, we use (B.4) with N =0,
2
I < C/ 107 [Sa(t = 5) = Galt = 8)]ll z2llu(s) |72 ds
0

t/2
- c/ / (t— s)—l/Qa—(j+1)/a+1—3/a(1 i S)—l/ads
0

< ct71/2afj/a71/at173/a

which shows that ¢!/2eti/etl/er 0. To deal with the integrand over
[t/2,1], we note that [|[Sa(t — s) — Ga(t — 5)] * ©? ()l gyer < cllu® ()] gy
hence

t .
I < c/ ||8%+1u2(5)||L2d5
t/2

t

SC/ (1+S)71/2a7j/a72/ad8
t/2

< ct—l/Qa—j/a—l/atl—l/a’

which is acceptable. Now we estimate term II by

I71 < %H(/too /_c: uz(s,y)dyds)BxGa(t)‘

Hi
+ %H /Ot [0.Ga(t — ) 5 u3(5) - (/Z u2(s,y)dy)axaa(t)}ds‘ »
= II, + L.
Obviously,

I < c/ u(s)||22ds]| 0 Go (t)|| 12 < ct(1/2°‘j/°‘)1/a/ (14s)"Yds
t t

and it is clear that ftoo(l +5)"Y*ds — 0 as t — oco. To estimate I, one
fixes § > 0 and we bound it by

II2§C

/ot </O; Ou[Galt = 5.+ = y) = Galt, )] (s,y)dy ) ds

Hi

e[| 0 Gute = 5. )~ Gult s )a s
ot t

:/ ...ds+/ ...ds
0 5t

= Iy + I15.
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Then we split 1157 in two parts,

I e [ o Galt = 5.~ 1) — Galt,)ul(s,0)] adsdy
[0,6¢] xR

:c/ ...dsdy+c/ ...dyds
Ql Q2

= 11511 + 11519,
where

Q1 = [0,0t] x [—at"/, +6t1/],
Q9 = [0,6t] x (] — oo, =6t [U] + 6t/ c0]).

For all (s,y) € Q, a straightforward calculation provides

1027 [Ga(t = 5, = y) = Ga(t, )]ll2
= ¢RI G (1 — s/t - =yt ™) = Ga(1, )] 2.

Hence, using the continuity of the translation on L2, for all € > 0, we can
find a § > 0 such that

t/2ati/tl/egup |0 Gt — 5, — y) — Galt, )]l 12
(S,y)€Q1

< sup Hag:—i—l[Goc(l - T Z) - Ga(la )]HL2 Se.
0<7r<d
|2]<6

We deduce
) ot ot
t1/20ki/e) /e, < cs/ |u(s)||32ds < ca/ (14 s)"Yds < ce.
0 0

Now for any (s,y) € Q9, we have

103 [Galt = s, = y) = Galt, )]z <N Galt = 8)llz2 + 027 Galt)] 2
< ot~ 1/2a=(+D)/e

which yields

t(120kj/e) /a0 < ¢ / / u?(s,y)dyds — 0
0 Jly

|>ott/
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by the dominated convergence theorem.
It remains to estimate Il55, we have

t A
Iy = ¢ | (|77 Galt — s) % u?(s) — [u(s)[[ 704 Ga(t)l| 2ds
5t

t ¢
1077 Ga(t — ) % u?(s)| 2ds + C/ (14 5)71ds||03T G ()| 12

St St

= 11391 + I1999.

The first term is bounded by

t o0 ) o 1/2
Tog SC/ </ 20D = 20-s)le ’ug(sjg)lgdg) / s
o —0o0

t

t
C/ (1Ga(L+t = )220 u?(s) | o + e~ 04 P (s)] 2] ds
ot

t
S C/ [(1 + t— 5)71/20[(1 + 5)72/0{7-]‘/0{ + ef(tfs)(l + S)*5/2C¥*j/a]d8
ot

t
< ot~ 1/20—j/a=1/a (t1/2a/ (1+s)’1/2ads> 4 et—B/20-j/a
0

and thus t1/2eti/atl/agr, 00— 0. On the other hand, we have immediately

ITage < ct~1/20—i/a=1/ayl-1/a
which achieves the proof of (@) .

6.2.2 The case a =1

The proof of (B.§) uses the same arguments together with the following
result.

Lemma 6.1. Under the assumptions of Theorem (ii),

M2
)dyds = —
tﬁoologt// (5,9)dyds 2

Proof. First note that

C 1 C
Ydyd <— 1 “lds < ——
logt// (5,9)dyds < log (+S) 5 ogt 0
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and it remains to calculate the limit as ¢ — oo of

g / [ dys = / | e~ (MG (5.

(M 1
logt// G1(s,y))%dyds. (6.1)

Using Theorem P.J as well as estimate (R.2), we get for all s > 1

/OO [W?(s,y) = (MGi(s,y))*|dy < [[u(s) + MGi(s)llz2]lu(s) — MGi(s)l| 2

< es™ 2 ([lu(s) = Si(s) * uoll 2
+ [151(s) * ug — MG1(s)]|2)
< es V2 (5732 log s + s73/?)

