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Abstract

This paper presents a method for state-estimation of Tekageno descriptor systems (TSDS) affected by
unknown inputs (Ul). For ease of implementation’s sake, pheposed observers are not in descriptor form but
in usual form. Sufficient existence conditions of the unknoimput observers are given and strict linear matrix
inequalities (LMI) are solved to determine the gain of theawers. If the perfect unknown input decoupling is not
possible, the Ul observer is designed in order to minimisedh-gain from the Ul to the state estimation error. The
two previous objectives can be mixed in order to decouplestignation to a subset of the Ul, while attenuating the
L2 gain from the other Ul to the estimation. The proposed Ul pless are used for robust fault diagnosis. Fault
diagnosis for TSDS is performed by designing a bank of olesen/A simple decision logic and thresholds setting
allow to determine the occurring fault. The results arel#istaed for both the continuous and the discrete time cases.

The proposed method is illustrated by a numerical example.

Index Terms

Takagi-Sugeno systems, singular systems, state estimati&nown input observers, fault diagnosis.

I. INTRODUCTION

The Takagi-Sugeno (TS) model proposed by [14] is a well-kmatvucture to represent nonlinear systems into
several linear fuzzy models. In the last two decades, théraloand the observation of TS systems have become
challenging problems that received a considerable amofuattention. In [19], stability analysis and controller
design are addressed, solutions are derived in the lines&ixmaequality (LMI) formalism. Relaxed sufficient
conditions for fuzzy controllers and fuzzy observers areppsed in [15], and in [16] via a multiple Lyapunov

function approach.



The descriptor formalism is very attractive for system nilinigg as pointed out in [4], since it describes a
wider class of systems including physical systems with ngmadhic constraints (e.g. algebraic relations induced
in interconnected systems such as power transfer netwonkater distribution networks) or jump behaviour. The
enhancement of the modelling ability is due to the structfrthe dynamic equation which encompasses not only
dynamic equations, but also algebraic relations.

Since both TS and descriptor formalisms are attractive énfigld of modelling, the TS representation has been
generalised to descriptor systems. The stability and teigdef state-feedback controllers for TS descriptor syste
(TSDS) are characterised via LMI in [17],[18], in particyléhe problem of nonlinear model following is treated
in [18]. Robust output feedback, arid,.-control are considered for TSDS in [12] and [21] respetyivEhe study
of TSDS is envisaged with interval methods in [20], in orderdke into account the different operating points.
Unfortunately, the problem of observer design, and espgdlae design of unknown input observers, has resulted
in very few works.

The design of unknown input observer (UIO) is a crucial peabkince, in many practical cases, all input signals
cannot be known. Moreover, this class of observers is widsld in the area of fault diagnosis, even if all the
inputs are known (see chap. 3 in [13]). The design of UIO hasived considerable attention in the case of usual
(in opposition to descriptor) linear systems [5], desaniptystems [7], [8], [11] or TS systems [1]. Unfortunately,
to the authors’ knowledge, the design of UIO has not beeredem the generic case of TSDS. The aim of this
paper is not only to generalise the existing works on UlOglesd TSDS, but also to apply this new observer in
the field of fault diagnosis of TSDS which has not been treatedar.

This paper gives a simple extension to TSDS of the design sémviers for the state estimation in the presence of
unknown inputs (Ul). Under some sufficient conditions, tlesign of the observer is reduced to the determination
of a matrix. The choice of this parameter is performed by isghstrict LMIs. If the estimation error cannot be
decoupled from the Ul, afi, observer is proposed to minimise the influence of the Ul orsthge estimation. The
two design objectives can be mixed by decoupling the staimaiton from a subset of the Ul, and minimising the
L--gain between the other Ul and the state estimation err@ dBlsigned observers are used for fault diagnosis, since
the Ul can encompass the faults and the disturbances affettie system. Designing several observers attenuating
the disturbance effect, and decoupling the estimation fatinfaults but one lead to the well-known Generalised
Observer Scheme (GOS) for fault diagnosis [13]. The desfgobservers is detailed both in the continuous time
case, and in the discrete time case.

