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Abstract— Mobile users with single antennas can still take
advantage of spatial diversity through cooperative space-time
encoded transmission. In this paper, we consider a scheme in
which the relay chooses to cooperate only if the source-relay
channel is of an acceptable quality and we evaluate the usefulness
of relaying when the source acts blindly and ignores the decision
of the relay if it may cooperate or not. In our study, we consider
a regenerative relay in which the decision to cooperate is based
on a signal-to-noise ratio (SNR) threshold and consider the effect
of the possible erroneously detected and transmitted data at the
relay. We derive the end-to-end bit-error rate (BER) for binary
phase-shift keying modulation and look at two power allocation
strategies between the source and the relay in order to minimize
the end-to-end BER at the destination for a high SNR. Some
selected performance results show that computer simulations
based results coincide with our analytical results.

I. I NTRODUCTION

In many wireless applications, wireless users may not be
able to support multiple antennas due to size, complexity,
power, or other constraints. The wireless medium brings along
its unique challenges such as fading and multiuser interference,
which can be mitigated with cooperative diversity [1]–[4].
Emamian and Kaveh proposed the cooperation as solution
for combating shadowing [5] and Sendonaris et al. showed
that cooperation among users can enlarge the capacity region
of an uplink multiuser channel [6]. In traditional cooperative
diversity setups, a user is unilaterally designated to act as a
relay for the benefit of another one, at least for a given period
of time. In certain scenarios, the relay is an actual component
of the infrastructure with no own data to be delivered to
the network [7]–[11]. Therefore most of these systems use
the Decode-and-Forward (DF) or regenerative protocol for
cooperation when the relay decodes perfectly the message
sent by the source [12]–[14]. Thereby the relay uses feedback
to inform the source in order to cooperate, which may be a
restrictive condition. We try to overcome these restrictions by
using distributed space-time coding (DSTBC) which improves
bandwidth efficiency on top of diversity.
A major challenge in distributed cooperative transmissions is
to find a way to coordinate the relay transmissions without
requiring extra control information (e.g. feedback) overhead,
which would reduce part of the gain. The decision to relay can
be taken using a cyclic redundancy check (CRC) codes [15]

or using a signal-to-noise ratio (SNR) threshold at the relay
as in [16].
We choose DF protocol for communicating in our setup due
to the advantages cited in [9] when the relay is near to the
source, and we use an SNR threshold to decide if the relay
may decode or not. Hence the transmission must be done in
two phases. In the first phase, the source communicates its
information to the relay. In the second phase and depending
on the relay decision, the destination receives from the source
and the relay or only from the source. Therefore we consider
resource control in the form of power allocation by the source
across the two phases.
As expected, the relay may retransmit an erroneously decoded
message. Using Alamouti scheme [17], we determine the
end-to-end bit error rate (BER) expression for the binary
phase shift keying (BPSK) modulation taking the relay error
propagation into account. There will be a compromise to strike
between the transmit power of the source in the first phase and
the decoding threshold SNR at the relay in the second phase.

A. Related Works

Other contributions on selective decode and forward co-
operative communication under imperfect regeneration are
presented in [16], [18]. In [16], the source broadcasts its
message to relay and destination. In the second phase, if
the relay has decided to forward, it retransmits its received
signal to the destination. This scheme is well known as
time repetition coding in which the destination combines the
received signal from the source and relay. Otherwise, if the
relay has not decided to decode, it remains silent. This induces
a rate loss with respect to non cooperative communication
because the data is transmitted from different points in space,
during different time slots. In [18], the relay is allowed to make
errors and the authors opted for DSTC with OFDM for a block
fading channel. Therefore they proposed an optimal maximum
likelihood (ML) decoder which exploits the knowledge of the
error statistics at the relay and a suboptimal decoder when this
knowledge is not available.
The remainder of this paper is organized as follows. In sec-
tion II, we describe the system model and our proposed blind
cooperation mode of opration. In section III the end-to-end
BER expression is derived and the optimal power allocation



TABLE I

TRANSMISSION SCHEME IN PHASEII.

T1 T2

source s(n) s(n + 1)
relay (if γ > γ0) −s̃

∗(n + 1) s̃
∗(n)

and decoding threshold SNR are determined. Finally, some
selected simulation results are depicted in section IV while
some concluding remarks are given in section V.

