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NECESSARY AND SUFFICIENT CONDITIONS TO BE AN

EIGENVALUE FOR LINEARLY RECURRENT DYNAMICAL

CANTOR SYSTEMS

XAVIER BRESSAUD, FABIEN DURAND, AND ALEJANDRO MAASS

Abstract. We give necessary and sufficient conditions to have measurable
and continuous eigenfunctions for linearly recurrent Cantor dynamical sys-
tems. We also construct explicitly an example of linearly recurrent system
with nontrivial Kronecker factor and a trivial maximal equicontinuous factor.

1. Introduction

Let (X,T ) be a topological dynamical system, that is, X is a compact metric space
and T : X → X is a homeomorphism. Let µ be a T -invariant probability measure
on X . In the classification of dynamical systems in ergodic theory and topological
dynamics rotation factors play a central role. In the measure theoretical context
this is reflected by the existence of a T -invariant sub σ-algebra Kµ of the Borel
σ-algebra of X , BX , such that

L2(X,Kµ, µ) = < {f ∈ L2(X,BX , µ) \ {0}; ∃λ ∈ C, f ◦ T = λf} >.

It is the subspace spanned by the eigenfunctions which determines the Kronecker
factor. From a purely topological point of view the role of the Kronecker factor is
played by the maximal equicontinuous factor. It can be defined in several ways.
When (X,T ) is minimal (all orbits are dense), it is determined by the continu-
ous eigenfunctions. So it is relevant to ask whether there exist continuous eigen-
functions; or even under which conditions measure theoretical eigenvalues can be
associated to continuous eigenfunctions.
In [CDHM] these questions are considered for linearly recurrent systems. These
systems are characterized by the existence of a nested sequence of clopen (for closed
and open) Kakutani-Rohlin (CKR) partitions of the system (P(n);n ∈ N) verifying
some technical conditions we call (KR1), (KR2),..., (KR6) (see below), and such
that the height of the towers of each partition increases “linearly” from one level to
the other. A partial answer to the former question is given in terms of the sequence
of matrices (M(n);n ≥ 1) relating towers from different levels in [CDHM]. A
complete answer to this question is given in the next theorem.
We need some extra notations. For each real number x we write |||x||| for the distance
of x to the nearest integer. For a vector V = (v1, . . . , vm)T ∈ Rm, we write

‖V ‖ = max
1≤j≤m

|vj | and |||V ||| = max
1≤j≤m

|||vj ||| .
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For n ≥ 2 we put P (n) = M(n) · · ·M(2) and H(1) = M(1).

Theorem 1. Let (X,T ) be a linearly recurrent Cantor system given by an increas-
ing sequence of CKR partitions with associated matrices (M(n);n ≥ 1), and let µ
be the unique invariant measure. Let λ = exp(2iπα).

(1) λ is an eigenvalue of (X,T ) with respect to µ if and only if
∑

n≥2

|||αP (n)H(1)|||2 <∞ .

(2) λ is a continuous eigenvalue of (X,T ) if and only if
∑

n≥2

|||αP (n)H(1)||| <∞ .

In [CDHM] the authors prove the necessary condition in the statement (1) and the
sufficient condition in the statement (2). One of the most relevant facts is that both
conditions do not depend on the order of levels in the towers defining the system
but just on the matrices.

2. Definitions and background

2.1. Dynamical systems. By a topological dynamical system we mean a couple
(X,T ) where X is a compact metric space and T : X → X is a homeomorphism.
We say that it is a Cantor system if X is a Cantor space; that is, X has a countable
basis of its topology which consists of closed and open sets (clopen sets) and does
not have isolated points. We only deal here with minimal Cantor systems.
A complex number λ is a continuous eigenvalue of (X,T ) if there exists a continuous
function f : X → C, f 6= 0, such that f ◦T = λf ; f is called a continuous eigenfunc-
tion (associated to λ). Let µ be a T -invariant probability measure, i.e., Tµ = µ,
defined on the Borel σ-algebra BX of X . A complex number λ is an eigenvalue of
the dynamical system (X,T ) with respect to µ if there exists f ∈ L2(X,BX , µ),
f 6= 0, such that f ◦ T = λf ; f is called an eigenfunction (associated to λ). If the
system is ergodic, then every eigenvalue is of modulus 1, and every eigenfunction
has a constant modulus. Of course continuous eigenvalues are eigenvalues.
In this paper we mainly consider topological dynamical systems (X,T ) which are
uniquely ergodic and minimal. That is, systems that admit a unique invariant
probability measure which is ergodic, and such that the unique T -invariant sets are
X and ∅.

2.2. Partitions and towers. Sequences of partitions associated to minimal Can-
tor systems were used in [HPS] to build representations of such systems as adic
transformations on ordered Bratteli diagrams. Here we do not introduce the whole
formalism of Bratteli diagrams since we will only use the language describing the
tower structure. Both languages are very close. We recall some definitions and fix
some notations.
Let (X,T ) be a minimal Cantor system. A clopen Kakutani-Rokhlin partition (CKR
partition) is a partition P of X given by

(2.1) P = {T−jBk; 1 ≤ k ≤ C, 0 ≤ j < hk}

where C is a positive integer, B1, . . . , BC are clopen subsets of X and h1, . . . , hk

are positive integers. For 1 ≤ k ≤ C, the k-th tower of P is
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Tk =

hk−1
⋃

j=0

T−jBk

and its height is hk; the roof of P is the set B =
⋃

1≤k≤C Bk. Let

(2.2)
(

P(n) = {T−jBk(n); 1 ≤ k ≤ C(n), 0 ≤ j < hk(n)} ; n ∈ N
)

be a sequence of CKR partitions. For every n ∈ N and 1 ≤ k ≤ C(n), B(n) is
the roof of P(n) and Tk(n) is the k-th tower of P(n). We assume that P(0) is the
trivial partition, that is, B(0) = X , C(0) = 1 and h1(0) = 1.
We say that (P(n);n ∈ N) is nested if for every n ∈ N it satisfies:

(KR1) B(n+ 1) ⊆ B(n);

(KR2) P(n+1) � P(n); i.e., for all A ∈ P(n+1) there exists A
′

∈ P(n) such that

A ⊆ A
′

;

(KR3)
⋂

n∈N
B(n) consists of a unique point;

(KR4) the sequence of partitions spans the topology of X ;

In [HPS] it is proven that given a minimal Cantor system (X,T ) there exists a nested
sequence of CKR partitions fulfilling (KR1)–(KR4) ((KR1), (KR2), (KR3) and
(KR4)) and the following additional technical conditions:

(KR5) for all n ≥ 1, 1 ≤ k ≤ C(n − 1), 1 ≤ l ≤ C(n), there exists 0 ≤ j < hl(n)
such that T−jBl(n) ⊆ Bk(n− 1);

(KR6) for all n ≥ 1, B(n) ⊆ B1(n− 1).