The paper is organised as follows: the class of studied mygsie defined in section Il and the main results
about UIO design are detailed in section lll. Firstly, thdimidon of the UIO and the sufficient existence condition
are established. Secondly, the computation of the gaineeobbserver is established. The designCefobservers
is treated in section IV. Section V deals with the design o$eskers for both Ul decoupling and disturbance
attenuation. The application to fault diagnosis is studiedsection VI. Section VIl is devoted to a numerical
example.

Notation 1: In the paper® denotes the Kronecker product. For a given maxixX’ is the transpose oX,



X > 0 (resp.X < 0) means thak is positive (resp. negative) definit¥," denotes the pseudo-inverse of the matrix
X, and whereX™ is defined byX+ =1 — XX+ .

Il. TAKAGI-SUGENO DESCRIPTOR SYSTEMS

To begin with, the class of systems considered in the prgsgmer is described. In the continuous time case, a
TSDS is defined by

EX(£) = 3 hu(W(t)) (AX(?) + Byu(t) + D,d(1)) W
y(t) =Cx(t) + Gd(t) 2

In the discrete time case, a TSDS is defined by

EXk+1 = Z hz(Wk) (AiXk + B;ug + Didk) (3)
=1
Y. =CX + Gdj, 4)

wherex € R” is the state variabley € R™= is the control inputd € R? is the unknown input (disturbance,

actuator noise, or hidden message in the recovering frank@wandy € R™ is the measured output. The matrices
E, A;, B;, D;, C andG are supposed to be real, known, constant and with appreptiatensions according to the

definition of the signals. The matr& may be singular. The activating functions, denate@w(¢)), fori =1,...,r,

are normalised, and satisfy the following constraints

0< m(w®) <1 3 hw(t) =1, vi

0 < hi(wg) <1, ihi(wk) =1, Vk
=1

The decision variablev(t) (or wy) is supposed to be real-time accessible, depending on theotdnput, or on
the measured output. Assuming that the same mé&trappears in all the different sub-models is not restrictive i
we consider that the structure of the differential or algébrelations is imposed by the physical structure of the
system, which generally does not change with time. This &ism still encompasses the varying parameters or
the nonlinearities since the matricAs are different one from another, and since the activatingtions introduce
the nonlinear dynamics. An analogous argument justifiessthgle nature of the output matri. The available
measurements are determined by the location and the natuhe censors which generally do not change (the

sensors are not removed during the operating time).

IIl. DESIGN OF UNKNOWN INPUT DECOUPLING OBSERVERS

In this section, our aim is to design a multiple unknown inpbserver. The UIO are widely used in the field
of fault detection and isolation for dynamic systems, beeaie fault signals are generally unknown. Moreover, a
measured signal can be considered as unknown in order ttasible default corrupting this particular signal (see
chapter 3 in [3]).



In this study, the proposed observers are not in descriptan,fin order to reduce the implementation complexity.

In the continuous-time case, the proposed multiple UIO fndd by

2(t) = Z hi(W(t)) (N;Z(t) + M;u(t) + Liy(t)) (5)
(t) =2(t) + Tay(t) (6)

In the discrete-time case, the proposed multiple UIO is éefiby
Zy1 :Zhi(wk>(NiZk+Miuk+Liyk> (7)
=1

Xi =27 + Tay, (8)

The problem of unknown input decoupling observer (UIDO)igiess to find the gains of the UIDO (5-6) (resp.
(7-8)), namelyN;, M,, L; and T, so that the estimated stateasymptotically tends to the state of (1-2) (resp.
(3-4)). In other words, the objective is that the estimatoror defined bye(t) = x(t) — X(t) (resp.ex = X — Xx)
tends to zero wheh — oo (resp. wherk — oo), regardless of the unknown input, the control input, aredittitial
state.

Firstly, a sufficient rank condition for Ul decoupling is givin Lemma 1. Secondly, a sufficient LMI condition
for the convergence of the continuous-time UIO is given imbea 2 (it is extended to the discrete-time case in
Corollary 1). Finally, the results are gathered in Theoreand a design algorithm is given.

