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36 avenue Guy de Collongue, 69134 Ecully Cedex, France

Abstract

Brake squeal is a friction induced instability phenomenon that has to be addressed during the devel-
opment process. The mechanism is considered a mode coupling phenomenon also referred to as coa-
lescence. The system eigenvalues have been computed using a technique based on the finite element
method. The coalescence patterns were then determined in relation to the friction coefficient. The ef-
fects of damping on the coalescence patterns have been investigated. If the two modes involved in the
coalescence are equally damped, a ”lowering effect” that tends to stabilize the system is observed. If the
two modes are not equally damped, both ”lowering” and ”smoothing” effects occur. If the ”smoothing
effect” prevails, added damping may act in an unintuitive way by destabilizing the system. To further
study this point, stability areas have been plotted and a metric is proposed to find the most stable con-
figuration in terms of damping distribution. In the squeal frequency range, coalescence patterns often
involve more than two modes. In this case, the effect of damping is far more complicated since several
modes are coupled both in terms of friction and damping.

1 Introduction

Brake squeal is currently a key issue in brake development. This brake noise, with frequencies ranging
from one to ten kiloHertz is quite annoying since levels of 110 dB may be reached. Development re-
quires a great deal of experimental work based on a trial and error process. Moreover, it is all the more
difficult to resolve given that brake power has increased over the past few years. Nevertheless, recent
breakthroughs in numerical analyses have made it possible to tackle the issue upstream in the develop-
ment process with promising results.
Brake squeal, which has been studied for years, is considered to be a friction induced instability phenom-
enon. Kinkaid, O’Reilly and Papadopoulos have proposed a review [1] that summarises the background
and the main studies of brake squeal. Chen, Tan and Quaglia have published an overview [2] of recent
breakthroughs in theoretical, experimental and numerical fields. As far as squeal modelling is concerned,
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two kinds of analyses may be performed: time or frequency domain analyses. These two procedures have
specific advantages and drawbacks as mentioned by Mahajan, Hu and Zhang in [3]. The second proce-
dure, called Complex Eigenvalue Analysis (CEA), has been the most used by researchers. It deals with
computing the system eigenvalues, which prove to be complex valuated functions in the general case
because friction causes the stiffness matrix to be asymmetric. The real and imaginary parts of the com-
plex eigenvalues are respectively responsible for the stability and for the frequency of the corresponding
modes. This method was first used on lumped models [1,4–8]. Then, improvements in computer systems
have made it possible to perform analyses on finite element (FE) models [9]. Since friction is the root
cause of instability, some researchers have investigated the effect of the friction coefficient on complex
eigenvalues [10–14]. They have highlighted the phenomenon referred to as mode-coupling, which shows
the transition between the frictionless stable behaviour of the brake and its unstable behaviour with fric-
tion. Some researchers have focused on the deformed shapes of the modes. They have investigated the
role of the frictionless real modes, of the components or of the entire system, on complex modes with
friction. These two roles have been studied by Lee et al. in [12] using respectively the factors known as
Component Modal Participation Factor and System Participation Factor.
Instabilities are understood through CEA as an equivalent negative damping. Therefore, the system
damping is expected to have a significant effect on its stability. A brake system features several kinds of
damping, such as structural damping, friction-induced damping and the damping effect of insulators. The
effects of damping were first investigated on analytical and experimental analyses [15–21]. Neverthe-
less, taking damping into account in a whole brake FE model is far more complicated. Most researchers
have therefore neglected damping, invoking the following rule of thumb: the undamped situation must
be the worst. Some researchers have taken an overall damping value into account [9, 22, 23]. In most
cases, a constant loss factor is applied to the entire frequency range. Other researchers have focused on
an accurate modelling of damping sources: friction-induced damping [24–26] and shims [27–29].

This paper focuses on the effect of damping on the mode-coupling phenomenon involved in brake squeal.
The study is based on the FE model of a commercial brake corner. Damping is taken into account in
a modal way and a numerical method to extract the system damped eigenvalues is presented. Then,
parametric studies are used to investigate the effect of damping on the mode-coupling phenomenon.
Two cases are highlighted and specifically studied: the two mode coupling patterns and the coupling
patterns that involve more than two modes.