We associate to (P(n);n ∈ N) the sequence of matrices (M(n);n ≥ 1), where
M(n) = (ml,k(n); 1 ≤ l ≤ C(n), 1 ≤ k ≤ C(n− 1)) is given by

ml,k(n) = #{0 ≤ j < hl(n);T−jBl(n) ⊆ Bk(n− 1)}.

Notice that (KR5) is equivalent to: for all n ≥ 1, M(n) has strictly positive entries.
For n ≥ 0 set H(n) = (hl(n); 1 ≤ l ≤ C(n))T . As the sequence of partitions is
nested H(n) = M(n)H(n−1) for n ≥ 1. Notice that H(1) = M(1). For n > m ≥ 0
we define

P (n,m) = M(n)M(n− 1) . . .M(m+ 1) and P (n) = P (n, 1) .

Clearly

Pl,k(n,m) = #
{

0 ≤ j < hl(n); T−jBl(n) ⊆ Bk(m)
}

,

for 1 ≤ l ≤ C(n), 1 ≤ k ≤ C(m), and

P (n,m)H(m) = H(n) = P (n)H(1) .
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..... .....

h1(n) hC(n)(n)
hk(n)

TC(n)(n)

T

Bk(n)B1(n)

T1(n) Tk(n)

BC(n)(n)

Figure 1. CKR partition of level n: (a) X is partitioned in C(n)
towers. Each tower Tk(n), 1 ≤ k ≤ C(n), is composed by hk(n)
disjoint sets, called stages of the tower. The top of a tower is the
roof Bk(n). (b) The dynamics of T consists in going up from one
stage to the other of a tower until the roof. Points in a roof are
sent to the bottom of the towers; two points in the same roof can
be send to different towers.

2.3. Linearly recurrent systems. The notion of linearly recurrent minimal Can-
tor system (also called linearly recurrent system) in the generality we present below
was stated in [CDHM]. It is an extension of the concept of linearly recurrent sub-
shift introduced in [DHS].

Definition 2. A minimal Cantor system (X,T ) is linearly recurrent (with constant
L) if there exists a nested sequence of CKR partitions (P(n) = {T−jBk(n); 1 ≤ k ≤
C(n), 0 ≤ j < hk(n)};n ∈ N) satisfying (KR1)–(KR6) and

(LR) there exists L such that for all n ≥ 1, l ∈ {1, . . . , C(n)} and k ∈ {1, . . . , C(n−
1)}

hl(n) ≤ L hk(n− 1) .

Most of the basic dynamical properties of linearly recurrent minimal Cantor systems
are described in [CDHM]. In particular, they are uniquely ergodic and the unique
invariant measure is never strongly mixing. In addition, C(n) ≤ L for any n ∈ N

and the set of matrices {M(n);n ≥ 1} is finite.
To prove Theorem 1 we will need to consider property

(KR5’) for all n ≥ 2, 1 ≤ k ≤ C(n−1), 1 ≤ l ≤ C(n), there exist 0 ≤ j < j′ < hl(n)

such that T−jBl(n) ⊆ Bk(n− 1) and T−j′Bl(n) ⊆ Bk(n− 1),

instead of (KR5). This condition is equivalent to say that the coefficients of M(n)
are strictly larger than 1 for n ≥ 2.
Let (X,T ) be a linearly recurrent system given by a nested sequence of CKR
partitions (P(n);n ∈ N) which verifies (KR1)-(KR6) and (LR). Then the se-
quence of partitions defined by P ′(0) = P(0) and P ′(n) = P(2n − 1) for n ≥ 1,
is a sequence of nested CKR partitions of the system which verifies (KR1)–
(KR4), (KR5’), (KR6) and (LR) (with another constant). It follows that
M ′(1) = M(1) and M ′(n) = M(2n− 1)M(2n− 2) for n ≥ 2, where (M(n);n ≥ 1)
and (M ′(n);n ≥ 1) are the sequence of matrices associated to the partitions
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(P(n);n ∈ N) and (P ′(n);n ∈ N) respectively. Moreover,

(2.3)
∑

n≥2

|||αP (n)H(1)|||p <∞ ⇔
∑

n≥2

|||αP ′(n)H(1)|||p <∞

where α ∈ R and p ∈ {1, 2}.

3. Markov chain associated to a linearly recurrent system

Let (X,T ) be a linearly recurrent system and let µ be its unique invariant measure.
Consider a sequence (P(n);n ≥ 0) of CKR partitions which satisfies (KR1)-(KR6)
and (LR) with constant L and let (M(n);n ≥ 1) be the sequence of matrices
associated. The purpose of this section is to formalize the fact that there exists a
Markovian measurable structure behind the tower structure.
The following relation will be of constant use in the paper. For n ≥ 1 put µ(n) =
(µ(Bt(n)); 1 ≤ t ≤ C(n)) (the vector of measures of the roofs at level n). It follows
directly from the structure of towers that for 1 ≤ k < n

(3.1) µ(n− k) = MT (n− k + 1) · · ·MT (n)µ(n) .