II. SYSTEM MODEL

In this section we describe the distributed Alamouti scheme
and we note that only one nearby relay is targeted to cooperate.
The system model obeys to the topology depicted in Fig. 1
and we restrict our model to three nodes. We assume that each
terminal is equipped with one antenna. As depicted in Fig. 1,
the transmission is done in two phases, and we must balance
the need of resources. The source allocates a power fraction
equal toαP for its transmission to the relay in the first phase,
and the remaining power is dedicated to the second phase. We
denotehsr, hsd and hrd as the coefficients of the channels
between the source (S) and the relay (R), the source and the
destination (D) and the relay and the destination, respectively.

(b)
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Fig. 1. Cooperative communication system.

A. Blind cooperation

We describe the proposed transmission protocol which is
a time division duplex (TDD) scheme and summarized by
Table I. Each frame is subdivided in two consecutive BPSK N-
size information symbol blockss(n) ands(n+1) to be trans-
mitted in two phases. In the first phase, the source broadcasts
[s(n); s(n + 1)] using only the power fractionαP . Within this
phase, the destination does not consider the received data,
but intuitively, we can expect that this power fraction must
be as small as possible in order to save more power for the
next phase. Therefore in phase I only the relay is assumed
to receive the transmitted signal and the N-size signal vectors
yr(i) received are:

yr(i) =
√

αPhsrs(i) + nr(i), i = n, n + 1 (1)

wherenr(i) is the additive-noise vector at the relay with a
covariance matrixN0IN and we denoteγr = αP |hsr|2

N0

the

received SNR at the relay.
In the second phase, the source retransmits[s(n); s(n + 1)]
using the power fractionα1P . The relay transmission is
conditioned by its the received SNRγr; 1) If it exceeds the
decoding threshold SNRγ0, the relay decodes the data as
[̃s(n); s̃(n + 1)]. Hence in the following block, the relay sends
[−s̃∗(n + 1); s̃∗(n)] using the power fractionα2P and the
destination sees a distributed space-time code as
[

yd(n)
yd(n + 1)

]

︸ ︷︷ ︸
yd

=
√

P

[ √
α1 s(n) −√

α2 s̃∗(n + 1)√
α1 s(n + 1)

√
α2 s̃∗(n)

]

︸ ︷︷ ︸
S

[
hsd

hrd

]

︸ ︷︷ ︸
h

+

[
nd(n)

nd(n + 1)

]

︸ ︷︷ ︸
nd

(2)

wherend is the additive noise vector at the destination with
covariance matrixN0I2N .
Otherwise, 2) ifγr < γ0, the source which ignores the relay
decision is sending and D receives

yd(i) =
√

α1Phsds(i) + nd(i), i = n, n + 1 (3)

wherend(i) is the additive-noise vectors at D with a covari-
ance matrixN0IN . We note that there is no feedback from the
relay to the source which transmits blindly in phase II. But
even if the source and the relay are synchronized to transmit,
their packets might arrive asynchronous at the destination. We
can deal with this problem using the algorithm of [19]. But
focusing only on the transmission protocol, we can assume
that the signals reach the destination in the same time.

B. Detection procedure

Each transmitting node use a CDMA code which is imple-
mented as a training sequence. From a certain codec we can
form two orthogonal codesc1 = [c; c] andc2 = [−c; c]. The
source will usec1 and if the relay decide to cooperate, it will
usec2. The rank of the code matrixC = [c1 c2] gives us the
number of cooperating nodes and the destination will decide
which decoding technique to apply.
We can opt for another technique; if the relay decide to
cooperate, it transmits a specific bitb = 1 to inform the desti-
nation that it will send. Otherwise, when the destination never
receives this bit, it supposes that only source is transmitting.

III. PERFORMANCEANALYSIS

In the traditional DF protocol, the relay cooperates only
when it decodes perfectly the message. Therefore there is
no risk of error propagation by the relay, and in cooperative
scheme, the distributed nodes use a space time code as in
MIMO systems. But in our scheme, depending on the SNR
threshold levelγ0, the situation changes because the relay
can retransmit an erroneously decoded message. Therefore we
need to determine the end-to-end performance of this system
which is expressed as

Pe,sys = PdecP
1
e + (1 − Pdec)Pe,d (4)



where Pdec is the relay decoding probability, (see Ap-
pendix. A) andPe,d is the probability of error for the direct
communication between the source and the destination. In (4),
P 1

e is the error probability at D when S and R cooperate.
Whenγr > γ0, we enumerate these cases:

• The relay decodes with errors the received message, and
this event has a probability ofP s,r

e .
• The relay decodes perfectly the received message with

probability of 1 − P s,r
e .