Lemma 1: There exists a continuous-time (resp. discrete-time) ankninput decoupling observer (5-6) for (1-2)

(resp. (7-8) for (3-4)) if the following condition holds

D, ... D,
rank X = rank +n+rank G (9)
I, ®G
Proof: The estimation erroe(t) = x(t) — X(t) is given by

= X(t) — z(t) — ToCx(¢) — T2Gd(t)
Assume that there exidt; and T, such that, the following equations hold
T1E+T2C :In (10)

T»G =0 (11)



With (10) and (11), the estimation error beconeés = T1EX(t) — z(1). Its time derivative is given by :
&(t) =T EX(t) — 2(t)
= Z ha(W(t)) [T1(AiX(t) + Byu(t) + Dyd())
tNiz<t> — Mou(t) - Loy(o)
= Z ha(W(t)) [N;€(t)+ (T1A;— N;T1E— L,C)X(t)
:(TlBi — Mi)u(t) + (T1D; — L;G)d(t)] (12)

The time derivative of the estimation error is given by :

&(t) = Y hi(w(t))N;e(t) (13)
=1
if the following constraints hold foi = 1,...,r
l, =T{E+T,C (14)
0=T,G (15)
0=T.A; —N;T{E—L,C (16)
0=T1B; — M; a7
0=T:D, - L,G (18)

In order to find the gains of the UIDO, according to the constsa(14-18), new parametelks; = N; T, — L; are

introduced in (16). Then, the UIDO exists if, foe=1,...,r, the following statements are true
N, = T1A; + K,C (19)
I, =TiE+T2C (20)
0="T,G (21)
0=T.D; +K;G (22)
M; =TB; (23)
Li =N;T2 —K; (24)

Verifying the constraints (19-22) reduces to findi@ge R™*(»+m("+1) sych that
ex =Y (25)
N; = OY; (26)

where®, is given by
@:|:T1 Tg‘Kl Kg K,i| (27)



Once® is known,M; andL; are deduced from (23) and (24) respectively. The equatiéh i€solvable in the

variable® if the following condition holds

X
rank = rank X (28)
Y

where the matriceX € R(»tm(r+1))x(n+a(r+1)) gndy e R**(n+a(r+1)) gre defined by

E  Oug| Di...D,

X=| C G |Omxg - Omxg (29)
O7“rn><n 07"m><q |7' & G
Y = |: In 0n><q 0n><'rq :| (30)

Obviously, with (30) and (29), the condition (28) becomes

X . Dr
rank = n + rank G + rank
Y I, ®G
E 0|D;...D,
Then (28) is equivalent to (9). In the discrete-time case,gtoof is very similar, thus it is omitted. [ |

Lemma 2:The estimation error of the UIO (5-6) for (1-2) tends to zefrdhiere exists a symmetric positive

definite matrixP € R"*" and a matrixZ € R™**(»+m(+1)) verifying the following LMl fori =1,...,r
(YXTY)TPHPYXTY, + (XY )TZT +2X1 Y, <0 (31)

where ® is the Kronecker product. The matricésand Y are defined by (29) and (30) respectively, and e
R(+m(r+1)xn gre defined by
A;
Yi= | Onxn
e ®C

wheree; € R™*! is the column vector with all its components equabteexcept thei'” equal tol.

Proof: Suppose that (9) is satisfied, then (25) is solvable and theices ® are given by
© =YX +2zx+ (32)

whereZ € R™*(n+m(r+1)) is an arbitrary matrix.

With (26) and (32), the matricds; are defined byN; = YXY;+ZX1Y,. The state estimation error tends to zero
if the polytopic system (13) is stable. A well known stalyildondition for polytopic system (see [2]) is the existence
of a symmetric positive definite matriR verifying N) P + PN; < 0 for i = 1,...,7. Then the UIDO provides an
estimate of the system state if there exists a matrsuch thaP(YXTY; +ZX1Y;) + (YXTY,; +ZX*Y,;)TP < 0,

foralli =1,...,r. SettingZ = PZ then (31) is obtained, which completes the proof. ]



This result is extended to the discrete-time case.
Corollary 1: The estimation error of the UIO (7-8) for (3-4) tends to zerthere exists a symmetric positive

definite matrixP € R™*" and a matrixZ € R™**(»+m(+1)) verifying the following LMl fori =1,...,r

