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Convex ordering for random vectors using predictable representation

Introduction

Given two finite measures µ and ν on R d we say that µ is convex dominated by ν, and we write µ cx ν, if

R d φ(x)µ(dx) ≤ R d φ(x)ν(dx) (1.1)
for all sufficiently integrable convex functions φ : R d → R. In case µ and ν are the respective probability distributions of two random variables F and G, Relation (1.1) variables. We stress however that the arguments of [START_REF] Th | Convex concentration inequalities via forward/backward stochastic calculus[END_REF] are particular to the onedimensional case and in general they can not be applied to the vector valued setting considered in this paper, for which specific methods have to be developed.

Note also that by a classical argument, the application of (1.1) to φ(x) = exp(λ x ), λ > 0, entails the deviation bound

P ( F ≥ x) ≤ inf λ>0 E[e λ( F -x) 1 { F ≥x} ] ≤ inf λ>0 E[e λ( F -x) ] ≤ inf λ>0 E[e λ( G -x) ],
x > 0, hence the deviation probabilities for F can be estimated via the Laplace transform of G .

We will prove the following type of result. Let (W (t)) t∈R + and Z(t) = (Z 1 (t), . . . , Z n (t))

be respectively a standard n-dimensional Brownian motion and a vector of independent real point processes with compensator (λ 1 (t), . . . , λ n (t)) t∈R + generating a filtration F M . Let M d×n denote the set of d×n real matrices, with M d = M d×d . Consider F and G two random variables with the predictable representations

F = ∞ 0 A(t)dW (t) + ∞ 0 J(t)(dZ(t) -λ(t)dt)
where (A(t)) t∈R + , (J(t)) t∈R + are square-integrable M d×n -valued F M t -predictable processes, and

G = ∞ 0 Â(t)d W (t) + ∞ 0 Ĵ (t)(d Z(t) -λ(t)dt)
where ( Â(t)) t∈R + , ( Ĵ (t)) t∈R + are M d×n -valued square-integrable F M t -predictable processes and W (t) and Z(t) = ( Z1 (t), . . . , Zn (t)), t ∈ R + , are a n-dimensional Brownian motion and a vector of real point processes with respective intensities ( λi (t)) t∈R + , i = 1, . . . , n, independent of F M . In terms of the convex orders cxp, cxpi and psd introduced in Definitions 3.3 and 3.2 below, we have for example the following corollary of Theorem 4.2. In the sequel, the † symbol stands for matrix transposition.

Corollary 1.3. The convex concentration inequality (1.1) holds provided A † (t)A(t) ≤ psd  † (t) Â(t), dP dt -a.e.,

and for almost all t ∈ R + , we have either: i) n j=1 λ j (t)δ (J 1,j (t),...,J d,j (t)) cxp n j=1 λj (t)δ ( Ĵ1,j (t),..., Ĵd,j (t)) . or:

ii) J i,j (t) ≥ 0, Ĵi,j (t) ≥ 0, i = 1, . . . , d, j = 1, . . . , n, and n j=1 λ j (t)δ (J 1,j (t),...,J d,j (t)) cxpi n j=1 λj (t)δ ( Ĵ1,j (t),..., Ĵd,j (t)) .

Condition (ii) above will hold in particular if λ i (t) ≤ λi (t), and 0 ≤ J i,j (t) ≤ Ĵi,j (t),

1 ≤ i ≤ n, 1 ≤ j ≤ d, for dt-almost all t ∈ R + .
In Theorem 5.5, we provide a geometric interpretation of the convex ordering condition (i) for finitely supported measures.

In case F and G are Gaussian random vectors with covariance matrices Σ and Σ, we

recover (1.2) from Theorem 1.3 by taking λ(t) = λ(t) = 0, A(t) = 1 [0,T ] (t) Σ/T and Â(t) = 1 [0,T ] (t) Σ/T , t ∈ R + .
Note that related convex comparison results have also been obtained in [START_REF] Bergenthum | Comparison of option prices in semimartingale models[END_REF], [START_REF] Bergenthum | Comparison of semimartingales and Lévy processes[END_REF] for diffusions with jumps, under different hypotheses. Namely, it is assumed therein that G is given by the value at time T of a diffusion with jumps. Convex ordering then holds under similar assumptions on the process characteristics, provided the generator of this diffusion satisfies the propagation of convexity property.

This paper is organized as follows. In Section 2 we introduce the notation of multidimensional forward-backward stochastic calculus with jumps, which will be used in the next sections. In Section 3 we prove some convex ordering results for the sums of forward and backward martingales, and in Section 4 we apply those results to random variables given by their predictable representation in terms of a diffusion and a point process. Section 5 is devoted to a geometric interpretation of convex ordering for discrete measures on R d , which gives a better understanding of the conditions set of the jump heights and intensities of the considered point processes.