2 Numerical Method

A commercial front brake has been modelled using the finite element method, as shown in Figure 1.
It leads to the general equation of motion 1.

Mü + Cu̇ + Ku = 0 (1)

Where M, C, K are respectively the mass, damping and stiffness matrices. u is the displacement vector
and dot denotes derivative with respect to time. Since contact and friction have been taken into account
in the model, the stiffness matrix has specific properties given in Equation 2.

K = KStructure + µKFriction (2)
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Figure 1: Finite element model

KStructure is the structural stiffness matrix, which can be directly computed by FE solvers. This ma-
trix includes the springs used to model contacts between components. µ is the friction coefficient and
KFriction is the asymmetrical friction induced stiffness matrix. The second term in Equation 2 may be
obtained analytically by expanding the friction force as a function of the displacements of the contact
nodes. This point, which will not be presented here for the sake of brevity, is based on the Coulomb
law [30].
The undamped and frictionless case, defined in Equation 3, is noteworthy because it involves a symmetric
stiffness matrix and therefore does not require a complex solver.

Mü + KStructureu = 0 (3)

In this case, FE software is able to compute the frequencies ω and the modal basis Φ through a normal
mode analysis. Φ gathers the first n eigenvectors as columns, normalized with respect to the mass matrix.
n is related to the chosen modal truncation. Ω is defined in Equation 4 as the diagonal matrix gathering
the frequencies.

Ω = diag(ω1 · · ·ωn) (4)

The displacement vector in Equation 1 can be expressed as a linear combination of the undamped and
frictionless modes. This relationship is written in matrix form in Equation 5, with Υ the displacement
coordinates in the undamped and frictionless modal basis. Υ may also be named modal participation
vector (mpv).

u = ΦΥ (5)

Once left multiplied by ΦT, transformed in the frequency domain and expanded using the orthogonality
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relations, Equation 1 can be rewritten as Equation 6.
[
Is2 + Ds + (Ω2 + µΛf )

]
Υ = 0 (6)

D and Λf are respectively the projections of C and KFriction on the undamped and frictionless modal
basis. I is the identity matrix and s is the Laplace parameter.
For a given µ and a given D, Equation 6 can be rewritten as a general eigenvalue problem involving the
eigenvalue s and the eigenvector Υ. In the general case, both are complex valuated functions as shown
in Equation 7.

s = a + ib Υ = Υreal + iΥimag (7)

Eigenvectors account for the mode deformed shapes and eigenvalues account for the mode time behav-
iours. The eigenvalue imaginary parts deal with mode frequencies, whereas the real parts deal with mode
stability. A mode is stable if a ≤ 0, and is otherwise unstable.
Let Γ be a matrix in which the eigenvectors Υ are stored by columns. Equation 5 makes it possible to
write Ψ, the modal deformed shapes with friction, as a function of the frictionless modal basis Φ. Γ is
the modal participation matrix linking Ψ and Φ.

Ψ = ΦΓ (8)

From a practical point of view, the procedure can be summarised as follows. First, the normal modes
of the frictionless and undamped model are computed by FEM. From the results, the terms of Equation
6 can be inferred. Then, the eigenvalues and the eigenvectors related to this equation are computed and
analysed.

3 Two mode coupling patterns

3.1 Undamped coupling patterns

In the undamped case, where we assume that D is zero, the only remaining variable in Equation 6 is
µ. A parametric study has thus been performed with respect to this parameter. Figure 2 gathers curves
describing the eigenvalue variability for 100 values of the friction coefficient. For the sake of clarity, this
figure focuses on two modes chosen for their propensity to instability. Real parts have been normalized
so that the largest value in figure 2 is one. Frequencies and friction values have been normalized with
respect to a point which will be defined below.
Figure 2 displays the evolution of frequencies and real parts as a function of the friction coefficient.
At µ = 0, the system features two separate modes in the frequency range, that will be referred to as
M1 and M2 by increasing frequencies. These two modes are stable since their real parts are zero.
The corresponding frictionless deformed shapes, which have been computed through a FE normal mode
extraction, are shown in Figure 3. M1 consists of an in-phase bending of the knuckle mounts that drives
the anchor bracket in a rigid body rocking mode. The calliper translates along its guiding pins. M2