3.1. First entrance times and combinatorial structure of the towers. In
this subsection we define several concepts that will be extensively used later. An
illustration of them is given in Figure 2.
Define the first entrance time map to the roof B(n), rn : X → N, by

rn(x) = min{j ≥ 0;T j(x) ∈ B(n)} .

Since (X,T ) is minimal and B(n) is a clopen set, then rn is finite and continuous.
Define the tower of level n map τn : X → N by

τn(x) = k if and only if x ∈ Tk(n) for some 1 ≤ k ≤ C(n) .

Remark that

(3.2) rn(T (x)) − rn(x) =

{

−1 if x /∈ B(n),

hk(n) − 1 if x ∈ B(n) and τn(T (x)) = k.

Let n ≥ 1 and 1 ≤ t ≤ C(n). By hypothesis (KR5), several stages in the tower
Tt(n) are included in the roof B(n − 1), in particular stage Bt(n). The number of
such stages is

mt(n) =

C(n−1)
∑

k=1

mt,k(n) = #{0 ≤ j < ht(n);T−jBt(n) ⊆ B(n− 1)} .

Let {e1, e2, . . . , emt(n)} = {0 ≤ j < ht(n);T−jBt(n) ⊆ B(n − 1)} with ht(n) >
e1 > e2 > ... > emt(n) = 0. The integers e1, ..., emt(n) are the first entrance times
of points belonging to Tt(n)∩B(n− 1) into Bt(n). Moreover, for all 1 ≤ l ≤ mt(n)
there is a unique k ∈ {1, ..., C(n− 1)} such that

T−elBt(n) ⊆ Bk(n− 1).

Denote this k by θt
l (n− 1). From (KR6) we have

θt
mt(n)(n− 1) = 1.(3.3)
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We set

θt(n− 1) = θt
1(n− 1) · · · θt

mt(n)(n− 1) ∈ {1, ..., C(n− 1)}∗.(3.4)

Remark that el − el+1 is the height of the θt
l+1(n − 1)-th tower of P(n − 1) for

1 ≤ l < mt(n). Thus,

el =

mt(n)
∑

k=l+1

hθt
k
(n−1)(n− 1).

Now, the tower Tt(n) can be decomposed as a disjoint union of the towers of P(n−1)

it intersects. More precisely, Tt(n) =
⋃mt(n)

l=1 El,t(n− 1), where

El,t(n− 1) =

el
⋃

j=el−1−1

T−jBt(n) =

h
θt

l
(n−1)(n−1)−1
⋃

j=0

T−j−elBt(n).

By definition,

El,t(n− 1) ⊆

h
θt

l
(n−1)(n−1)−1
⋃

j=0

T−jBθt
l
(n−1)(n− 1).

For x ∈ X denote by ln(x) the unique integer in {1, ...,mτn(x)(n)} such that x ∈
Eln(x),τn(x)(n − 1). The following lemma follows from the construction. The proof
is left to the reader.

Lemma 3. For all x ∈ X we have

n
⋂

k=1

Elk(x),τk(x)(k − 1) = T−rn(x)Bτn(x)(n);(3.5)

{x} =
⋂

n≥1

Eln(x),τn(x)(n− 1).(3.6)

Moreover, given

(tn;n ≥ 0) ∈
∏

n≥0

{1, ..., C(n)}, (jn;n ≥ 1) ∈
∏

n≥1

{1, ...,mtn
(n)}

such that θtn

jn
(n− 1) = tn−1 for n ≥ 1, then there exists a unique x ∈ X such that

((ln(x), τn(x));n ≥ 1) = ((jn, tn);n ≥ 1) .(3.7)

Remark that the set in (3.5) is the atom of the partition P (n) containing x.

For all n ≥ 1 and x ∈ X define sn−1(x) = (sn−1,t(x); 1 ≤ t ≤ C(n− 1)) by

sn−1,t(x) = #{j; rn−1(x) < j ≤ rn(x), T jx ∈ Bt(n− 1)}.

It also holds that,

sn−1,t(x) = #{j; ln(x) < j ≤ mτn(x)(n), θ
τn(x)
j (n− 1) = t}.

In other words, the vector sn−1(x) counts, in each coordinate 1 ≤ t ≤ C(n−1), the
number of times the tower Tt(n − 1) is crossed by a point x, after its first return
to the roof of level n − 1, and before reaching the roof of the tower of level n it
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belongs to. Notice that sn−1 does not consider the order in which the towers are
visited. In the following figure we illustrate the notations introduced previously.

θt
5
(n − 1) = 1E5,t(n − 1)

E4,t(n − 1)

E2,t(n − 1)

E1,t(n − 1)

Tt(n)

E3,t(n − 1) θt
3
(n − 1) = 1

θt
2
(n − 1) = 1

θt
1
(n − 1) = 2

θt
4
(n − 1) = 2

e5 = 0

e4 = h1(n − 1)

e3 = h1(n − 1) + h2(n − 1)

e2 = 2h1(n − 1) + h2(n − 1)

e1 = 3h1(n − 1) + h2(n − 1)

Figure 2. In the figure we present tower t of P(n) in a particular
example. We assume that in P(n − 1) there are only two towers
and that mt(n) = 5. If x ∈ E1,t(n− 1) then sn−1(x) = (3, 1)T and
ln(x) = 1. If x ∈ E4,t(n− 1) then sn−1(x) = (1, 0)T and ln(x) = 4.

A direct computation yields to the following lemma. It will be extensively used in
the sequel. Denote by < ·, · > the usual scalar product.

Lemma 4. For all x ∈ X and all n ≥ 2 it holds,

r1(x) = s0(x); rn(x) = rn−1(x)+ < sn−1(x), H(n − 1) >;

rn(x) =

n−1
∑

j=2

< sj(x), P (j)H(1) > + < s1(x), H(1) > +s0(x).

3.2. Markov property for the towers. Now we prove the sequence of random
variables (τn;n ∈ N) is a non-stationary Markov chain. We need some preliminary
computations. Let n ≥ 1. From Lemma 3 we have

µ(Bτn(x)(n)) = µ

(

n
⋂

k=1

Elk(x),τk(x)(k − 1)

)

.