Notation

Let (Ω, F , P ) be a probability space equipped with an increasing filtration (F 

∆M(t) = M(t) -M(t -), ∆ * M * (t) = M * (t) -M * (t + ),
their forward and backward jumps. The processes (M(t)) t∈R + and (M * (t)) t∈R + have jump measures

µ(dt, dx) = s>0 1 {∆M (s) =0} δ (s,∆M (s)) (dt, dx),
and 

µ * (dt, dx) = s>0 1 {∆ * M * (s) =0} δ (s,∆ * M * (s)) (dt,
(M(t n k ) -M(t n k-1 ))(M(t n k ) -M(t n k-1 )) † ,
and

[M * , M * ] t = lim n→∞ n-1 k=0 (M * (t n k ) -M * (t n k+1 ))(M * (t n k ) -M * (t n k+1 )) † , for all refining sequences {0 = t n 0 ≤ t n 1 ≤ • • • ≤ t n n = t}, n ≥ 1, of partitions of [0, t] tending to the identity. We let M J (t) = M(t) -M c (t), M * J (t) = M * (t) -M * c (t), [M J , M J ] t = 0<s≤t ∆M(s)∆M(s) † , [M * J , M * J ] t = 0≤s<t ∆ * M * (s)(∆ * M * (s)) † , with M c , M c t = [M, M] t -[M J , M J ] t ,
and

M * c , M * c t = [M * , M * ] t -[M * J , M * J ] t , t ∈ R + .
Denote by ( M J , M J t ) t∈R + , ( M * J , M * J t ) t∈R + the conditional quadratic variations of (M J (t)) t∈R + and of (M * J (t)) t∈R + , with

d M J , M J t = R d xx † ν(dt, dx) and d M * J , M * J t = R d xx † ν * (dt, dx).
The conditional quadratic variations ( M, M t ) t∈R + , ( M * , M * t ) t∈R + of (M(t)) t∈R + and of (M * (t)) t∈R + satisfy 

M, M t = M c , M c t + M J , M J t ,
+ d i=1 t s + ∂f ∂x i (M(u -), M * (u))dM i (u) + 1 2 d i,j=1 t s ∂ 2 f ∂x i ∂x j (M(u), M * (u))d M c i , M c j u + s<u≤t f (M(u), M * (u)) -f (M(u -), M * (u)) - d i=1 ∆M i (u) ∂f ∂x i (M(u -), M * (u)) - d i=1 t - s ∂f ∂y i (M(u), M * (u + ))d * M * i (u) - 1 2 d i,j=1 t s ∂ 2 f ∂y i ∂y j (M(u), M * (u))d M * c i , M * c j u - s≤u<t f (M(u), M * (u)) -f (M(u), M * (u + )) - d i=1 ∆ * M * i (u) ∂f ∂y i (M(u), M * (u + )) , 0 ≤ s ≤ t,
(M i (t n k ) -M i (t n k-1 )) ∂f ∂x i (M(t n k-1 ), M * (t n k-1 )) and n-1 k=0 (M * i (t n k ) -M * i (t n k+1 )) ∂f ∂y i (M(t n k+1 ), M * (t n k+1 )) for all refining sequences {s = t n 0 ≤ t n 1 ≤ • • • ≤ t n n = t}, n ≥ 1, of partitions of [s, t] tending to the identity.
Here,

t 0 η(u)dM i (u), resp. ∞ t η * (u)dM i (u)
, refer to the right, resp. left, continuous version of the indefinite stochastic integrals of the forward, resp. backward, adapted and sufficiently integrable processes (η(u)) u∈R + , resp. (η * (u)) u∈R + .

Convex ordering for martingales

We denote by •, • and • the usual Euclidean scalar product and norm on R d . Let M d be the space of real matrices with the scalar product

A, B := Tr (AB † ) = d i,j=1 A i,j B i,j , A, B ∈ M d ,
where we recall that A † stands for the transpose (A j,i ) 1≤i,j≤d of A = (A i,j ) 1≤i,j≤d , and let M d + be the subset of M d made of positive semidefinite matrices. x, Ax = Tr (AB † ) ≥ 0.

Definition 3.2. Given A, B ∈ M d , we will write A ≤ psd B if B -A is positive semidefinite, i.e. x, Ax ≤ x, Bx , x ∈ R d .
In the sequel, a function f : R d → R will be said to be non-decreasing if

f (x 1 , . . . , x d ) ≤ f (y 1 , . . . , y d ) for all x 1 , . . . , x d ∈ R and y 1 , . . . , y d ∈ R such that x i ≤ y i , i = 1, . . . , d.
In the sequel, we will need the following orders between positive measures µ, ν on R d .

Definition 3.3. i) We say that µ cxp ν if R d φ(x)µ(dx) ≤ R d φ(x)ν(dx)
for all non-negative convex functions φ :

R d → R + . ii) We say that µ cxpi ν if R d φ(x)µ(dx) ≤ R d φ(x)ν(dx)
for all non-negative and non-decreasing convex functions φ : R d → R + .

If µ and ν are finite measures on R d , then both µ cxp ν and µ cxpi ν imply

µ(R d ) ≤ ν(R d ).
More precisely we have the following result.