features a knuckle twisting mode that makes the knuckle mounts move in anti-phase. Thus, the anchor
twists and drives the calliper in rotation by means of the guiding pins. Meanwhile, the pads slip along the
disc surface between the leading and trailing abutments. The coupling between M1 and M2 belongs to
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the general class of coupling between translation and rotation modes that is often encountered in analyses
involving friction.
As the friction coefficient increases, Figure 2 shows that the real parts remain zero and that the frequen-
cies tend to get closer. The two modes reach the same frequency at a point known as the ”bifurcation
point” (or ”lock-in point”). This point, which occurs for a friction value of 0.34, has been used as a refer-
ence to normalize frequency and friction values. After that point, the system behaviour is deeply altered.
Indeed, the frequencies remain equal but the real parts become non zero and opposite. As mentioned
in the previous section, this means that one of them is stable (a < 0) whereas the other one is unstable
(a > 0).

Figure 2: Undamped coalescence pattern

Having studied eigenvalue variability, we now focus on eigenvector variability as a function of the fric-
tion coefficient. The eigenvectors Υ are scaled so that the norm of each is 1. The five most influential
terms of the modal participation vectors corresponding to M1 and M2 are shown in Figure 4. The refer-
ence numbers in the key give the indices of the frictionless modes that participate in M1 or M2. 0 refers
to the ”current” mode (M1 or M2 respectively), 1 to the ”next” one and -1 to the ”previous” one, in the
order of the frictionless frequency. Note that for the sake of clarity, only one point out of ten has been
marked, but the curves have not been artificially smoothed. As expected, at µ = 0, M1 is a real mode,
where all the participation factors are zero except the one corresponding to M1Frictionless which is 1. As
the friction coefficient increases, the influence on M1 of M1Frictionless decreases quickly whereas that
of M2Frictionless increases. Once the bifurcation point is reached (Normalized Mu=1), the curves have
slope-breaks and the mode becomes complex. For M2, the influence of M2Frictionless decreases slowly
whereas that of M1Frictionless increases as the friction coefficient increases from zero. At the bifurcation
point, M1 and M2 have the same modal participation factors. This means that these two modes are the
same. Beyond that point, the participation factors of the two modes remain equal in real parts and oppo-
site in imaginary parts. This point is due to the fact that the eigenproblem defined in Equation 6 involves
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(a) (b)

Figure 3: Undamped deformed shapes - (a) Mode M1Frictionless - (b) Mode M2Frictionless

a real matrix. Assuming that the couple (λ, X) is the complex eigenvalue and complex eigenvector of
a real matrix A. It can be proven that the complex conjugate couple, (λ̄, X̄), is also an eigenvalue and
eigenvector of A.
The bifurcation point is a singular point, at which the eigenvalues and the eigenvectors corresponding to
the two modes are the same. Therefore, it is impossible to track the modes passing through the bifurcation
point. After that point, the stable mode has thus been arbitrarily linked to M1 and the unstable one to
M2. Beyond the coalescence point, the contribution of M1Frictionless on the real parts decreases whereas
its influence on the absolute value of the imaginary parts increases. Finally, M2Frictionless has a very
strong impact on the real parts and M1Frictionless drives the imaginary parts of M1 and M2.

3.2 Damped coupling patterns

In this section, D is assumed to be:

D = diag(0 · · ·0, d1, d2, 0 · · ·0) (9)

So that only M1 and M2 are damped, respectively with d1 and d2.
The equally damped case, defined as d1 = d2 = d has been studied first and the results are shown in
Figure 5(a). The undamped case, which will be referred to as Case A, is compared with two equally
damped cases, Case B and Case C, defined in Table 1. As previously explained by Hoffmann and
Gaul [18], and by Sinou and Jézéquel [7], increasing the value of d makes the eigenvalue real parts
decrease, whereas the frequencies remain approximately constant. Indeed, in the complex plane, the
eigenvalues are shifted towards the stable side. The eigenvalue real parts become positive for a higher
value of the friction coefficient. Therefore, increasing d increases the brake stability range.
The coupling patterns involved in the unequally damped cases are far more complicated, as illustrated in
Figure 5. The undamped case, Case A, is compared with two unequally damped cases, Case D and Case
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Figure 4: Undamped modal participation vectors - (a) Mode M1 - (b) Mode M2