(I)i (XLYZ)TzT]
<0 (33)
Z(X*Y,) —-P

where®; is defined by
®; = (XTY)TZT(YXTY) + (YXTY)TZ(XTY))
+ (YXTY)TP(YXTY,) =P
Proof: Proof is similar to the continuous-time case, apart from ¢badition for the stability of the state
estimation error. In the discrete-time casg,tends to zeros if there exists a symmetric positive definigtricaP
such thatN!PN; — P < 0 for i = 1,...,r. With PZ = Z, the LMI (33) follows. [ |

Theorem 1:There exists a continuous-time (resp. discrete-time) WBB) for (1-2) (resp. (7-8) for (3-4)) if
the condition (9) is satisfied and if there exists a symmatositive definite matrixP € R™"*"™ and a matrix
Z € Rx(ntm(r+1) verifying (31) (resp. (33)), foi = 1,...,r.

Finally, the design of UIO for continuous-time (resp. detertime) TSDS is reduced to the following procedure.

Step 1.Verify the existence condition (9).

Step 2.Solve the LMI (31) (resp. (33)) i and Z.

Step 3.ComputeZ with Z = P~1Z. For a givenZ, © is deduced from (32), the matricés, M, andL; are
derived from (19), (23) and (24) respectively.

This result unifies the results obtained, on the one handherfield of the descriptor systems with Ul [6],[9],
[10] and, on the other hand, in the field of the TS systems witH1{ It is useful because a TSDS cannot be
reduced, either to a single singular system (it would notdl&the nonlinearities due to the weighting functions
h;), or to a regular TS system (it would not handle the algelmelition between the state variables). The existence
condition (9) can be linked to previous works concerninglgirdescriptor systems [9], [10]. Considering (9) for a

single descriptor system, would lead to the condition

ED O
rank |C 0 G| = rank [Dl ] +n + rank G (34)
0 GO ©
One can note that (34) is equivalent to the condition (21)3d) (f [9], and is also equivalent to the condition
(A3a) in [10]. Moreover, the present paper gives only sudfiticonditions, whereas [9] gave necessary and sufficient
conditions. This difference appears because the prespat abasically written for TS systems, thus the weighting
functions cause conservatism since the majrix_, h;(w(¢))A; can take all the possible values in the polytope

defined by its verticesl;.



IV. DESIGN OF UNKNOWN INPUT ATTENUATING OBSERVERS

In this section, the aim is to design an observer for TSDS d@eioto minimise the influence of the Ul on the state
estimation when the perfect decoupling is not possible. di@sen criterion to minimise is thé,-gain between
the unknown input and the state estimation error. This agugrds less restrictive than the design of an UIO since
the structural condition (9) is partially relaxed.

As pointed out in the section of UIO design, the estimatiomree is governed by a non singular TS system
(12), thus in order to bound th&;-gain from the Ul toe, and establish the sufficient conditions of the so-called
Lo observer, the following lemma concernidg-gain of TS-systems is needed.

Lemma 3:[2] Consider the continuous-time TS-system defined by

() = ha(W(t) (AxX(t) + Biu(t)) (35)

=1
y(t) = > hi(wW(t))Cix(t) (36)

=1

and the discrete-time TS-system defined by
Xi41 = Zhi(wk)(Aixk + Biuk) (37)

=1

Ve = > hi(Wi)Cixy (38)

=1
The system (35-36) (resp. (37-38)) is stable and verjfigs < v||u||2 if there exists a symmetric positive definite
matrix P € R™*™ such that (39) (resp. (40)) is satisfied o 1,...,r.

ATP+PA, +CC; PB, |
! . ! L | <0 (39)
BTp —~2
ATPA, +Cl'C,—P APB; . (40)
<
BTPA; BIPB; — 12l

For a given real positive, an observer is said to be an unknown input attenuating eb&s@UIAO) of L5-gain
~, if the state estimation errog, and the unknown input], satisfy||el|2 < v||d||2.

Theorem 2:There exists an UIAO (5-6), with afi;-gain lower thany, for the system (1-2), if the condition
(41) is satisfied, and if there exist a symmetric positiverdifimatrixP € R"*” and matriceg € R**("*™) and
K, € R**™, verifying the LMI (42) fori=1,...,r.