Proposition 3.4. Assume that µ and ν are finite measures on R d . Then

µ cx ν is equivalent to µ cxp ν and µ(R d ) = ν(R d ).
Proof. Assume that µ cxp ν and µ(R d ) = ν(R d ), and let φ ∈ L 1 (µ) L 1 (ν). For all a ∈ R we have

R d φ(x)µ(dx) - {φ<a} φ(x)µ(dx) + aµ({φ < a}) = {φ≥a} (φ(x) -a) + µ(dx) + aµ(R d ) ≤ {φ≥a} (φ(x) -a) + ν(dx) + aν(R d ) = R d φ(x)ν(dx) - {φ<a} φ(x)ν(dx) + aν({φ < a}),
and for a ≤ 0,

{φ<a} φ(x)µ(dx) ≤ aµ({φ < a}) ≤ 0, {φ<a} φ(x)ν(dx) ≤ aν({φ < a}) ≤ 0, hence letting a tend to -∞ yields R d φ(x)µ(dx) ≤ R d φ(x)ν(dx).
Conversely we note that µ cxp ν clearly implies µ cx ν, and we recover the identity

µ(R d ) = ν(R d
) by applying the property µ cx ν successively with φ = 1 and φ = -1.

Consequently, µ cxp ν implies

R d x i µ(dx) ≤ R d
x i ν(dx), and -

R d x i µ(dx) ≤ - R d x i ν(dx), i = 1, . . . , d,
i.e. µ and ν have same barycenter, provided µ(R d ) = ν(R d ) and µ, ν are integrable.

This also holds when Then we have

µ cxpi ν, µ(R d ) = ν(R d )
E R d ×R + x ν t (dx)dt < ∞, E R d ×R + x ν * t (dx)dt < ∞. ( 3 
E[φ(M(s) + M * (s))] ≥ E[φ(M(t) + M * (t))], 0 ≤ s ≤ t, (3.9) 
for all convex functions φ : R d → R.

Proof. We start by assuming that φ is a C 2 , convex Lipschitz function and we apply Itô's formula (2.1) for forward-backward martingales to f (x, y) = φ(x + y). Taking expectations on both sides of Itô's formula we get

E[φ(M(t) + M * (t))] = E[φ(M(s) + M * (s))] + 1 2 d i,j=1 E t s φ ′′ i,j (M(u) + M * (u))d( M c i , M c j u -M * c i , M * c j u ) 10 + E t s R d (φ(M(u) + M * (u) + x) -φ(M(u) + M * (u)) -x, ∇φ(M(u) + M * (u)) )ν u (dx)du -E t s R d (φ(M(u) + M * (u) + x) -φ(M(u) + M * (u)) -x, ∇φ(M(u) + M * (u)) )ν * u (dx)du = E[φ(M(s) + M * (s))] + 1 2 E t s ∇ 2 φ(M(u) + M * (u)), H(u) -H * (u) du (3.10) + E t s R d Ψ(x, M(u) + M * (u))(ν u (dx) -ν * u (dx))du , where Ψ(x, y) = φ(x + y) -φ(y) - d i=1 x i ∂φ ∂y i (y), x, y ∈ R d .
Due to the convexity of φ, the Hessian ∇ 2 φ is positive semidefinite hence Lemma 3.1 yields

E[φ(M(t) + M * (t))] ≤ E[φ(M(s) + M * (s))] (3.11) +E t s R d Ψ(x, M(u) + M * (u))(ν u (dx) -ν * u (dx))du , since H * (u) -H(u) is positive semidefinite for fixed (ω, u) ∈ Ω × R + .
Finally we examine the consequences of hypotheses (i) and (ii) on (3.11).

i) By convexity of φ, x → Ψ(x, y) is non-negative and convex on R d for all fixed y ∈ R d , hence the second term in (3.11) is non-positive.

ii) When ν u and ν * u are supported by R d + , (3.11) is also non-positive since for all y, x → Ψ(x, y) is non-decreasing in x ∈ R d + .

The extension to convex non C 2 functions φ follows by approximation of φ by an increasing sequence of C 2 convex Lipschitz functions, and by application of the monotone convergence theorem.

Remark 3.12. When φ ∈ C 2 , the hypothesis on the diffusion part and on the jump part can be mixed together. Indeed, in order for the conclusion of Theorem 3.8 to hold it suffices that

Tr (∇ 2 φ(y)H t ) + R d Tr (∇ 2 φ(y + τ x)xx t )ν t (dx) ≤ Tr (∇ 2 φ(y)H * t ) + R d Tr (∇ 2 φ(y + τ x)xx t )ν * t (dx), (3.13) y ∈ R d , 1 [0,1] (τ )dτ dt-a.e.
Proof. Using the following version of Taylor's formula

φ(y + x) = φ(y) + d i=1 x i φ ′ i (y) + 1 0 (1 -τ ) d i,j=1 x i x j φ ′′ i,j (y + τ x)dτ, x, y ∈ R d , we have Ψ(x, y) = 1 0 (1 -τ ) ∇ 2 φ(y + τ x)x, x dτ = 1 0 (1 -τ )Tr (∇ 2 φ(y + τ x)xx † )dτ
and (3.10) rewrites as

E[φ(M t + M * t )] -E[φ(M s + M * s )] = 1 2 E t s (Tr (∇ 2 φ(M u + M * u )H u ) -Tr (∇ 2 φ(M u + M * u )H * u ))du +E 1 0 t s R d (1 -τ )Tr (∇ 2 φ(M u + M * u + τ x)xx t )(ν u (dx) -ν * u (dx))dudτ
which is non-positive from (3.13).