ThereforeP 1
e is derived as

P 1
e = 0.5 × P s,r

e + (1 − P s,r
e )P 2

e (5)

where P 2
e is the error probability for the 2 by 1 Alamouti

scheme which depends on the network architecture, and 0.5
is the largest error probability when the Alamouti scheme
orthogonality is broken.P s,r

e is derived as (see Appendix. B
for the proof):

P s,r
e =aQ(

√
bγ0) − a exp

(
γ0

γ

) √
1

1 + 2
bγ

×Q

(√
2γ0

(
b

2
+

1

γ

))
(6)

whereQ(.) is the Marcum Q-function, a and b depend on the
modulation.

A. Parameter optimization

The most important parameters which control the proposed
scheme are the power fractionα and the decoding threshold
SNR at the relayγ0. Both parameters must be chosen to
satisfy:

(αm, γ0m) = arg min Pe,sys (7)

whereα ∈]0, 1[ and γ0 ∈ R. Given the complicated form of
Pe,sys, it is evident that this optimization can not be conducted
analytically in a straightforward fashion. Therefore we will
look in what follows for the optimum parameters based on
some numerical results.

IV. SIMULATION RESULTS

A. Network Geometry

We anticipate that cooperation will perform differently as
function of the positions of the users with respect to desti-
nation. Hence we study two different network geometries, de-
noted bysymmetricnetwork (SN) (see Fig. 1) andasymmetric
or linear network (LN) (see Fig. 2). In the linear (LN) case,
we model the path-loss, i.e. the mean channel powersσ2

h, as
a function of the relative relay position r by

σ2
sd = 1 , σ2

sr = d−ν , σ2
rd = (1 − d)−ν (8)

where ν is the path loss exponent and0 < d = dsr < 1.
The distances are normalized by the distancedsd. In these
coordinates, the source can be located at (0,0), the destination
can be located at (1,0), without loss of generality, and the relay
is located at (d,0) [20]. In the symmetric network (SN),hsd
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Fig. 2. Asymmetric (or linear) network.

andhrd are drawn with same unit-variance (equal sub channel
gains), but considering source and relay are close together, we
setσ2

sr = 16.

B. Simulation Results

In this section, we evaluate the performance of our scheme
in terms of end-to-end BER at the destination as function of
SNR = P/N0 for a BPSK modulation. We report results
for ν = 4, a block lengthN = 50, and we model all
channels as Rayleigh block flat fading with additive white
Gaussian noise. Figs. 3-5 show the end-to-end performance of
our scheme with optimized power allocation, compared with
the non cooperative system and MISO system respectively. In
order to make a fair comparison between different schemes, we
enforce all systems to transmit with the same overall power.
As mentioned before,P 2

e depends on the network architecture.
a) Equal sub-channel gains (SN):For equal sub-channel

gains γ, the moment generating function (MGF) of the in-
stantaneously experienced SNRρ for a system witht transmit
antennas,r receive antennas andλ is the channel energy, can
be expressed as [21]

φρ(s) =
1

(1 − ρ × s)u
(9)

whereR is the transmission rate,u = t × r and

ρ =
1

R

λ

t

S

N
=

λ

t

Es

N0
= log2(M)

λ

t

P

N0
(10)

whereEs is the energy per symbol,P the energy per bit and
M = 2 for BPSK modulation. We considered BPSK Alamouti
scheme thereforeR = 1, N = N0 and S

N
= P

N0

. The analysis
in [13], [14], [22] allows us to express the BER for BPSK
modulation in closed form as

Pt,r(R, γ,
S

N
) = φ 1

R
λ
t

S
N

(−1)

[
1

2
√

π

Γ(u + 1/2)

Γ(u + 1)

]
×

2F1

(
u, 1/2; u + 1; (1 +

1

R

γ

t

S

N
)−1

)
(11)

where 2F1(a, b; c; x) is the Gauss hypergeometric function
with 2 parameters of type 1 and 1 parameter of type 2.

b) Unequal Sub-Channel Gains (LN):For unequal sub-
channel gains, the MGF cam be shown to be given by

φ 1

R
λ
t

S
N

(s) =

u∑

i=1

Ki φ 1

R

λi
t

S
N

(s) (12)



TABLE II

OPTIMIZED PARAMETERS AT HIGH SNR (30 dB).