Let (ti ∈ {1, ..., C(i)}; 0 ≤ i ≤ n). The set [τn = tn] is the tower Ttn
(n). For

0 ≤ k < n, τk(x) is constant on each level of Ttn
(n). By a simple induction, the

number of levels of this tower where τ0(x) = t0, . . . , τn−1(x) = tn−1 is equal to
mt1,t0(1) · · ·mtn,tn−1(n). In other words, the set [τ0 = t0, ..., τn = tn] is the union
of mt1,t0(1) · · ·mtn,tn−1(n) levels of the tower Ttn

(n) and

(3.8) µ[τ0 = t0, ..., τn = tn] = mt1,t0(1) · · ·mtn,tn−1(n)µ(Btn
(n)) .
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In particular, from the last equality and the definition of the matrices (M(n);n ≥ 1)
we deduce

µ[τn = tn|τn−1 = tn−1] =
mtn,tn−1(n)µ(Btn

(n))

µ(Btn−1(n− 1))
.

Now, given the sequence (P(n);n ∈ N) we can prove (τn;n ∈ N) is a Markov
chain on the probability space (X,BX , µ). Therefore, by (3.1), the matrix Q(n) =
(qt,t̄(n); 1 ≤ t̄ ≤ C(n), 1 ≤ t ≤ C(n− 1)) with

qt,t̄(n) =
mt̄,t(n)µ(Bt̄(n))

µ(Bt(n− 1))

is a stochastic matrix.

Lemma 5. The sequence of random variables (τn;n ∈ N) is a non-stationary
Markov chain with associated stochastic matrices (Q(n);n ≥ 1).

Proof. From (3.8) we get

µ[τn = t̄|τn−1 = t, τn−2 = tn−2, . . . , τ0 = t0]

=
mt1,t0(1) · · ·mt,tn−2(n− 1)mt̄,t(n)µ(Bt̄(n))

mt1,t0(1) · · ·mt,tn−2(n− 1)µ(Bt(n− 1))

=
mt̄,t(n)µ(Bt̄(n))

µ(Bt(n− 1))

= µ[τn = t̄|τn−1 = t]

= qt,t̄(n).

�

The following lemma provides an exponential mixing property for non-stationary
ergodic Markov chains. It is a standard result. The proof can be adapted from
that of Corollary 2 page 141 of [Se]. That is, this corollary can be generalized to
the case of a non-stationary Markov chain where the stochastic matrices have not
necessarily the same dimension. Alternatively, a direct proof follows from inequality
(3.3) Theorem 3.1 page 81 of [Se] in the case of our particular matrices.

Lemma 6. Let (τn;n ∈ N) be the non-stationary Markov chain defined in the
previous subsection. There exist c ∈ R+ and β ∈ [0, 1[ such that for all n, k ∈ N,
with k ≤ n,

sup
1≤t≤C(n−k),1≤t̄≤C(n)

|µ[τn = t̄|τn−k = t] − µ[τn = t̄]| ≤ cβk .

4. Measurable eigenvalues

The main purpose of this section is to prove Statement (1) of Theorem 1 (this is
done in Subsection 4.2). In the first subsection we give a general necessary and
sufficient condition to be a measurable eigenfunction of a minimal Cantor system.

4.1. A necessary and sufficient condition to be an eigenvalue. We give
a general necessary and sufficient condition to be an eigenvalue. We do not use
it directly to prove our result, but we think it gives an idea of the classical way
to tackle the problem and shows that the difficulty relies in understanding the
stochastic behavior of the sequence (rn;n ∈ N). We would like to stress the fact
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that we still do not have a convincing interpretation of the sequence of functions
ρn which appears in the next theorem.

Theorem 7. Let (X,T ) be a minimal Cantor system and let µ be an invariant
measure. Let (P(n);n ∈ N) be a sequence of CKR partitions verifying (KR1)-
(KR4). A complex number λ = exp(2iπα) is an eigenvalue of (X,T ) with respect
to µ if and only if there exist real functions ρn : {1, ..., C(n)} → R, n ∈ N, such
that

(4.1) α (rn(x) + ρn ◦ τn(x)) converges (mod Z)

for µ-almost every x ∈ X when n tends to infinity.

Proof. Let λ = exp(2iπα) be a complex number of modulus 1 such that (4.1) holds
and let g be the corresponding limit function. Consider x 6∈ ∩n∈NB(n), so x does
not belong to B(n) for all large enough n ∈ N. Then, from (3.2) we get

exp(2iπg(Tx))

exp(2iπg(x))
= lim

n→∞
λrn(Tx)−rn(x) = λ−1.

This implies λ is an eigenvalue of (X,T ) with respect to µ.

Now, assume λ is an eigenvalue of (X,T ) with respect to µ and let g ∈ L2(X,BX , µ)
be an associated eigenfunction. For all n ∈ N let φn = λ−rn and ψn = g/φn. The
map φn is P(n)-measurable and bounded, then

φnEµ(ψn|P(n)) = Eµ(φnψn|P(n)) = Eµ(g|P(n)) −−−−→
n→∞

g

µ-almost everywhere. Since ψn ◦ T−j/ψn = λrn◦T−j−rn−j , the restriction of ψn to
each tower of level n is invariant under T . Thus Eµ(ψn|P(n)) is constant on each
of these towers and is therefore equal to the average of ψn on each tower.
To finish, for 1 ≤ i ≤ C(n) we define ρn(i) such that

Argλ−ρn(i) = Arg

(

1

µ(Bi(n))

∫

Bi(n)

ψndµ

)

.

This ends the proof. �

Remark 8. The same proof works if we remove the Cantor and clopen hypotheses.

4.2. Eigenvalues of linearly recurrent systems. In this subsection we prove
Statement (1) of Theorem 1. Recall (X,T ) is linearly recurrent and µ is the unique
invariant measure. Let (P(n);n ≥ 0) be a sequence of CKR partitions such that
(KR1)-(KR6) and (LR) with constant L are satisfied. Let (M(n);n ≥ 1) be the
associated sequence of matrices.
We will need the following lemma. Its proof can be found in [CDHM].