Let now (F M t ) t∈R + and (F M * t ) t∈R + , denote the forward and backward filtrations generated by (M(t)) t∈R + and by (M * (t)) t∈R + . The proof of the following corollary of Theorem 3.8 is identical to that of Corollary 3.7 in [START_REF] Th | Convex concentration inequalities via forward/backward stochastic calculus[END_REF].

Corollary 3.14. If (3.9) holds and if in addition

E[M * (t) | F M t ] = 0, t ∈ R + , then E[φ(M(s) + M * (s))] ≥ E[φ(M(t))], 0 ≤ s ≤ t.
In particular, if

M 0 = E[M(t)] is deterministic (or if F M 0 is the trivial σ-field), Corol- lary 3.14 shows that M(t) -E[M(t)] is more convex concentrated than M * 0 , i.e.: E[φ(M(t) -E[M(t)])] ≤ E[φ(M * 0 )], t ≥ 0,
for all sufficiently integrable convex functions φ on R d . In applications to convex concentration inequalities the independence of (M(t)) t∈R + with (M * (t)) t∈R + will not be required, see Section 4.

Note that in case ν * (dt, dx) has the form

ν * (dt, dx) = λ * (t)δ k (dx)dt,
where k ∈ R d and (λ * (t)) t∈R + is a positive F * t -predictable process, then condition (i) (resp. (ii)) of Theorem 3.8 is equivalent to: We can take

ν t = λ(t)δ k and λ(t) ≤ λ * (t) resp. to: k ∈ (R + ) d , ν t (R d ) ≤ λ * (t) and ν t R d \ d i=1 ] -∞, k i ] = 0, i.e.
M(t) = M 0 + t 0 A(s)dW (s) + t 0 J(s)(dZ(s) -λ(s)ds), t ∈ R + , and 
M * (t) = +∞ t A * (s)d * W * (s) + +∞ t J * (s)(d * Z * (s) -λ * (s)ds), t ∈ R + ,
where (A(t)) t∈R + , (J(t)) t∈R + , resp. (A * (t)) t∈R + , (J * (t)) t∈R + are M d×n -valued and predictable with respect to

F M t := σ(W (s), Z(s) : s ≤ t), resp. F M * t := σ(W * (s), Z * (s) : s ≥ t), t ∈ R + , i.e. M i (t) = M i (0) + n j=1 t 0 A i,j (s)dW j (s) + n j=1 t 0 J i,j (s)(dZ j (s) -λ j (s)ds)
and More details will be given in Section 5 on the meaning of conditions (i) and (ii) of Theorem 3.8 imposed on ν t and ν * t defined in (3.15) and (3.16) for the order cxp .

M * i (t) = M * i (0) + n j=1 ∞ t A i,j (s)dW * j (s) + n j=1 ∞ t J i,j (s)(d * Z * j (s) -λ j (s)ds), t ∈ R + , i = 1, . . . ,
Conditions (3.5) (3.6) will hold in particular when 

F t = F M t ∨ F M * 0 and F * t = F M ∞ ∨ F M * t , t ∈ R + , see Section 4.
→ Bt (x) two R d -valued F M t -predictable pro- cesses in L 1 (Ω × R d × R + , dP ν t (dx)dt).
Theorem 4.2. Let ( W (t)) t∈R + be an n-dimensional Brownian motion and μ(dx, dt) be a jump measure with jump characteristic of the form ν(dt, dx) = νt (dx)dt, both independent of F M , and consider

F = ∞ 0 A(t)dW (t) + ∞ 0 R n B t (x)(µ(dt, dx) -ν t (dx)dt)
and

G = ∞ 0 Â(t)d W (t) + ∞ 0 R n Bt (x)(μ(dt, dx) -νt (dx)dt).
Assume that

A † (t)A(t) ≤ psd  † (t) Â(t), dP dt -a.e.,
and that for almost all t ∈ R + , we have either:

i) ν t • B -1 t cxp νt • B-1 t , P -a.s., or : 
ii) B t and Bt are non-negative and

ν t • B -1 t cxpi νt • B-1 t , P -a.s.
Then for all convex functions φ : R d → R we have

E[φ(F )] ≤ E[φ(G)]. (4.3)
Proof. Again we start by assuming that φ is a Lipschitz convex function. Let (M(t)) t∈R + denote the forward martingale defined as

M(t) = t 0 A(s)dW (s) + t 0 R n B s (x)(µ(ds, dx) -ν s (dx)ds), t ∈ R + , let (F M t )
t∈R + denote the backward filtration generated by { W (t), μ(dx, dt)}, and let

F t = F M t ∨ F M ∞ and F * t = F M ∞ ∨ F M t ,
so that (M(t)) t∈R + is an F t -forward martingale. Since ( Â(t)) t∈R + , ( Bt ) t∈R + are F M tpredictable, the processes ( Â(t)) t∈R + and ( Bt ) t∈R + are independent of ( Wt ) t∈R + and of μ(dt, dx). In this case, the forward and backward differentials coincide and the process (M * (t)) t∈R + defined as