System SN LN, d = 0.1 LN, d = 0.5
αm 0.227 0.017 0.44
γ0m 6.57 6.78 6.28

with constantsKi [13], [23] (See appendix C)

Ki =

u∏

i′=1,i′ 6=i

γ̄i

γ̄i − γ̄i′
(13)

where γ̄i is the average channel gain of theith path. This
allows us to derive the expression of BER in closed form
where all the channel gains differ. The error rate can be
expressed as

Pucg(u)(e) =

u∑

i=1

KiPt,r

(
R, γ̄i,

S

N

)
(14)

1) Equal transmit power in phase II:We setα1 = α2 =
(1 − α) /2 1, and we determine the optimum variables in
Eq. (7) at high SNR. We consider an overall transmit power
P . Thereby, we must haveα + α1 + α2 = 1. But with a
blind source behavior, we note that the overall power will be
less thanP when the relay decide to not cooperate because
α2 = 0. The parameter optimization results for the SN and
LN architectures are derived numerically at a high SNR and
are collected in Table. II.
In the symmetric network, Fig. 3 shows that our scheme

achieves full diversity and the influence of the distributed
STBC with optimized parameters(αm, γ0m) = (0.227, 6.57)
is small (2 dB) wrt the MISO system in which each antenna
transmits with a power equal toP/2. But the full diversity
order performance will be saved for some appropriate varia-
tions on the parameters when we choose(0.1, 8). When we
take a lower threshold SNR levelγ0 = 0 dB, we observe a
little enhancement in the end-to-end performance for a low
SNR, but we loose the full diversity order. Fig. 4 and 5 show
the simulation results for a linear network when the relay is
located between the source and the destination at (0.1,0) and
(0.5,0) respectively. The gains due to the optimized power
allocation in the cooperation are clearly more significant when
the relay is close to the source (d = 0.1). At this situation,
it is clear that our scheme never performs worse than a non
cooperative scheme. Thereby, our results confirm the fact that
the DF protocol maximizes the capacity when the relay is near
to the source [9]. We note that the influence of the distributed
STBC with optimized parameters is more significant than the
SN case, and it is interesting to note that all simulation results
are in agreement with our analysis-based results.

2) Unequal transmit power in phase II:Dividing the
remaining power for the second phase between the source
and the relay, the power fraction(1 − α) P/2 will be lost
if the relay decides to not cooperate. In order to overcome

1α1 andα2 can be optimized based on channel gains of the links between
S and D, and between R and D.

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

SISO

Analysis, γ
0m

 = 6.57 dB & α
m

 = 0.227

simulations, γ
0m

 = 6.57 dB & α
m

 = 0.227

Analysis, γ
0
 = 8 dB & α = 0.1

simulations, γ
0
 = 8 dB & α = 0.1

Analysis, γ
0
 = 0 dB & α = 0.1

simulations, γ
0
 = 0 dB & α = 0.1

MISO 2x1

SISO

MISO 2x1

Fig. 3. Performance results of the symmetric network (SN) when the source
and the relay use the same transmit powerα1 = α2 = (1 − α) /2.

this unbalanced allocation, we take another power allocation
strategy for which the source and the relay have independent
power constraints. In the second phase, the source and the
relay transmit with respective power fractions2

{
α1 = (1 − α)
α2 = 1, if γr ≥ γ0

(15)

In the symmetric network, Fig. 6 shows that our scheme
achieves full diversity and the influence of the distributed
STBC with optimized parameters(αm, γ0m) = (0.413, 6.92)
is small with respect to the MISO system in which, each
antenna transmits with a power equal toP . In this case,
we note that the DSTC is never performs worse than non
cooperative system (SISO), because for all SNR levels, the
system uses at least a transmit powerP as the non cooperative
system.

V. CONCLUSIONS

In this work, we studied the performance of a blind coopera-
tion using a distributed STBC scheme, and we have shown that
a minimized end-to-end BER is reached if the relay position
is well chosen. If the relay is sufficiently near to the source,
more power is saved to transmit the data from the source to
the relay, and the error at the relay detector can be minimized
with an appropriate choice of a predetermined cut-off threshold
γ0. Also we can note that with a closer relay we reduce the
synchronization problem at the destination.