Lemma 9. Let u ∈ RC(1) be a real vector such that |||P (n)u||| → 0 as n → ∞.
Then, there exist m ≥ 2, an integer vector w ∈ ZC(m) and a real vector v ∈ RC(m)

with

P (m)u = v + w and ‖P (n,m)v‖ → 0 as n→ ∞ .

Assume the following condition holds:

(4.2)
∑

n≥2

|||αP (n)H(1)|||2 <∞ .
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Then, |||P (n)(αH(1))||| → 0 as n → ∞. From Lemma 9 there exist an integer
n0 ≥ 2, a real vector v ∈ RC(n0) and an integer vector w ∈ ZC(n0) such that,
P (n0)(αH(1)) = v + w and P (n, n0)v → 0 as n → ∞. By modifying a finite
number of towers, if needed, we can assume without loss of generality that n0 = 1
and that H(1) = (1, ..., 1)T . So condition (4.2) implies

(4.3)
∑

n≥2

‖P (n)v‖2 <∞ .

From (2.3), we can also assume without loss of generality that (KR5’) holds. That

is, entries of matrices M(n) are larger than 2 for all n ≥ 2.
For n ≥ 1 we define gn : X → R by

gn(x) = s0(x)+ < s1(x), v > +

n−1
∑

j=2

< sj(x), P (j)v > .

Since we are assuming H(1) = (1, ..., 1)T , then s0 = 0 and

gn(x) =

n−1
∑

j=1

< sj(x), P (j)v > ,

where we set P (1) = Id.

Lemma 10. If (4.2) holds, then the sequence (fn = gn − Eµ(gn);n ≥ 1) converges
in L2(X,BX , µ).

Proof. Let n ≥ 1. Recall that P(n) is the partition of level n and let T (n) be the
coarser partition {Tj(n); 1 ≤ j ≤ C(n)}. As usual we identify the finite partitions
with the σ-algebras they span and we use the same notation. Thus T (n) is the
σ-algebra spanned by the random variable τn.
Let Xn be the random variable given by

Xn =< sn, P (n)v > −Eµ(< sn, P (n)v >) .

We decompose it as Xn = Yn + Zn where

Yn = Eµ(Xn|P(n)) and Zn =< sn, P (n)v > −Eµ(< sn, P (n)v > |P(n)) .

We write κn = ‖P (n)v‖. Observe that for some positive constant K and all n ≥ 1
we have |Xn| ≤ Kκn, |Yn| ≤ Kκn and |Zn| ≤ Kκn.
First we show that the series

∑

Zn converges. Let m and n be positive integers
with m < n. The random variable Zm is measurable with respect to P(m + 1),
thus also with respect to P(n). Since Eµ(Zn|P(n)) = 0 we get Eµ(Zm · Zn) = 0.
As |Zn| ≤ Kκn for every n ≥ 1, the series

∑

Eµ(Z2
n) converges, and thus the

orthogonal series
∑

Zn converges in L2(X,BX , µ).
Now we prove that the series

∑

Yn converges in L2(X,BX , µ). Fix j ≥ 1 and
1 ≤ t̄ ≤ C(n + 1). The set Ej,t̄(n) is included in the tower Tt(n) where t = θt̄

j(n).
Moreover, the intersection of all levels of Tt(n) with Ej,t̄(n) are levels of Tt̄(n + 1)
(see Figure 2) and thus have the same measure µ(Bt̄(n+ 1)). As each level of the
tower Tt(n) has measure µ(Bt(n)) we have

(4.4) µ(Ej,t̄(n)|P(n))(x) =

{

µ(Bt̄(n+1))
µ(Bt(n)) if x ∈ Tt(n)

0 otherwise.
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Observe that this conditional probability is constant in each atom of T (n) and thus

µ(Ej,t̄(n)|P(n)) = µ(Ej,t̄(n)|T (n)) .

As sn is constant on each set Ej,t̄(n), the same property holds for Xn and thus

(4.5) Yn = Eµ(Xn|P(n)) = Eµ(Xn|T (n)) .

In particular Yn is equal to a constant on each set [τn = t̄ ] and we write yt̄ for this
constant. Fix k with 0 ≤ k ≤ n. If τn−k(x) = t we have

Eµ(Yn|T (n− k))(x) =

C(n)
∑

t̄=1

µ[τn = t̄ |τn−k = t]yt̄ .

We have
C(n)
∑

t̄=1

µ[τn = t̄ ]yt̄ = Eµ(Yn) = 0 .

We deduce from Lemma (6), the fact that C(n) is bounded independently of n and
|Yn| ≤ Kκn that for some positive constant C

|Eµ(Yn|T (n− k))(x)| ≤

C(n)
∑

t̄=1

|µ[τn = t̄|τn−k = t] − µ[τn = t̄]|yt̄ ≤ Cβkκn .

As Yn−k is measurable with respect to T (n− k) we have

|Eµ(Yn · Yn−k)| ≤ CβkκnEµ(|Yn−k|) ≤ Cβkκnκn−k .

For 1 ≤ m < n we compute

Eµ





(

n
∑

k=m

Yk

)2


 =
∑

m≤j,l≤n

Eµ(Yj · Yl) ≤ C
∑

m≤j,l≤n

βj−lκjκl

= C
n−m
∑

r=0

βr

n−r
∑

l=m

κlκl+r ≤ C
n−m
∑

r=0

βr

n
∑

l=m

κ2
l

≤
C

1 − β

n
∑

l=m

κ2
l .

Since the series
∑

κ2
j converges, the partial sums of the series

∑

Yn form a Cauchy

sequence in L2(X,BX , µ). �

The following lemma completes the proof of Theorem 1 (1).

Lemma 11. Let f ∈ L2(X,BX , µ) be the limit of sequence (fn;n ≥ 1). The
function exp(2iπf) is an eigenfunction of (X,T ) with respect to µ associated to the
eigenvalue exp(2iπα).