M * (t) = E[G | F * t ] = ∞ t Â(s)d W (s) + ∞ t R n Bs (x)(μ(ds, dx) -νs (dx)ds), t ∈ R + , is an F * t -backward martingale with M * (0) = G. Moreover the jump charac- teristics of (M t ) t∈R + and of (M * t ) t∈R + are ν M (dx) = 1 R d \{0} (x)ν t • B -1 t (dx) and ν M * (dx) = 1 R d \{0} (x)ν t • B-1 t (dx).
Applying Theorem 3.8 to the forward and backward martingales (M(t)) t∈R + and

(M * (t)) t∈R + yields E[φ(M(t) + M * (t))] ≤ E[φ(M(s) + M * (s))], 0 ≤ s ≤ t,
for all convex functions φ and for 0 ≤ s ≤ t. Since M(0) = 0, M * (0) = G and lim t→∞ M * (t) = 0 in L 2 (Ω), we obtain (4.3) for convex Lipschitz function φ by taking s = 0 and letting t go to infinity. Finally we extend the formula to all convex integrable functions φ by considering an increasing sequence of Lipschitz convex functions φ n converging pointwise to φ. Applying the monotone convergence theorem to the nonnegative sequence φ n (F ) -φ 0 (F ), we have

E[φ(F ) -φ 0 (F )] = lim n→∞ E[φ n (F ) -φ 0 (F )],
which yields E[φ(F )] = lim n→∞ E[φ n (F )] since φ 0 (F ) is integrable. We proceed similarly for φ(G), allowing us to extend (4.3) to the general case.

Note that if ( Â(t)) t∈R + and ( Bt ) t∈R + are deterministic then ( W (t)) t∈R + and μ(dx, dt) can be taken equal to (W (t)) t∈R + and µ(dx, dt) respectively.

Example: point processes

Let (A(t)) t∈R + , ( Â(t)) t∈R + , (W (t)) t∈R + and ( W (t)) t∈R + be as in Theorem 4.2 above and consider

Z(t) = (Z 1 (t), . . . , Z n (t)) and Z(t) = ( Z1 (t), . . . , Zn (t))
to be two independent point processes in R n with compensators

n i=1 λ i (t)δ e i and n i=1 λi (t)δ e i ,
where e i = (0, . . . , 1, . . . , 0), i = 1, . . . , n, denotes the canonical basis in R n , and let

F M t = σ(W (s), Z(s) : 0 ≤ s ≤ t), t ∈ R + . Corollary 4.4. Given J(t) and Ĵ(t) two M d×n -valued integrable F M t -predictable pro- cesses, let F = ∞ 0 A(t)dW (t) + ∞ 0 J(t)(dZ(t) -λ(t)dt), and 
G = ∞ 0 Â(t)d W (t) + ∞ 0 Ĵ(t)(d Z(t) -λ(t)dt).

Assume that

A † (t)A(t) ≤ psd  † (t) Â(t), dP dt -a.e.,
and that for almost all t ∈ R + , we have either: i) n j=1 λ j (t)δ (J 1,j (t),...,J d,j (t)) cxp n j=1 λj (t)δ ( Ĵ1,j (t),..., Ĵd,j (t)) , P -a.s., or:

ii) J i,j (t) ≥ 0, and Ĵi,j (t) ≥ 0, i = 1, . . . , d, j = 1, . . . , n, and n j=1 λ j (t)δ (J 1,j (t),...,J d,j (t)) cxpi n j=1 λj (t)δ ( Ĵ1,j (t),..., Ĵd,j (t)) , P -a.s.

Then for all convex functions φ : R d → R we have

E[φ(F )] ≤ E[φ(G)].
Proof. We apply Theorem 4.2 with B t (x) := J(t)x and Bt (x) := Ĵ(t)x, t ∈ R + , and

ν t (dx) = 1 R d \{0} (x) n j=1 λ j (t)δ (J 1,j (t),...,J d,j (t)) • B -1 t (dx) (4.5) 
and

νt (dx) = 1 R d \{0} (x) n j=1 λj (t)δ ( Ĵ1,j (t),..., Ĵd,j (t)) • B-1 t (dx). (4.6) 
Note that ν t cxp νt if and only if λ j (t) ≤ λj (t), j = 1, . . . , n, since Supp (ν t ) = Supp (µ t ) = {e 1 , . . . , e n }. In Section 5 we will give a geometric interpretation of the convex ordering cxp , with application to the conditions imposed on ν t 

F M t = σ(W (s), ω([0, s] × A) : 0 ≤ s ≤ t, A ∈ B b (R n )), t ∈ R + , where B b (R n ) = {A ∈ B(R n ) : σ(A) < ∞}.
Corollary 4.7. Let (J t,x ) (t,x)∈R + ×R n be a R d -valued F M t -predictable process, integrable with respect to dP dtσ(dx), and let ( Ĵt,x ) (t,x)∈R + ×R n be an R d -valued deterministic function, integrable with respect to dtσ(dx). Consider the random variables

F = ∞ 0 A(t)dW (t) + ∞ 0 R n J t -,x (ω(dt, dx) -σ(dx)dt) (4.8)
and

G = ∞ 0 Â(t)d W (t) + ∞ 0 R n Ĵt -,x (ω(dt, dx) -σ(dx)dt).
Assume that

A † (t)A(t) ≤ psd  † (t) Â(t), dP dt-a.e.,
and that for almost all t ∈ R + , we have either:

i) σ • J -1 t -,• cxp σ • Ĵ-1 t -,
• , P -a.s., or:

ii) Ĵt -,x ≥ 0, σ(dx)-a.e., and

σ • J -1 t -,• cxpi σ • Ĵ-1 t -,• , P -a.s.
Then for all convex functions φ : R d → R we have