E, defined in Table 1. As expected, the main effect of added damping is a shift of the eigenvalue real
parts towards the negative values. Nevertheless, the coalescence patterns are deeply altered because of
the unequal spread of damping. First, this damping distribution induces a |d2 − d1|/2 gap in real parts
between the two modes at µ = 0. Then, the main change occurs in the vicinity of the coalescence point.
As explained by Hoffmann and Gaul [18], a ”smoothing effect” of the curves with respect to the friction
coefficient is observed, both for real parts and frequencies. Therefore, the real parts begin splitting at a
lower friction coefficient value than for the undamped situation. As a consequence, increasing the gap
in damping between the two modes tends to decrease the stability range.
Though coalescence patterns are more complicated than in the undamped cases, they offer a significant
advantage. Thanks to the frequency and real part shifts which are non-zero for each friction value, the
unstable mode can now be clearly identified and tracked with respect to the friction coefficient value.
Here, the unstable mode turns out to be the least damped mode.
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Figure 5: Damped coalescence patterns - (a) Equally damped, • Case A, • Case B, • Case C - (b)
Non-equally damped, • Case A, • Case D, • Case E

3.3 Unstable modes

In Figure 5(b), basic mode tracking reveals that the unstable mode is the least damped mode. In order to
confirm this point, the four possible cases corresponding to d1 ± 25 and d2 ± 25 have been computed
with respect to case B. These cases are defined in Table 1 and shown in Figure 6. As expected, in each
case, the unstable mode turns out to be the least damped mode.
From there, it may be interesting to investigate the effect of damping on deformed shapes. Indeed, in
unequally damped cases, it is possible to track the modes, especially the unstable ones, with respect to
the friction coefficient. For the sake of brevity, only cases F and G will be described in terms of modal
participation factors in Figures 7 and 8, but similar conclusions might be drawn from the cases H and I.
We first notice that the damped modal participation factors resemble the undamped ones, except that they
are smoother in the vicinity of the bifurcation point. Furthermore, M1 and M2 become complex before
the undamped bifurcation point, defined as Normalized Mu = 1.0. The mpv real parts of M1 and M2

respectively, look quite the same for the cases F and G. The mpv imaginary parts are opposite between
the cases F and G. In other words, the deformed shape of the unstable mode has a positive imaginary
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Figure 6: Tracking of the unstable mode on the damped coalescence patterns - (a) • Case B, • Case F, •
Case G - (b) • Case B, • Case H, • Case I

part, whereas the deformed shape of the stable mode has a negative one.

3.4 Stability areas

As described in the previous section, the addition of modal damping has complicated effects on coupling
patterns. Nevertheless the main point is to assess its effect on brake stability.
It can be inferred from Figure 6 that the ratio between the two dampings d1 and d2 must be a key para-
meter influencing the stability of the corresponding two modes. Figure 9 gives stability charts resulting
from a bi-parametric stability analysis involving µ and d2

d1
. The three stability charts, whose ordinate

axes are logarithmically spaced, refer respectively to the following values of d1 : {1, 10, 20}. For each
couple of the two parameters, a white area means that the system is stable whereas a gray area means
that one mode has a positive eigenvalue real part. The three charts feature the same range of d2

d1
, but their

limit of validity are not the same. Indeed, for our system, d has physical meaning only up to around
100. For d1 = 1, the most stable configuration is the equally damped case, corresponding to d2

d1
= 1. A

shift in damping from this point makes the range of stability decrease. For higher values of d1, the most
stable case is also the equally damped case. Nevertheless, the frontier between the stable and unstable
cases features a local minimum of the stability range. This minimum tends to shift towards the lower
values of d2

d1
= 1 as d1 increases. Moreover, Figures 9(b), (d) and (f) show the merging scenario and the

stability behaviour of the two coupling modes. It clearly appears that the stable mode (corresponding to
the blue surface) is the mode that features the highest frequency of the two coupling modes if d2

d1
< 1.