Proof. Remark that gn(x) = αrn−1(x) (mod Z). From relation (3.2) we get

fn(Tx) = fn(x) − α (mod Z)

holds outside of the roof B(n) and µ(B(n)) → 0 as n → ∞. We conclude using
Lemma 10. �
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5. Continuous Eigenvalues of Linearly Recurrent Systems

Let (X,T ) be a linearly recurrent dynamical system with constant L. The main
purpose of this section is to prove the necessary condition in the statement (2) of
Theorem 1. We recall the sufficient condition was proven in [CDHM].

5.1. A necessary and sufficient condition to be a continuous eigenvalue. In
this subsection we only assume that (P(n);n ∈ N) is a sequence of CKR partitions
describing the system (X,T ) which satisfies (KR1)-(KR6). We give a general
necessary and sufficient condition to be a continuous eigenvalue.

Proposition 12. Let λ = exp(2iπα) be a complex number of modulus 1. The
following conditions are equivalent,

(1) λ is a continuous eigenvalue of the minimal Cantor system (X,T );
(2) (λrn(x);n ≥ 1) converges uniformly in x, i.e., the sequence (αrn(x);n ≥ 1)

converges (mod Z) uniformly in x.

Proof. We start proving that (1) implies (2). Let g be a continuous eigenfunc-
tion associated to λ. For all n ≥ 1 and all x ∈ X we have T rn(x)(x) ∈ B(n) ⊆
B1(n − 1) (the last inclusion is due to (KR6)). Hence, using (KR3), we de-
duce that limn→∞ T rn(x)(x) = u uniformly in x, where u is the unique element of
∩n≥0B(n). The eigenfunction g being uniformly continuous we have that λrn(x) =

g(T rn(x)(x))/g(x) tends to g(u)/g(x) uniformly in x.
Now we prove (2) implies (1). We set φ(x) = limn→∞ λrn(x). Since the convergence
is uniform and rn is continuous, then φ is continuous.
Let x be such that x 6∈ B(n) for infinitely many n. Then, from (3.2), we obtain
φ(T (x)) = λ−1φ(x). Using the minimality of (X,T ) and the continuity of φ, we
obtain that φ(T (y)) = λ−1φ(y) for all y ∈ X . Consequently λ is a continuous
eigenvalue. �

Corollary 13. Let λ be a complex number of modulus 1.

(1) If λ is a continuous eigenvalue of (X,T ) then

lim
n→∞

λhjn (n) = 1

uniformly in (jn;n ∈ N) ∈
∏

n∈N
{1, . . . , C(n)}.

(2) If

∑

m≥1

(

supk∈{1,...,C(m+1)} hk(m+ 1)

infk∈{1,...,C(m)} hk(m)

)

sup
k∈{1,...,C(m)}

| λhk(m) − 1 |<∞

then λ is a continuous eigenvalue of (X,T ).

Proof. Let g be a continuous eigenfunction of λ. Then, it is uniformly continuous.
Let ǫ > 0. There exists n0 ∈ N such that |g(y) − g(u)| < ǫ/2 for all y ∈ B1(n0),
where {u} = ∩n∈NB(n).
Let (jn;n ∈ N) ∈

∏

n∈N
{1, . . . , C(n)}. For all n ∈ N we take x(n) ∈ Bjn

(n) and

we set y(n) = T−hjn(n)(x(n)) ∈ B(n). Hence, using (KR6), for all n ≥ n0 + 1 the
points x(n) and y(n) belong to B(n) ⊆ B1(n0). Consequently

|λhjn (n) − 1| = |g(T hjn(n)y(n)) − g(y(n))|

≤ |g(x(n)) − g(u)| + |g(u) − g(y(n))| < ǫ.
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Now we prove (2). It suffices to remark, by Lemma 4, that for all x ∈ X and all
0 < n < m,

| λrm(x) − λrn(x) |=| 1 − λrm(x)−rn(x) |

≤
m−1
∑

l=n

supk∈{1,...,C(l+1)} hk(l + 1)

infk∈{1,...,C(l)} hk(l)
sup

k∈{1,...,C(l)}
| 1 − λhk(l) | .

Hence, from Proposition 12, λ is a continuous eigenvalue. �

Remark that for linearly recurrent systems statement (2) gives the sufficient con-
dition for λ to be a continuous eigenvalue. This was proved in [CDHM].

5.2. The linearly recurrent case. Now we assume (X,T ) is linearly recurrent
and we prove Theorem 1 part (2). We also assume without loss of generality that
the sequence of partitions verifies (KR5’), that is entries of M(n) are bigger than 2
for any n ≥ 2 (see discussion in subsection 2.3). To prove the result we introduce an
intermediate statement which gives a more precise interpretation to the necessary
condition.

Proposition 14. Let λ = exp(2iπα) be a complex number of modulus 1. The
following properties are equivalent.

(1) λ is a continuous eigenvalue of the minimal Cantor system (X,T ).
(2) There exist n0 ∈ N, v ∈ RC(n0), z ∈ ZC(n0), such that αP (n0)H(1) = v+z,

P (n, n0)v → 0 as n→ ∞ and the series

∑

j≥n0+1

< sj(x), P (j, n0)v >

converges for every x ∈ X.
(3)

∑

n≥2 |||αP (n)H(1)||| <∞

Proof. In [CDHM] it is proven that (3) implies (1).

We prove that (1) implies (2): assume λ is a continuous eigenvalue of (X,T ). We
deduce from statement (1) of Corollary 13 that |||αP (n)H(1)||| converges to 0 as n
tends to ∞. By Lemma 9, there are n0 ∈ N, v ∈ RC(n0) and z ∈ ZC(n0) such that
αP (n0)H(1) = v + z and P (n, n0)v → 0 as n→ ∞. By modifying a finite number
of towers we can assume without loss of generality that n0 = 1.

By Lemma 4, for n ≥ 1 and x ∈ X , rn(x) =
∑n−1

j=1 < sj(x), P (j)H(1) > +s0(x),

where we put P (1) = I. Then,

αrn(x) =

n−1
∑

j=1

< sj(x), P (j)v > +

n−1
∑

j=1

< sj(x), P (j)z > +αs0(x).