EO
rank =n +rank G (41)
CG
W1 Wio

- <0 (42)
‘I’i,Q _72| q



where the matrice¥; ;, and ¥, , are given by
U, =PYXTA; + ZX{A; +K,C
+ (PYXTA; + ZXTA; + K,C)T +1,
¥, , =PYX{D; + ZX{D; +K,G

whereX] € R(rta)xn X+ ¢ Rirta)xm Xl ¢ Rntm)xn gnd X € R(m)xm gre defined by

- 1+
E O
=[x x3]
CG
o] [e o]
E E
- I'rH—'rrL = XJ— XJ_
caG||ca [ ' 2}
Proof: If (41) is satisfied, then theré exi$t; and T, such that
[Tl Tg} X =Y
whereX andY are given by
E O
X = Y = [l Oucrn]
CG

and, for any arbitrary matri¥, T, and T, are given by

T =YX{ +2ZX{ (43)
Ty =YX§ +2ZXy (44)

Following the proof of Theorem 1, if (19), (23) and (24) hotle state estimation err@(t) = x(¢t) — X(t) is
governed by

o) =3 hW(H)((T:A; + K/C)elt) + (T:D; + K,G)d(t) (45)

According to Lemma 3|le(t)||]2 < ~||d(¢)|]2 if there exists a symmetric positive definite matRxsuch that the

following LMI hold for i =1,...,r

‘I’i +|n PT1D1+PKLG
D/T{P+G"K!P —~2l,
where¥; is given by

U, = (T1A; + K;,C)TP+ P(T1A; + K;C)

With K, = PK; andZ = PZ, the LMI (42) follows, which completes the proof. [ |
Remark 1:Obviously, the condition (41) is less restrictive than (9).
Remark 2:+? can be considered as a variable to be minimised during thedg#inisation, to obtain an optimal

Ul attenuation.



Corollary 2: There exists an UIAO (7-8) with aip-gain lower than a given real positivefor the system (3-4),
if the condition (41) is satisfied, and if there exist a symmigpositive definite matri® € R™*", and matrices
Z € R m) andK, € R™*™, verifying the following LMI fori =1,...,r

l,—P 0 @]
0 —, &/, <0 (46)
‘I’m ‘1’1,2 —-P

where®; ; and ®; » are defined by
®,, =PYXTA; + ZX{A; +K,C

®, 5, =PYX{D; +ZXiD; +K,G
Proof: The proof follows the lines of the proof of Theorem 2 with a Scltomplement and is therefore

omitted. [ |

Finally the design of UIAO for continuous-time (resp. dter-time) TSDS is reduced to the following procedure.

Step 1.Verify the existence condition (41).

Step 2.Solve the LMI (42) (resp. (46)) if?, Z andK,.

Step 3.ComputeZ andK; with Z = P~!'Z andK,; = P‘lﬁi respectively. The matriceB; and T, are obtained
by (43) and (44). The matrices;, M; andL; are derived from (19), (23) and (24) respectively.

V. DESIGN OF UNKNOWN INPUT DECOUPLING AND ATTENUATING OBSERVER

If the unknown inputs are too numerous or if their distribatistructure makes the perfect unknown input
decoupling of the estimation impossible (i.e. if the stawat condition (9) is not satisfied), a compromise can
be made in order to design an observer ensuring two complanyeabjectives with less restrictive existence
conditions. Firstly, the state estimation is perfectly algued to a subset of the Ul denotdd). Secondly, the
L--gain between the other Ul, denotd(t), to the state estimation error is minimised, thus the ststienation is

made maximally robust to these Ul. Partitioning the Ul in{@) andd(¢) the system (1-2) can be written as

Ex(t)= ZT: hi(W(t)) (A:x(t)+ B;u(t)+ D;d(t)+ D;d(t)) (47)
y(t)=Cx(t) + Gd(t) + G d(t) (48)

whered(t) € R? andd(t) € R7. The partition of the Ul intod(¢) and d(¢) is such that the perfect decoupling
condition is satisfied fo(E, C,G, Dy, ..., D,), then the£,-gain fromd(¢) to the state estimation error is minimised.
The designs of UIDO and UIAO are combined to derive the desfgen unknown input decoupling/attenuating
observer (UIDAO). The sufficient existence conditions akeig in the following theorem.
Theorem 3:There exists an observer (5-6) ensuring perfect decouptind(¢) and maximally robust tal()

if the condition (49) is satisfied and if there exist a symmgepositive definite matrixP € R™"*™ and a matrix



Z € Rx(n+(r+1)m) splution of the minimisation of under the LMI constraint (50) foi=1,...,r.