< cs?log s.

It follows that
10gt/ / [u?(s,y) — (MG (s,y))°|dyds < < —— [ s7%logsds — 0

by dominated convergence. The last term in (@) is equal to

logt/ / (MG1(s,y))*dyds = @/ / 2(G1(1,y/s))*dyds

ds
(G1(1,
log t / / 1(12)

= M2||G1 ||L2
M2
o

Proof of Theorem (ii). It is sufficient to show that

2

43/2+7 ) M
H/O 8pS1(t — 5) % u2(s)ds — ﬁ(logt)(?xGl(t)HHj ~0.

logt

for all j > 0. As in Theorem P-4 (i), we can replace S, (t — s) by Gu(t — s)
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by writing

H /Ot 0:51(t — ) * u2(s)ds — %z(log t)axGl(t)‘ -

2 Hi

< H /Ot 0. [S1(t — ) — G1(—t — s)] * u2(s)ds‘

Hi
2

+ H /Ot 0,G1(t — 5) x u*(s)ds — ];/I—W(log t)@xGl(t)HHj

and using (B.4). Last term in the previous inequality is bounded by

<H/8G1t—s s u? ds— // sydyds>3G1()HHj
+( / / (5,0)dyds) 0,1 (0) — o (o )20 -

The first term is estimated exactly in the same way that I in Theorem P.4
(i) and for the second one, Lemma f.1] provides

ti’(/):: H / / (5,9 dyds)(? G1(t) — f—;(logt)amGl(t)HHj

M?2 .
= t3/2+j‘logt/ / (s, y)dyds — (H@%“Cv‘l(t)\hz

// sydyds——‘—>0
logt

6.2.3 Thecasel<a<?2

Finally we consider the case 1 < a < 2.
Proof of Theorem [2.4. We prove the result when p = 2 and ug € H/T2(R).
Step 1. [[F"(t)||z; decays like [[u(t)|| ;-

If n =0, then forall j > 0, [|[FO(t)|| 5 = 10994 (t)5ug |2 < c(1+8)~1/20—d/a,
Let n > 0 such that for all j > 0, | F™(t)||z; < c(1+¢)~1/2a=i/®  Then, for
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any t <1,
t
" Ol s < 1Sa(t) * uoll s +/O 1Sa(t = 5) % Du(F™())? || 7, ds
1
< Ga®)llzrlfuoll s +/O IGa(t = )l |02 (F" (s))l| 2ds
<ec.

Now assume ¢t > 1. We have

t
17" Ol < 1a(0) =l + [ 15t =) 5 06 gt

t

' t/2
§c(1+t)_1/20‘_]/0‘+/ ...ds+/ ... ds.
0 t/2

The integrand over [0,t/2] is estimated as follows

t/2 t
[ eds < [ 10t = )l |1F ) 3ads
0 t/2
t/2 ‘
< C/ (t— S)_l/Qa_(j+1)/a(1—|—8)_1/ad8
0

t
Sct—l/Qa—j/a<t—1/o¢/ (1+8)—1/ad8>
0

For the second one, one splits

[as=e [ ([ igpmeenise mG e pae) o

/2 /2 —00
t 1/2 t 1/2
gc/ (/ ...d§>/ds+/ (/ ...d£>/ds
t/2 /€< t/2 ~JIgI>1
=1+ 11
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Term I is bounded by
t .
I< c/ OIS (1 + £ — s) % F(s)| jods
t/2

t .
< C/ 1S (1 +t = 8)[| 21|05+ (F™ (5)?|| L1 ds
t/2

t j+1

<cf we- o) S L)L s
t/2
t
< c/ (14t — )21 4 5)72/ad/ogs
t/2
' t
SCt—l/Qa—]/a(t—?)/Zoz/ (1+S)—1/2ad8>
0

and [T is estimated by

j+1

t
/ e—<t—8>uag;“(F%)ZHmdsgc/ S P 0
t/2 t/2

J+1

<of et '3 I O lallod ol
x \|a;+2—kF"<s>\|;é2ds

t
SC/ e~ (=3 (1 4 5)~5/20-i/agg
t/2

We have showed that ||F"+1(¢)|,;; < c(1 4+ )71/2%79/% and by induction,
this estimate becomes true for any n > 0.
Step 2. We claim that if for all j > 0, ||u(t) — F"(#)||z; < c(1+¢)7"()

and 7;(n) = é + ro(n), then

(1 +t)~1/2a-i/al/ if 1—5-—7r9(n) <0,
||u(t)—F"+1(t)HHj <cq (1+ t)_l/Qo‘_j/o‘_l/o‘ log(1+1t) if 1—5-—7p(n)=0,
(1 + t)—1/2a—j/a—1/a+1—1/2a—ro(n) if 11— L — ’I“()(TL) >0