From Proposition 12,
∑n−1

j=1 < sj(x), P (j)v > +αs0(x) → v(x) (mod Z) as n →

∞. We distinguish two cases: if v(x) ∈ (0, 1), we write
∑n−1

j=1 < sj(x), P (j)v >

+αs0(x) = Vn(x)+vn(x) with Vn(x) ∈ Z and vn(x) ∈ [0, 1); if v(x) = 0 we consider
vn(x) ∈ [−1/2, 1/2). Then, in both cases, (vn(x);n ∈ N) converges and a fortiori
(vn+1(x) − vn(x);n ≥ 1) → 0 as n→ ∞. Moreover,
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n
∑

j=1

< sj(x), P (j)v > −
n−1
∑

j=1

< sj(x), P (j)v >

=< sn(x), P (n)v >= Vn+1(x) − Vn(x) + vn+1(x) − vn(x).

Since, for a linearly recurrent system {sn(x);x ∈ X,n ∈ N} is bounded, P (n)v → 0
and (vn+1(x)− vn(x)) → 0 as n→ ∞. We conclude Vn(x) is a constant integer for
all large enough n ∈ N. Consequently the series

∑

j≥2 < sj(x), P (j)v > converges.

Now we prove that (2) implies (3): we assume, without loss of generality, that
n0 = 1 and that for any x ∈ X the series

∑

j≥2

< sj(x), P (j)v >∈ R

converges. It suffices to prove that
∑

j≥2 ‖P (j)v‖ <∞.

For n ≥ 2 define i(n) ∈ {1, ..., C(n)} such that

| < ei(n), P (n)v > | = max
i∈{1,...,C(n)}

| < ei, P (n)v > |

where ei is the i-th canonical vector of RC(n). Let

I+ = {n ≥ 2;< ei(n), P (n)v >≥ 0}, I− = {n ≥ 2;< ei(n), P (n)v >< 0}.

To prove
∑

j≥2 ‖P (j)v‖ <∞ we only need to show

∑

j∈I+

< ei(j), P (j)v ><∞ and −
∑

j∈I−

< ei(j), P (j)v ><∞.

Since arguments we will use are similar in both cases we only prove the first fact.
To prove

∑

j∈I+ < ei(j), P (j)v ><∞ we only show

(5.1)
∑

j∈I+∩2N

< ei(j), P (j)v ><∞,

and analogously it can be proven

∑

j∈I+∩(2N+1)

< ei(j), P (j)v ><∞.

We construct two points x, y ∈ X such that sn(x) − sn(y) = ei(n) if n ∈ I+ ∩ 2N

and sn(x) − sn(y) = 0 elsewhere. By hypothesis, from this fact we conclude (5.1).
To construct x and y, according to Lemma 3, we only need to produce sequences

(tn;n ∈ N) ∈ Πn∈N{1, ..., C(n)}, (jn;n ≥ 1) ∈ Πn≥1{1, ...,mtn
(n)}

and

(t̄n;n ∈ N) ∈ Πn∈N{1, ..., C(n)}, (j̄n;n ≥ 1) ∈ Πn≥1{1, ...,mt̄n
(n)}

such that

θtn

jn
(n− 1) = tn−1 and θt̄n

j̄n
(n− 1) = t̄n−1 for all n ≥ 1.(5.2)

The point x is the unique one such that τn(x) = tn and ln(x) = jn. Point y is defined
analogously with respect to t̄n and j̄n. Given n ∈ (I+ ∩ 2N)c put tn = t̄n = 1.
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For n ∈ I+ ∩ 2N, by property (KR5’), there exist k ∈ {1, ...,m1(n+ 1) − 1} such
that θ1k+1(n) = i(n). Put

t̄n = i(n), j̄n = mt̄n
(n), tn = θ1k(n) and jn = mtn

(n).

Using (3.3) we obtain θtn

jn
(n − 1) = 1 and θt̄n

j̄n
(n − 1) = 1. Then, we set t̄n+1 =

tn+1 = 1, j̄n+1 = k+1 and jn+1 = k. Consequently, the relations (5.2) are satisfied
for n and n+ 1.
Now we treat the remaining case: n ∈ (I+)c ∩ 2N. We recall that tn = t̄n = tn+1 =
t̄n+1 = 1. It suffices to set

jn = j̄n = m1(n) and jn+1 = j̄n+1 = m1(n+ 1)

to fulfill the relations (5.2).
For each n ∈ I+ ∩ 2N, the towers of level n visited by x and y after their first
entrance time to B(n) and before their first entrance time to B(n+ 1) are

Sn(x) = {θ1k+1(n), . . . , θ1m1(n+1)(n)} and Sn(y) = {θ1k+2(n), . . . , θ1m1(n+1)(n)}

respectively. Therefore, sn(x) − sn(y) = ei(n).

On the other hand, if n 6∈ I+ ∩ 2N then Sn(x) and Sn(y) are the empty set. Hence
sn(x) = sn(y) = 0. �

6. Example: measurable and non continuous eigenvalues

We construct explicitly a system with a nontrivial Kronecker factor but having a
trivial equicontinuous factor. Let us consider the commuting matrices

A =

[

5 2
2 3

]

and B =

[

2 1
1 1

]

.