_ B D, ... D,
rank X =n+rank [G G} +rank (49)
I, ®G
T, T,
S IV (50)
v,

where ¥, ; and ¥, » are given by
T, =PYX 'Y, +ZX Y,
+(YXY)TP+(XY)TZ 41,
T, 5 =PYX'Y, + ZX Y,
whereX, Y, Y; andY; are given by

E On><q 0n><(j Dl D'r
X=| cC G G |Omxg -+ Omxg (51)
lr®G

07'm Xn O'rm xXq O7'm Xq
7: |: In 0n><q+§ 0n><7‘qi|
A; D;
Yi = O'rn Xn V’i = O’m Xq

e®C e®G
Proof: The state estimation err&t) is governed by the following system

+ (T1B; — Myu(t) + (T1D; — L, G)d(t)
+(T1D; — L,G)d(t) + T2Gd(t) + T2G d(t)) (52)

Following a similar argument to that in the proof of Theorepifithe observer parameters satisfy the constraints

(19-24) andT,G = 0, €(t) is governed by

&(t) = z,: hi(w(t))(Nse(t) + (T1D; + K;G)d(t)) (53)

These constraints can be written @X = Y, with ® defined by (27). This equation can be solved if and only if
rank [XT VT}T = rank X which is equivalent to the condition (49). If condition (4@)satisfied, then, for any
arbitrary matrixZ, @ is given by

© =YX +zx" (54)



Then, the only parameter to be found is the ma&ixSince the matricebl; and (T,D; — LiG) can be written as
N, =Y, = YX'Y,; +ZX"Y;
T.D, +K,G=0OY; =YXV, + ZX Y,

the stability condition of (53) follows the same lines ashe proof of Theorem 2. Rewriting the stability condition
(39) for the triplet(N;, (T1D; — K;G), 1,,), and setting°Z = Z, the LMI condition (50) follows. [

Remark 3:Obviously, the condition (49) is less restrictive than (8). obtain perfect decoupling to all the Ul
of (47-48),D; and G should be replaced bjD; D;] and [G G| respectively in (49) and (51), which would lead
to a more restrictive existence condition.

A similar result can be given for discrete-time systems defihy

EXir1 = hi(Wi) (AiXk+Biug+D;dy+D;dy) (55)
=1
Vi ZCXk + Gdk + Gak (56)

Corollary 3: There exists an observer (7-8) ensuring perfect decoupdirdy, and maximally robust tal, if
the condition (49) is satisfied and if there exist a symmepasitive definite matrixP € R™*™ and a matrix
Z ¢ Rx(n+(r+1)m) splution to the minimisation of under the following LMI constraint fof = 1, ..., .

l,—P 0 &,
0 —2 ®,| <0 (57)
P, P, —P

where®; ; and®; » are given by
B, =PYX'Y, +ZXY,
,, = PYX'Y, +ZXY,
Proof: The proof follows the lines of the proof of Corollary 2 and Bhem 3 and is therefore omitted. m

Finally the design of the observer for continuous-time ffrediscrete-time) TSDS is reduced to the following
procedure.

Step 1.Verify the existence condition (49).

Step 2.Solve the LMI (50) (resp. (57)) if® and Z.

Step 3.ComputeZ with Z = P~'Z. For a givenZ, @ is given by (54), then the matricds,, T, andK; are
obtained. The matriceN;, M; andL; are derived from (19), (23) and (24) respectively.



VI. APPLICATION TO FAULT DIAGNOSIS

In this section the Ul decoupling and attenuating obseregesused to perform fault diagnosis. Consider a

continuous-time TSDS affected by faufté) € R? and disturbances(t) € R? defined by

EX() =3 1 (W(E)) (Ax(®) + BI(E) + Dyf (1) + D t(1))

y(t) =Cx(t) + Gf(t) + G,W(¢)
In the discrete-time case, the TSDS affected by faylts R? and disturbances;, € R? is defined by
EXk+1 = Z h; (Wk) (AiXk—l—BiUk-i-Dfifk—l—DwiWk)
1=1