Then, for d2

d1
> 1, the stable mode is the mode that features the lowest frequency of the two coupling

modes. It may be concluded that a more stable system is obtained for d2
d1

= 1 when stable and unstable
frequencies reverse. To go further, a full factorial design of experiments has been launched with respect
to d1 and d2. The results are given in Figure 10 for several values of the friction coefficient. The first
chart, corresponding to µ = 0.59, shows that the stable area is a stripe centred on the equally damped
case. Moreover, it highlights the phenomenon of destabilisation induced by damping. Indeed, assuming
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Figure 7: Damped modal participation factors of M1 - (a) Case F - (b) Case G

that either d1 or d2 is fixed at a low value, increasing the other one tends to cross the frontier of stability
and makes the system unstable. As the friction coefficient increases, the stable stripe shrinks. Beyond
the undamped bifurcation point, the system is unstable, unless the two modes are sufficiently damped, in
an equal way. This phenomenon is highlighted in the µ = 1.00 curve since the stability area is located in
the right upper corner of the chart. Then, Figure 11 indicates the evolution of stable and unstable modes.
As previously explained, the stable and unstable modes (and the value of the corresponding frequencies)
reverse when the structural damping ratio d2

d1
is equal to 1.

3.5 Application of the Robust Damping Factor (RD-Factor)

In this section, the criterion called Robust Damping Factor (RD-factor) defined by Sinou et al. [31] is
investigated in order to obtain the optimal damping ratio d2

d1
for a given set of physical parameters.
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Figure 8: Damped modal participation factors of M2 - (a) Case F - (b) Case G

The Robust Damping Factor is defined as a function of the real parts of eigenvalues (that define the
stability of the mechanical system) and the relative values between the two frequencies of the merging
modes. The Robust Damping Factor criterion may be given by [31]

RD − Factor = −Max (Re (λ)) log
(

∆F

∆R + 1
+ 1

)
if Re (λ) ≤ 0

RD − Factor = 0 if Re (λ) > 0
(10)

where −Max (Re (λ)) may be defined as the distance between the greatest real part and the zero real
part axis. ∆R and ∆F define the difference between the real parts and the associated imaginary parts of
the two coupling modes. They are given by

∆R = |Re (λunstable) − Re (λstable)| (11)

∆F = |Im (λunstable) − Im (λstable)| (12)
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Figure 9: Stability areas (µ, d2/d1) and evolution of the stable and unstable modes (green sur-
face=unstable mode, blue surface=stable mode) - (a,c,e): Stability areas respectively for d1=1, d1=10
and d1=20 - (b,d,f): Evolution of the stable and unstable modes respectively for d1=1, d1=10 and d1=20
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Figure 10: Stability areas (d1, d2). (a): normalized µ = 0.59 - (b): normalized µ = 0.94 - (c): normal-
ized µ = 0.97 - (d): normalized µ = 1.00

Situation Case d1 d2 µc

Undamped A 0 0 1.00
Equally damped B 25 25 1.07

C 50 50 1.27
Non-equally damped D 25 30 1.07

E 50 55 1.32

Additional cases F 0 25 0.33
G 50 25 0.98
H 25 0 0.33
I 25 50 0.98

Table 1: Critical values of the friction coefficient
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where Im (λ) and Re (λ) define the imaginary and real parts of λ. Here, we have assumed that flutter
instability is composed of two modes among which only one is unstable. The most robust damping ratio
of d2

d1
corresponds to the highest value of the Robust Damping Factor (for various values of d1 or d2 while

keeping the other physical parameters) : it is given by the smallest difference between the real parts of
the two merging modes (this difference is equal to zero when the stable and unstable modes reverse)
and the greatest difference between the two frequencies (for which the associated real parts are equal to
zero).
Figures 12(a) and (b) illustrate the evolution of the Robust Damping Factor (RD-Factor) versus the
damping ratio d2

d1
and the normalized friction coefficient for two values of d1. The variability of the RD-