E[φ(F )] ≤ E[φ(G)].
Proof. We apply Theorem 4.2 with the jump characteristics

ν t (dx) = 1 R d \{0} (x)σ • J -1 t -,• (dx) and νt (dx) = 1 R d \{0} (x)σ • Ĵ-1 t -,• (dx),
and

B t (x) = Bt (x) = x, x ∈ R n .
Condition (i), resp. (ii) in Corollary 4.7 can be written as

R n f (J t -,x )σ(dx) ≤ R n f ( Ĵt -,x )σ(dx)
for all non-negative convex functions f : R d → R, resp. for all non-negative and non-decreasing convex functions f : R d → R. In particular, Corollary 4.7-ii) holds if we have σ cxpi σ and J t,x ≤ Ĵt,x , dtσ(dx)dP -a.e., and if x → J t,x , x → Ĵt,x are non-decreasing and convex on R n for all t ∈ R + .

We may also apply Theorem 4.2 to F as in (4.8) with

G = ∞ 0 Â(t)d W (t) + ∞ 0 Ĵ (t)(d Z(t) -λ(t)dt)
where ( Â(t)) t∈R + and ( Ĵ(t)) t∈R + are F M t -predictable M d×n -valued processes and ( Z1 , . . . , Zn ) is a R n -valued point process independent of F M , with

ν t = σ • J -1 t -,• and νt = n i=1 λi (t)δ e i .
In case x → J t,x is convex (resp. non-negative, non-decreasing and convex) on R n for all 0 ≤ t ≤ T , condition (i) resp. (ii), of Theorem 4.2 is satisfied provided

σ cxp n i=1 λi (t)δ e i , resp. σ cxpi n i=1 λi (t)δ e i . (4.9) 

A geometric interpretation for discrete measures

The next lemma provides a first interpretation of the order cxp . However the necessary condition (5.2) is clearly not sufficient to ensure the convex ordering of µ and ν. Our aim in this section is to find a more precise geometric interpretation of µ cxp ν in the case of finite supports, with the aim of applying this criterion to the jump measures defined in (3.15), (3.16), (4.5), (4.6) and (4.9).

For all u ∈ S d-1 the unit sphere in R d , let

µ u = µ • u, • -1 (resp. ν u = ν • u, • -1 )
denote the image of µ, resp. ν, on R by the mapping x → u, x . We have µ u cxp ν u and the survival function φ µ,u associated with µ u , defined by

φ µ,u (a) = R (y -a) + dµ u (y) = R d ( y, u -a) + dµ(y),
is a convex function with φ µ,u ≤ φ ν,u for all u ∈ S d-1 . Moreover for all a ∈ R such that a is sufficiently large we have φ µ,u (a) = φ ν,u (a) = 0.

For every x ∈ R d and u ∈ S d-1 let

a x,u = inf {b ∈ R : b ≥ u, x , φ µ,u (b) = φ ν,u (b)} (5.3) and D x,u = {y ∈ R d : u, y ≤ a x,u },
which is a closed half-space containing x. Finally we let

C x := u∈S d-1 D x,u
which is a compact convex set containing x. On the other hand, letting

Du = {z ∈ R d : u, z ≤ ãu }, x ∈ R d , u ∈ S d-1 , where ãu = inf {b ∈ R : b ≥ u, y , ∀y ∈ Supp (ν)} , we have C (Supp (ν)) = u∈S d-1
Du . In order to see this, take u = 1 and then u = -1, and note that C -1 is contained in the vertical line passing through -1 and apply Theorem 5.5. Similarly we have

Note that we have

C 1 = [1 -i, 1 + i]. Next, consider µ = 1 3 δ 1/2 + 2 3 δ -1/4 and ν = 1 3 (δ 1 + δ j + δ j 2 ),
where j = e 2iπ/3 . Then Theorem 5.5 shows that

C 1/2 = C -1/4 = C (Supp (ν)),
since {y 1 , y 2 , y 3 } is necessarily equal to Supp (ν), as illustrated below: Proof. From the definition of C E it is clear that if x ∈ E then C x ⊂ C E . Consequently applying Theorem 5.5 to every x ∈ E gives the result.

When µ and ν are probability measures, the existence of the admissible kernel K such that µK = ν, used in the proof of Theorem 5.5, is also known as Strassen's theorem [START_REF] Strassen | The existence of probability measures with given marginals[END_REF], and it is equivalent to the existence of two random variables F, G with respective laws µ and ν, and such that F = E[G|F ]. Here we used Theorem 40 of [START_REF] Dellacherie | Probabilités et Potentiel[END_REF] which relies on the Hahn-Banach theorem. In dimension one this result has been recovered via a constructive proof in [START_REF] Müller | On the optimal stopping values induced by general dependence structures[END_REF]. We close this paper with the following remark which concerns the cx ordering.

Remark 5.10. The conclusion of Theorem 5.5, associated to the condition µ cx ν, implies the existence of an admissible kernel K such that µK = ν.