Y =CXi + Gf, + Gy,

It is assumed that each component of the disturbance vectmunded, and that the value of this bound is known
D w; ()] < v (resp.|wik| < v; in the discrete-time case) far= 1,...,q) for all ¢ (resp. for allk). The well
known generalised observer scheme [13] can be applied wopeoa method for the fault diagnosis of TSDS. In
this approachg UIDAO are designed. Thé&” UIDAO is designed by considering th&" fault as an Ul. A subset,
denotedX.,, of the disturbances can also be considered as Ul provideexistence condition (49) is satisfied. In
other words, th&'" observer is designed for the system (47-48) (resp. (55-96if)

D; = [Dei DY, jeze} D; = [D{M, jeig}

G= [Gﬁ‘G{U, jeE(g} G= [GJJ;, jeie}

whereM* denotes the" column of the matrixV, andX, denotes the complementary ¥y in {1,2,...,7}.

As a consequence, the output estimation offffiebserver will be sensitive to all the faults but tH&, insensitive
to the ¢*" fault and a to subset of the disturbances, den&tgdand maximally robust to the other disturbances
belonging to the subseét,. The subsets of the Ul are determined so that the decouptindition (49) is satisfied
for all the disturbances i, and so that the;-gain from the disturbances i, to the output estimation error is
minimised. In other words, the output estimation error i®sidual signal. A classical method for observer-based
fault diagnosis is to suppose the occurrence offiefault if all residual signals, except thé", are significantly
different from zero. The problem is then to quantify the tesignificantly In order to discriminate between the
influence of the disturbances and t#é fault, one can compute thé,-gain from the disturbances to each output
estimation error, as described in the following procedure.

For each faultf,(¢) (resp. fu in the discrete-time case)
e design the UIDAO, sensitive to all faults excefp(t) (resp.f,;), insensitive tow;(t) (resp.w;;) i € ¥, and
maximally robust tow; (t) (resp.w;i), i € .

e compute the norm-bound of the attenuated disturbancestetp,

pe= | Z v
€D,



e for each component of the outpyt(t) (resp.y;;), compute thel,-gain, denotedy,;, from the attenuated
disturbancegw;(t) | i € ¥} (resp.{wix | i € ¥,}) to the j** output estimation error and compute the boolean
vectorby(t) = |byi(t) bea(t) ... bém(t)} (resp.by, = [bm beok - .. bemp|) Wherebg;(t) (resp.by,i) is defined
by

L, if [9,,;(8) —y;(8)] > agepe

be; (t)
0, else

L if (Yo — Vil > @gejpe
beji =
0, else

wherey,;(t) (resp.y,;;) is the jt* component of the estimated output given by #& observer. The positive
scalara allows the designer to handle the compromise between narttitat and false alarm (e.g. considering the
accuracy of the model).

e compute the alarm,(t) (resp.a), affected tof ,(¢) (resp.f,;), defined in the continuous-time case by
1, if (bi(t)b! (t) > 1, Vi # ()
ag(t) = & (by(t)bf (t) = 0)
0, else

or in the discrete-time case by

1, if (bbf, > 1, Vi # ) & (bexbyy, = 0)
ak =
0, else

This approach can be conservative, since the only availafdemation about the disturbances is their amplitude
bound and theCs;-gain of their influence onto the output estimation erroustlit may imply non detection. This
effect can be limited by the use of the parametarhich can be adjusted according to measurements of thensyste
under healthy operation. Nevertheless, comparing eactpenent of the estimation error with a threshold makes
it possible to avoid distributing a significant error afiagta component on all the various components, and then
reduces the non detection.

One should note that the generalised observer scheme idfiaiergfstructure of diagnosis in order to detect
and isolate single faults. In the case of simultaneous datito faults may cause non zero residue responses in
all observers. In this case, the dedicated observer schamée considered as an alternative, but the decoupling
conditions become much more restrictive since all the faugdtits but the/*® have to be decoupled from thé&"

residue. This scheme is not detailed here, but can be reaplillfled since it suffices to change the definition of the



matricesD;, D;, G andG : the ¢** observer should be designed for the system (47-48) (reSp5€%), with

Di:{D}ci ... DYt DYt L DY, | DL, jeE(g}
G=[G} ... G4t & .. el lel. jen|
Bi:{D{M-,jEEZ} , GZ{G&,]E?/}