Factor versus d2 and d1 for two values of the normalized friction coefficient is shown in Figures 12(c) and
(d). Considering Figures 12(c) and (d), the greater the proportional structural damping (for d1 = d2), the
greater the Robust Dampnig Factor. So the RD-Factor shows that by increasing equal structural damping
d1 = d2, the system is more stable due to the fact that the real parts of the eigenvalues are translated
towards the negative real parts. Considering Figures 12(a) and (b), the Robust Damping Factor is greater
when the damping ratio d2

d1
is equal to 1, even if the damping value d1 varies. In both cases, the same

area is obtained for the most robust damping ratio. We see that this area corresponds to the zone of the
merging scenario of the two coupling modes (as indicated in Figures 9(b), (d), (e) and Figure11). So,
the Robust Damping helps avoid design errors and reduce flutter instability. As previously explained,
introducing proportional structural damping between the stable and unstable modes (d1 = d2) may be
used in order to enhance the stability of mechanical systems.
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(a) (b)

(c) (d)

Figure 12: Evolution of the Robust Damping Factor - (a): d1 = 1 - (b): d1 = 20 - (c): normalized
µ = 0.59 - (d): normalized µ = 0.97
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Figure 13: Evolution of the undamped eigenvalues in the complex plane - modes MA to MF

4 Patterns involving more than two modes

4.1 Undamped coupling patterns

The previously described coupling patterns involved only two modes. This kind of behaviour is more
likely to be found in very low frequency squeals. For higher frequency squeals, the phenomena are more
complicated, since the modal density is higher. In order to illustrate this point, Figure 13 shows the
evolution, in the complex plane, of six consecutive modes as a function of the friction coefficient. These
modes are referred to as MA to MF with increasing frequencies.
Their frictionless deformed shapes, shown in Figure 14, are analysed below.

MA: this mode features a twisting of the knuckle. The lower and upper outer parts of the anchor bracket
twist in-phase along the guiding pin axis. As a consequence, the beam deflects. The disc undergoes
vibrations of low magnitude corresponding to a 3 nodal diameter bending mode. The inner pad
slips on the disc surface, along the orthoradial direction, between its abutments.

MB: the knuckle mounts, which vibrate in anti-phase, drive the anchor bracket in a twisting mode
which resembles the one involved in MA. Driven by the calliper, the piston slips on the inner
back plate in the radial direction. The inner lining deflects in compression and the disc deflects in
a so-called umbrella mode.

MC: this mode consists mainly of a calliper bending and an umbrella mode of the disc. The inner pad
slips on the disc surface, along the orthoradial direction, between its abutments. The inner lining
deflects in compression. The anchor bracket behaves in the same way as it does in mode MA
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Figure 14: Deformed shapes of modes MA to MF in the frictionless situation

MD: the knuckle mounts vibrate in anti-phase. The anchor bracket undergoes a large magnitude ”open-
ing mode”, which is in anti-phase between up and down. Here, an ”opening mode” means that the
two parts of the anchor bracket, on both sides of the disc, tend to separate from each other. The
calliper bends, the inner pad slips between its abutments and the linings deflect in compression.
The disc features a 3 nodal diameter bending mode, with a nodal line under the middle of the pads.

ME: The anchor bracket undergoes a low magnitude opening mode. The calliper bends with large
magnitude displacements. The inner pad bends and the outer lining deflects in compression. The
disc features a 3 nodal diameter bending mode, with an anti-nodal line under the middle of the
pads.

MF : the knuckle mounts vibrate in-phase. The anchor bracket beam undergoes large magnitude dis-
placements. The calliper bends and the disc deflects in an umbrella mode. The inner pad slips
between its abutments. The outer pad undergoes a rigid body rotation, keeping contact with the
disc.

Some of these frictionless modes appear to be quite similar. Especially, the two pairs of modes MB −
MC and MD − ME feature the same disc vibration pattern, respectively an umbrella mode and a 3
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nodal line bending mode. Moreover, MD and ME deal with disc doublet modes [1, 32]. The two pairs
of modes, MB − MC and MD − ME, may be named ”compatible” modes, as used by Huang et al.
in [30]. Looking back on Figure 13, this point is confirmed since MB−MC and MD−ME are coupled
as the friction coefficient increases. Their critical friction coefficients are respectiely µcBC = 2.37 and
µcDE = 1.00. Note that the data have been normalized with respect to the most critical bifurcation point,
the one that involves MD and ME.
As far as the deformed shapes are concerned, the evolution of modal factors are shown in Figures 15 and
16 respectively for the MB−MC and MD−ME couplings. The first point to notice in Figure 15 is that
three modes are mainly involved in the MB −MC coupling: obviously MBFrictionless and MCFrictionless