Proof. We use the notation of Theorem 5.5. First we show that if µ({x}) > ν({x})

then there exists a kernel K x such that K x (x, dy) is supported by {x, y 1 , . . . , y k } and is not equal to δ x , K x (x ′ , dy) is equal to δ x ′ if x ′ = x, and µ cx µK x cx ν. Indeed we can take

K x (x, dy) = (1 -ε)δ x (dy) + ε k i=1 a i δ y i (dy)
where the a i 's are positive, k i=1 a i = 1, x = k i=1 a i y i and ε > 0 is sufficiently smallthe existence of ε follows from the fact that the functions φ µ,u and φ ν,u are continuous in u, together with the compactness of S d-1 . Now let K be a maximal2 admissible kernel such that µK cx ν and the support of µK is included in Supp (µ)∪Supp (ν). If µK = ν then we can apply the argument above to µK, ν and x such that µK({x}) > ν({x}), and find a non trivial kernel K x such that µKK x cx ν, contradicting the maximality of K. So we conclude that µK = ν.

Thus an independent proof of Theorem 5.5, not relying on Theorem 40 of [START_REF] Dellacherie | Probabilités et Potentiel[END_REF], would provide a direct construction the admissible kernel K, extending the result of [START_REF] Müller | On the optimal stopping values induced by general dependence structures[END_REF] to higher dimensions.

Lemma 3 . 1 .

 31 Let A be a symmetric d × d matrix. Then the following statements are equivalent: i) A is positive semidefinite, ii) for all positive semidefinite matrices B we have A, B ≥ 0, Proof. Since A is symmetric, if it is positive semidefinite then its spectral decomposition is given as A = d k=1 λ k e k e † k , where the eigenvalues (λ k ) k=1,...,d of A are non-negative and (e 1 , . . . , e d ) denote the eigenvectors of A. Hence we have Tr (AB † ) = d k=1 λ k e k , Be k ≥ 0 if B is positive semidefinite. The converse follows by choosing B = x † x, x ∈ R d , and noting that

Lemma 5 . 1 .

 51 If µ and ν are two measures on R d with finite supports, then µ cxp ν impliesC (Supp (µ)) ⊂ C (Supp (ν)),(5.2)where C (A) denote the convex hull of any subset A of R d .Proof. Let H be any half-space of R d such that Supp (ν) ⊂ H. For any convex function φ such that {φ ≤ 0} = H and φ |∂H = 0 we have R d φ + ν(dx) = 0, henceR d φ + µ(dx) = 0 since µ cxp ν, which implies Supp (µ) ⊂ H.The conclusion follows from the characterization of the convex hull C (Supp (µ)), resp. C (Supp (ν)), as the intersections of all half-spaces containing it.
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  t ) t∈R + and a decreasing filtration (F * t ) t∈R + . Consider (M(t)) t∈R + = (M 1 (t), . . . , M d (t)) t∈R + a d-dimensional F t -forward martingale and (M * (t)) t∈R + = (M * 1 (t), . . . , M * d (t)) t∈R + a d-dimensional F * t -backward martingale, such that (M(t)) t∈R + has right-continuous paths with left limits, and (M * (t)) t∈R + has left-continuous paths with right limits. Denote respectively by (M c (t)) t∈R + and (M * c (t)) t∈R + the continuous parts of (M(t)) t∈R + and of (M * (t)) t∈R + , and by

are the M d -valued processes defined as the limits in uniform convergence in probability [M, M] t = lim n→∞ n k=1

  The quadratic variations ([M, M] t ) t∈R + , ([M * , M * ] t ) t∈R +

dx), where δ (s,x) denotes the Dirac measure at (s, x) ∈ R + × R d . Denote by ν(dt, dx) and ν * (dt, dx) the (F t ) t∈R + and (F * t ) t∈R + -dual predictable projections of µ(dt, dx) and of µ * (dt, dx).

  where d and d * denote the forward and backward Itô differential, respec-

	tively defined as the limits of the Riemann sums
	n
	k=1

  * i,j (t)) 1≤i,j≤d are M d -valued, t ∈ R + , and predictable respectively with respect to (F t ) t∈R + and to (F * t ) t∈R + . In the sequel, we will also assume that (H(t)) t∈R + , (H * (t)) t∈R + ∈ L 2 (Ω × R + ), and that

	and		
	d M c , M c		
	Let now		
	(M(t)) t∈R + be an F * t -adapted, F t -forward martingale,	(3.5)
	and		
	(M * (t)) t∈R + be an F t -adapted, F * t -backward martingale,	(3.6)
	with characteristics of the form		
	ν(dt, dx) = ν t (dx)dt	and	ν * (dt, dx) = ν * t (dx)dt,

and µ, ν are supported by R d + . t = H(t)dt, and d M * c , M * c t = H * (t)dt, where H(t) = (H i,j (t)) 1≤i,j≤d and H * (t) = (H

  .7) The hypotheses on (H(t)) t∈R + and (H * (t)) t∈R + imply that M c t and M * c t are in L 2 (Ω), t ∈ R + , and Condition 3.7 is a technical integrability assumption.