VIl. DESIGN EXAMPLE

In this section, the proposed approach for fault diagnasidiustrated. Consider a discrete-time TSDS defined

by
2
EXk+1 = Z h; (Wk) (AiXk+BiUk+Dfifk+DwiWk)

=1
Yi =CX,
with E = diag (1 1 1 0) and
—-0.5 —-0.5 0.2 0.2 50
-09 0.1 04 0.7 00
A = s B = Dfl = )
-02 =07 0 O 04
—-0.2 -04 04 O 00
0.1 —-0.2 04 0.9 6 0
-0.2 0.6 —-0.2 —0.7 00
Ay = s BQZDf2: )
0.5 —-0.7 -0.7 0.6 03
-0.7 04 04 3.6 00
0 0 0 0
0.8 0 1 0
Dy1 = 5 Du2 =
0 0 0 0.1
1 0 1 0
11-10
C =
01 0 1

One can notice that the subsystéi A, ) is impulsive. The finite spectrum of the two subsystems ageifscantly
different since we have;(E,A;) = {—0.080, —0.564} andos(E,A2) = {—0.935,0.126,0.996}, thus the global
system is not close to a linear system. The sampling timg is 0.03 s. The activating functiong;(w;,) are
defined byhi; = (1 + tanh(u1x/10)/2 and hor, = 1 — hy. The disturbances);;, andwq, are bounded centred

white noise, with norm bound; = v, = 1. The fault signals represent control input dysfunctiond ey are



defined by

—0.8 uyp if 35 <t <40
fik = (58)

0 else

—0.8 ugp, if 40 <ty <45
for = (59)

0 else

The first UIADO is designed with the first control input as WHetC»-gain fromw to the first and second output
estimation error argy; = 0.098 and g;2 = 0.050 respectively. The second UIADO is designed with the second
control input and the second disturbance as Ul,£hegain fromw; to the first and second output estimation error
are go; = 0.052 and g2 = 0.009 respectively.

On figure 1, the inputs and the activating functions are diggd. Figures 2 and 3 display the comparison of
the state variables and their estimates supplied by the OlD&sensitive to the first fault. The faufi, appearing
betweent;, = 35 s andt;, = 40 s does not affect the estimation, whereas the estimatioenisitize to the faultfay,
present betweery, = 40 s andt; = 45 S. Figures 4 and 5 display the comparison of the state vasadhd their
estimates supplied by the UIDAO insensitive to the fafslt and affected byf,,. The residual signal and their
corresponding threshold, fer = 1, are displayed on figures 6 and 7.

The residual signals computed with the output estimatianreof the first observer are sensitive fg;, and
insensitive tof1;, whereas the residual signals computed with second UIADGsansitive tof; and insensitive
to fo. The Lo-gainsgi1, g12, g21 and goo are good thresholds for fault isolation, with= 1, since the faultfo
(occurring for40 < ¢, < 45) is isolated att = 41.5 s, and the faultfy; (occurring for35 < ¢, < 40) is isolated
att = 35.1 s. The sudden appearance or disappearance of a fault may abugpt changes of the state variables
that the estimate cannot follow instantaneously. Thus #re estimation is decoupled from the occurring fault, a
residual signal may be transiently higher than the threshihis phenomenon appears on figure 7 at45 when

for disappears and causes a brief overshot of the output estimetror.

VIII. CONCLUSION

In this paper a simple method is proposed to design unknowatiobservers for Takagi-Sugeno descriptor
systems. Sufficient existence conditions were given, apdddtermination of the observer parameters is based on
solving a system of strict LMI. If the unknown input decouyglicondition is not satisfied, it has been proposed to
design anCs-observer in order to minimise th@&,-gain from the Ul to the estimated state. A compromise betwee
perfect unknown input decoupling and unknown input attépnacan be made to design observer ensuring perfect
decoupling face to a subset of the unknown inputs, and robastface to the other unknown inputs. The three
observer designs are treated in both continuous and distne¢ cases. The proposed observers are used to perform
fault diagnosis. Designing a bank of observers, where ebcleruer considers a fault as an unknown input, the

generalised observer scheme can be extended to Takagisdgscriptor systems.
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