Indeed, first for ¢ < 1 it is clear that ||u(t) — F™""1(t)|| 5, is bounded. If ¢ > 1
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we have by definition of F,

lu(t) = F* (@)l 3, < %/ 104+ Sa(t = 5) * [u?(s) = (F"(5))?]l| 2ds
0

t/2
:/ ...ds+/ ..ds =I1IT+1V.
0 t/2

We bound the contribution of 111 by
v
11 < [0t = 52 [02(s) — (57(5)? | nds
0
t/2 .
< C/ (¢ — )72 0D fu(s) — F ()] g2 ([[u(s)l| 2 + | F"(s) ]l 12)ds
0

t/2
< C/ / (t B S)—1/2a—(j+1)/a(1 + S)—l/Qa—m(n)dS
0

(14 ¢t)~1/2ami/azl/a if 1—5-—ro(n) <0,
<c{ (14t)"V2emi/ata)oe(1 4 t) if 1—42 —ro(n)=0,
(1 + t)—1/204—]’/04—1/04-1—1—1/204—7"0(n) if 1— i _ ’I“()(’I’L) >0

Then we decompose IV as

w=e t ([ 1P impui(s) - (o) Pl ) s

/2 —o0

t 1/2 t 1/2
gc/ (/ ...dg)/ds+/ (/ ...dg)/ds

t/2 M J €<l t/2 N J|€[>1
=1V + IV,

Low frequencies are treated as follows,

Vi < /W 1074180 (1 + £ — ) % [u(s) — (F™(5))?]| p2ds

<c [ ISat4t = 8)a 00 (o) — (F(6) Pl s
t/2

Jj+1

t
< C/ (L+t— )72 |0 [u(s) = F™(o)] 2 (1037 u(s) || 2 + 0375 F (s)]|2)ds
t/2 k=0
t j+1
<e / (14— 5712037 (1 4 )77+ =Y/ 2a-GH1-R o g
t/2 k=0
j+1
< czt—rk(n)—l—k/oz—j/oz-‘rl—Q/a (62)
k=0
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and since r(n) = g +79(n), we infer IV} < et—ro(m)=i/e+1=2/a Tp the same

way,

t
IV <c / e8I [u?(s) — (F™(5))2)|| 2 ds
t

/2
t g1
t/2 k=0
j+1
< czt—rk(n)—i—k/oz—j/oz—Q/oz
k=0
< ct—ro(n)—i/a=2/a (6.3)

Combining (6.9) and (p.d), we deduce

(1+ t)_l/%‘_j/o‘_l/o‘ if 1— % —1rp(n) <0,
IV <c{ (14t)"1/2e-i/e=1/a)og(1 + 1) if 1—5=—rp(n)=0,
(1 + t)71/2a7j/a71/a+171/2a7r0(n) if 11— % _ To(n) > 0.

Step 3. Construction of 7;(n) and conclusion. ‘

We define the sequence 7j(n) by iteration. Set r;(0) = 5=+ +2 —1 for all
j > 0. We have |lu(t) — FO(t)||z; < c(1+ )7 by Theorem B3, If r;(n)
is constructed for all j, then we set

%4_%4_% if 1—%—To(n)§0,

, 6.4
ron)+L2+2 -1 if 1—2L —ro(n)>0 (64)

e

We easily see that r;(n) = é + ro(n) for all j, thus Step 2 shows that for
any n > 0 satisfying 1 — % —ro(n) <0,

lu() = F" 1)1l 17,

- { (14 t)~Y/2a-i/a=1/a if 1-—5=—ro(n) <0,

(L+4)12mi/a=1alog(1 1 4) if 1— o —ro(n)=0. (0

Let us prove that the sequence n +— 7;(n) is eventually constant. Suppose
that 1 — % —rgp(n) > 0 for all n > 0. Then by (6.4) we obtain r;(n + 1) =
ro(n) +< + 2 —1 (Vn). In particular ro(n + 1) = ro(n) + 2 — 1 and thus
ro(n) = n(2 —1)+r9(0) = (n+1)(2 — 1) + 5. Since 2 — 1 > 0, this
contradicts the assumption ro(n) < 1 — % for n large enough. Hence there
exists n > 0 such that 1 — 5= — ro(n) < 0 and we can set

1
N:min{nzo:l—z——ro(n)§0}.
«
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For this value of IV, it is not too difficult to see that

(n—{—l)(%—l)—ki—{—% if n<N,
rj(n) = 1 1 .
2C|{+ +a lf n>N

It follows that N =min{n >0:1 -1 — (n+1)(2 —1) <0} = min{n > 0:
a< 2”+3} From this and (p.§) we infer

1 +t)71/2a7j/a71/a if a< 2N+3
_ pN+1 < ( ] N+2 >
Hu(t) F (t)HHJ > C{ (1 +t)—1/20(—j/0(—1/0( 10g(1 —|—t) if o= 2]{7\/_:53‘

O
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