but also MAFrictionless. As friction increases, the participation of MBFrictionless on the real part of MB

decreases and the participation of MAFrictionless and MCFrictionless grows. As far as MC is concerned,
the same kind of behaviour can be observed, with the roles played by MBFrictionless and MCFrictionless

reversed. After the bifurcation point that occurs at µcBC = 2.37, the contribution of MAFrictionless has
a very strong impact on the real parts. Meanwhile, the contributions of MBFrictionless and MCFrictionless

decrease on the real parts and increase on the imaginary parts. Finally, MAFrictionless drives the real parts
whereas MBFrictionless and MCFrictionless drive the imaginary parts of MB and MC.
For the MD − ME coupling, the phenomena at stake are even more complicated. Figure 16 illustrates
that six frictionless modes have significant contributions on the deformed shapes of MD and ME.
These frictionless modes are MA, MC, MD, ME, MF and MG, which is beyond the scope of Figure
13. After the bifurcation point, which occurs at µcDE = 1.00, MDFrictionless drives the real parts and
MFFrictionless and MGFrictionless drive the imaginary parts of MD and ME.

4.2 Damped coupling patterns

This section focuses on the effect of modal damping on the coupling patterns shown in Figure 13. In
previous sections, the damping effect was restricted to the coupling which involves the damped mode.
Here, the phenomena are more complicated. The first point to notice is that the terms provided by Λf

in Equation 6 couple the modes with each other. It can be inferred from Figure 17, which gathers these
terms for modes MA to MG, that the equations governing these seven modes are strongly coupled.
As a consequence, introducing modal damping on a particular mode will not only modify its coupling
pattern, but also alter the behaviour of the other modes. This point is illustrated in Figure 18, in which
only MD has been damped. As expected, the MD−ME coupling pattern is altered in the same way as
described in the previous sections. Nevertheless, the MB−MC coupling pattern is also disturbed. MB

is stable whereas MC is unstable. Moreover, MA and MF , which are not involved in any coalescence,
are stabilized.
The effect of damping is far from being fully understood. Indeed, Figure 19 illustrates a specific case of
damping effect in which only the highest frequency mode has been progressively damped, from d = 0

to d = 1500. These curves highlight 3 eigenvalue veerings, respectively for the following transitions:
(d = 600 → d = 700), (d = 800 → d = 1000), (d = 1300 → d = 1400).
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Figure 15: Undamped modal participation factors - (a): MB - (b): MC

5 Conclusion

In this study, brake squeal has been analysed as a mode coupling phenomenon induced by friction. The
effects of damping on the way the two modes tends to couple has been investigated. First, the modal
behaviour of the system has been assessed with the finite element method. The system eigenvalues have
been computed with respect to the friction coefficient. Coalescence patterns which depict the evolution
of eigenvalues with respect to the friction coefficient have been determined. Then, damping has been
taken into account by means of modal damping. If the two modes involved in the coalescence are equally
damped, damping stabilizes the system by shifting the eigenvalues towards the negative real parts. This
effect is referred to as the ”lowering effect”. If the two modes are not equally damped, damping proves
to have two different effects: a ”lowering effect” and a ”smoothing effect”. The lowering effect tends to
stabilize the system, as in the equally damped case. Nevertheless, if the smoothing effect prevails, added
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Figure 16: Undamped modal participation factors - (a): MD - (b): ME

damping may destabilize the system. This point has been investigated by building stability areas with
respect to friction and modal dampings. To go further, a metric, referred to as the Robust Damping Factor
(RD-Factor), has been used to predict the most stable combination of damping. From a practical point
of view, only very low frequency squeals involve two frictionless modes in their coalescence patterns.
Higher frequency squeals involve more than two modes and feature far more complicated coalescence
patterns. In this case, the effects of damping are all the more complicated to understand. Since the
equations governing the system are coupled by friction and by damping, adding damping to a specific
mode may alter the behaviour of another one.
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