We set ϕ = 1+
√

5
2 . Let e = (ϕ, 1)T , f = (−1, ϕ)T , αA = 3 + 2ϕ, βA = 5 − 2ϕ,

αB = 1+ϕ and βB = 2−ϕ. Observe that αA > αB > βA > 1 > βB > 0 and {e, f}
is a base of R2 made of the common eigenvectors associated to eigenvalues αA, βA

of A and αB, βB of B respectively.
We define recursively the sequence (vn;n ≥ 1) of real numbers by: v1 = 1 and for
all n > 1

vn+1 =

{

βAvn if nvn ≤ 1
βBvn if nvn > 1

Notice that the sequence (nvn;n ≥ 1) is uniformly bounded and uniformly bounded
away from 0. Now let H(1) = M(1) = (1, 1)T and for n ≥ 1

M(n+ 1) =

{

A if nvn ≤ 1
B if nvn > 1

Remark M(n) = A for infinitely many values of n.
Define the words in {1, 2}∗, θ1(A) = 2211111, θ2(A) = 22211, θ1(B) = 211 and
θ2(B) = 21. Let(X,T ) be a minimal Cantor system such that there is a sequence of
CKR partitions (P(n);n ∈ N) verifying (KR1)-(KR6) with associated sequence
of matrices (M(n);n ≥ 1). Moreover, we require that for n ≥ 1 and t ∈ {1, 2},
θt(n) = θt(M(n + 1)) holds (see (3.4) for the definition of θt(n)). This is possible
by [HPS] using Bratteli diagrams. It is clear that (X,T ) is linearly recurrent. We
call µ its unique ergodic measure.
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A symbolic way to see this system is by considering the substitutions σA : {1, 2} →
{1, 2}∗, σA(1) = 2211111, σA(2) = 22211, and σB : {1, 2} → {1, 2}∗, σB(1) = 211,
σB(2) = 21. Define a sequence of substitutions (σn;n ≥ 1) by σ1 = Id and, for all
n > 1, σn+1 = σn ◦σM(n). It follows that ...111σn(1).σn(2)222... converges to some

ω ∈ {1, 2}Z, where the dot indicates the position to the left of 0 coordinate. We set

X = {T n(ω), n ∈ Z}, where T is the shift map.
Before to study the system (X,T ) defined by this sequence of matrices we need a
general property. We keep notations of previous sections.

Lemma 15. Let v ∈ R
C(1). If limn→∞ ‖P (n)v‖ = 0, then v is orthogonal to the

vector µ(1) = (µ(Bk(1)); 1 ≤ k ≤ C(1))T .

Proof. Let v ∈ RC(1) be such that limn→∞ ‖P (n)v‖ = 0. Then, for n > 1

| < µ(1), v > | = | < PT (n)µ(n), v > |

= | < µ(n), P (n)v > |

≤ ‖P (n)v‖,

and the last term converges to 0 as n→ ∞. Thus v is orthogonal to µ(1). �

Proposition 16. Let (X,T ) be the linearly recurrent system defined above. The
set of eigenvalues of (X,T ) is

Eµ =
{

exp (2iπα) ∈ C;α = (ϕ− 1, 2 − ϕ)A−lw, l ≥ 0, w ∈ Z
2
}

None of these eigenvalues is continuous except the trivial one.

Proof. Let v = −(ϕ−2)f = (ϕ−2, ϕ−1)T and n ≥ 2. Hence, P (n)v = P (n)(ϕH(1))
(mod Z2). Also, since v is an eigenvector of A and B, from the definition of vn we
get

P (n)v = βM(n) · · ·βM(2)v = vnv.

The sequence (vn)n≥1 was constructed so that nvn is uniformly bounded and uni-
formly bounded away from 0. It follows that

(6.1)
∑

n≥2

vn = ∞ and
∑

n≥2

v2
n <∞ ,

and

(6.2)
∑

n≥2

‖P (n)v‖ = ∞ and
∑

n≥2

‖P (n)v‖2 <∞.

In particular, limn→∞ ‖P (n)v‖ = 0 and, by Lemma 15, v is orthogonal to µ(1) =
(µ(B1(1)), µ(B2(1))T .

Claim: Let α ∈ R and λ = exp (2iπα): |||P (n)(αH(1))||| → 0 as n → ∞ holds if
and only if λ ∈ Eµ. Moreover, if λ ∈ Eµ then |||P (n)(αH(1))||| = c‖P (n)v‖, for
some positive constant c.

Proof of the claim. First assume |||P (n)(αH(1))||| → 0 as n→ ∞ holds. By Lemma
9, there exist m ≥ 2, an integer vector w ∈ ZC(m) and a real vector v′ ∈ RC(m)

with P (m)(αH(1)) = v′ + w and ‖P (n)P (m)−1v′‖ → 0 as n → ∞. From Lemma
15, vector P (m)−1v′ is orthogonal to µ(1). Hence, there exists k ∈ R such that
P (m)−1v′ = kv and

(6.3) P (m)(αH(1)) = kP (m)v + w.
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Suppose k = 0. It is not difficult to show by induction that gcd(h1(m), h2(m)) = 1.
Then, since w is an integer vector, α ∈ Z and λ = 1 which belongs to Eµ.
Suppose k 6= 0. Then, k = W1 −W2 where P (m)−1w = (W1,W2)

T . This gives,

αH(1) =

(

ϕ− 1 2 − ϕ
ϕ− 1 2 − ϕ

)

P (m)−1w.(6.4)

The determinants of the matrices A and B are respectively equal to 11 and 1.
Therefore, since P (m) = AlmBkm for some lm, km ≥ 0,

α = (ϕ− 1, 2 − ϕ)A−lmw′,

with w′ ∈ Z2. So λ ∈ Eµ.
Conversely, let λ ∈ Eµ. Then, since M(n) = A for infinitely many n ≥ 2, for n
large enough we get

P (n)(αH(1)) = P (n)

[

ϕ− 2 −(ϕ− 2)
ϕ− 1 −(ϕ− 1)

]

+ w,

where w ∈ Z
2. Therefore, |||P (n)(αH(1))||| = c‖P (n)v‖, for some positive constant

c, which proves the claim.

Finally, the proposition follows from Theorem 1 and property (6.2). �

This proposition gives an example of a minimal dynamical system with a nontrivial
Kronecker factor and a trivial maximal equicontinuous factor.
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Departamento de Ingenieŕıa Matemática, Universidad de Chile and Centro de Mod-
elamiento Matemático, UMR 2071 UCHILE-CNRS, Casilla 170/3 correo 3, Santiago,
Chile.
E-mail address: amaass@dim.uchile.cl