	Theorem 3.8. Assume that
	H(t) ≤ psd H

* (t), dP dt -a.e. and that for almost all t ∈ R + we have either: i) ν t cxp ν * t , or: ii) ν t cxpi ν * t and ν t , ν * t are supported by (R + ) d .
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  Convex ordering and predictable representationLet (W (t)) t∈R + be a n-dimensional Brownian motions and µ(dx, dt) be a jump measure t∈R + and ( Â(t)) t∈R + two M d×n -valued, F M t -predictable square-integrable processes, and (t, x) → B t (x) and (t, x)

	with jump characteristics of the form	
	ν(dt, dx) = ν t (dx)dt,	(4.1)
	generating a filtration (F M t ) t∈R + .	
	Consider (A(t))	

  ( ti ,x i ) (dt, dx) with respective intensities σ(dx)dt and σ(dx)dt on R n × R + under P . Let also (W (t)) t∈R + and ( W (t)) t∈R + be independent n-dimensional standard Brownian motions, independent of ω(dt, dx) under P and let (A(t)) t∈R + , ( Â(t)) t∈R + be as in Theo-

	(|x| 2 ∧ 1)σ(dx) < ∞,
	R n
	and two Poisson random measures
	ω(dt, dx) =
	rem 4.2 above, with

• B -1 t and νt • B-1 t in (i) and (ii) above. Example: Poisson random measures Consider σ, σ two atomless Radon measures on R n with R n (|x| 2 ∧ 1)σ(dx) < ∞, and i∈N δ (t i ,x i ) (dt, dx) and ω(dt, dx) = i∈N δ

Here, K ≤ K ′ means that there exists an admissible K ′′ such that K • K ′′ = K ′ .

since for all u ∈ S d-1 there exists z ∈ Supp (ν) such that u, z = ãu and for all b ∈ ( u, x , ãu ] we have φ ν,u (b) ≥ (ã u -b)ν({z}) > 0 and φ µ,u (b) = 0, implying a x,u = ãu and D x,u = Du . Note that in Theorem 5.5 below the existence of x ∈ R d such that µ({x}) > ν({x}) is always satisfied when µ cx ν and µ = ν. Theorem 5.5. Assume that µ and ν have finite supports and that µ cxp ν. Then for all x ∈ R d such that µ({x}) > ν({x}) there exists k ∈ {2, . . . , d + 1} and k elements

(5.6)

Proof. We only need to prove that x belongs to the convex hull of (C x \{x})∩ Supp (ν).

Indeed, if x ∈ C ((C x \{x}) ∩ Supp (ν)) then there exists k points y 1 , . . . , y k in this set, k ≥ 2, such that x is the convex barycenter of y 1 , . . . , y k , and the Caratheodory theorem (see e.g. [START_REF] Rockafeller | Convex Analysis[END_REF], Theorem 17.1) shows that the conclusion holds for some k ∈ {2, . . . , d + 1}.

Assume now that the assertion of the theorem is true when µ and ν have disjoint supports, and let µ and ν be any measures with finite supports, such that µ cxp ν and

These sets are not empty since µ = ν. Let µ ′ and ν ′ the measures defined by

which implies that µ cxp ν if and only if µ ′ cxp ν ′ . It also implies that for all u ∈ S d-1 and b ∈ R,

From this together with the fact that φ µ ′ ,u ≤ φ ν ′ ,u , we conclude that if D ′

x,u is defined as D x,u but with (µ, ν) replaced by (µ ′ , ν ′ ), then D ′

x,u = D x,u . Finally remarking that the support of ν ′ is included in the support of ν, we proved that it is sufficient to do the proof with µ ′ and ν ′ .

So in the sequel we assume that µ and ν have disjoint supports. As a consequence of Theorem 40 in [START_REF] Dellacherie | Probabilités et Potentiel[END_REF] applied to the cone of non-negative convex functions, there exists an admissible 1 kernel K such that µK = ν.

is included in the support of ν, and by (5.4), x is in the convex hull of the support of K(x, dy). Finally we are left to prove that the support of K(x, dy) is included in C x .

For this we let µ x be the measure defined by

Then µ cxp µ x and µ x cxp ν, which is easily proved by the existence of admissible kernels P and P ′ such that µP = µ x and µ x P ′ = ν. More precisely they are given by

x ′ ∈ Supp (µ)\{x}.

1 Admissible means here that for every x ∈ R d we have δ x cxp K(x, dy).
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So for every u ∈ S d-1 , we have φ µ,u ≤ φ µ x ,u ≤ φ ν,u . Let us prove that this inequality implies that any point of the support of K(x, dy) belongs to D x,u . Assume that a point z of the support of K(x, dy) does not. An easy calculation shows that the right

From the definition of µ x we see that for t = u, x , µ x u ({t}) ≥ µ u ({t}). This implies that for t ≥ u, x ,

and this implies that φ µ,u (a x,u ) < φ µ x ,u (a x,u ) where a x,u is defined in (5.3). Since φ µ,u ≤ φ µ x ,u ≤ φ ν,u , we obtain φ µ,u (a x,u ) < φ ν,u (a x,u ), contradicting (5.3).

We proved that for every u, any point of the support of K(x, dy) belongs to D x,u .

This implies that the support of K(x, dy) is included in D x,u , achieving the proof.