APPENDIX

In this appendix, we collect all the proofs.

2The source and relay may have different power constraintsPS and PR

wherePR < PS .
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Fig. 4. Performance results of the linear network (LN), where the relay
is near to the source (d = 0.1) and both transmitting with the same power
(1 − α) /2.

A. Decoding probability

We consider the probability that the relay decodes the signal
transmitted by the source. The relay decodes if its received
SNR γ is larger than the chosen SNR thresholdγ0.

Pdec = P (γ > γ0) (16)

The instantaneous SNR is determined by the fading channel
power|hsr|2, the power fractionα allocated to the first phase,
and the average SNR. Therefore,

Pdec =

∫ ∞

γ0

α.Γ

1

σ2
sr

exp(− t

σ2
sr

)dt = exp(− γ0

σ2
srαΓ

) (17)

whereΓ = P
N0

.

B. Probability of Error at a decoding Relay

We consider a special case of communication over a
Rayleigh flat-fading channel where detection is performed
only when the instantaneous SNR exceeds a thresholdγ0. The
resulting pdf of the effective SNR is a clipped exponential
function :

p(γ0)
γ (γ) =

{
0 γ < γ0

1
c

1
γ

exp
(
−γ

γ

)
γ ≥ γ0

(18)

where γ is the mean SNR of the Rayleigh fading channel,
and c = exp(−γ0/γ) is a normalizing constant ensuring unit
area under the pdf. In the following, we determine the error
probability for BPSK, which is given by

P s,r
e =

∫
Pe(γ)pγ(γ)dγ

=

∫ γb

γa

aQ(
√

bγ)pγ(γ)dγ (19)
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Fig. 6. Performance results of the symmetric network (SN) when the source
allocates a transmit powerα P in phase I and the remaining power in the
second phase while the relay transmits with a power equal toP .

wherea = 1, b = 2 and

Q(
√

bγ)=

∫ ∞

√
bγ

1√
2π

exp

(
− t2

2

)
dt

=1 −
∫ √

bγ

0

1√
2π

exp

(
− t2

2

)
dt (20)

Introducing

u(γ) =

∫
pγ(γ)dγ (21)

we obtain by partial integration of (19)

P s,r
e =

[
u(γ)aQ(

√
bγ)

]γb

γa

−
∫ γb

γa

d

dγ

(
aQ(

√
bγ)

)
u(γ)dγ

(22)



Following the Leibnitz’s rule for differentiation of integrals

∂

∂x

∫ g(x)

f(x)

F (x, x′)dx′=F (x, g(x))
∂g(x)

∂x
− F (x, f(x))

∂f(x)

∂x

+

∫ g(x)

f(x)

∂

∂x
F (x, x′)dx′ (23)

With 



x′ = t
x = γ

g(γ) =
√

bγ
f(γ) = 0

(24)

(22) can be re-written as

P s,r
e =

[
u(γ)aQ(

√
bγ)

]γb

γa

+
a
√

b

2
√

2π

∫ γb

γa

1√
γ

exp(− b

2
γ)dγ

(25)
However note that the pdf range isγa = γ0 and γb → ∞.
Substituting these limits in (25) and making the change of
variable (

b

2
+

1

γ

)
γ =

t2

2
(26)

we obtain the desired result given in (6).

C. Derivation of the ConstantsKi

We prove in this appendix that

Ki =

u∏

i′=1,i′ 6=i

γi

γi − γi′
(27)

Without loss of generality,K1 is derived here. The fractional
expansion is equated to the product expression, i.e.

u∑

i′=1

Ki′

1 − γi′s
≡

u∏

i′=1

1

1 − γi′s
(28)

To obtainK1, (28) is multiplied by(1 − γ1s) giving

(1−γ1s)

u∑

i′=1

Ki′

1 − γi′s
≡ (1−γ1s)

u∏

i′=1

1

1 − γi′s
(29)

after which s is set tos = 1/γ1 yielding

K1 =

u∏

i′=2

1

1 − γi′

γ1

=

u∏

i′=2

γ1

γ1 − γi′
(30)

The same procedure is repeated for anyKi in order to derive
(27).
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