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CONTINUOUS AND MEASURABLE EIGENFUNCTIONS OF

LINEARLY RECURRENT DYNAMICAL CANTOR SYSTEMS

MARIA ISABEL CORTEZ, FABIEN DURAND, BERNARD HOST, AND ALEJANDRO
MAASS

Abstract. The class of linearly recurrent Cantor systems contains the sub-
stitution subshifts and some odometers. For substitution subshifts measure–
theoretical and continuous eigenvalues are the same. It is natural to ask
whether this rigidity property remains true for the class of linearly recurrent
Cantor systems. We give partial answers to this question.

1. Introduction

Let (X, T ) be a topological dynamical system and µ a T –invariant probability
measure. When a measure-theoretical eigenvalue λ ∈ C of the system, that is f◦T =
λf for some f ∈ L2(µ)\{0}, is associated to a continuous eigenfunction f : X → C ?
In this paper we are interested in conditions on minimal dynamical Cantor systems
that answer this question. Our motivation comes from [Ho] where it is proved that
all eigenvalues of minimal substitution subshifts are associated to a continuous
eigenfunction. Such a question also appears in [NR] where the authors show that
generically interval exchange transformations are not topologically weakly mixing
(i.e., they do not have non trivial continuous eigenfunctions) and where they “fully
expect” the same holds for (measure-theoretical) weak mixing (i.e., they do not
have non trivial eigenfunctions). It is in general not true that all eigenvalues of a
minimal dynamical system have a continuous eigenfunction as can be seen for some
Toeplitz systems [Iw, DL] and for some interval exchange transformations [FHZ].

In this paper we focus on linearly recurrent dynamical Cantor systems (also
called linearly recurrent systems). They naturally extend the notion of substitution
subshifts in the sense they share the same return time structure. Linearly recurrent
subshifts were studied in [DHS, Du1, Du2, Le].

The paper is organized as follows. In Section 2 we define linearly recurrent
systems by means of nested sequence of Kakutani-Rokhlin partitions and obtain
some general properties. In particular we prove that these systems are uniquely
ergodic but are not strongly mixing.

In the following section, when the dynamical system (X, T ) is linearly recurrent
and µ is a T –invariant probability measure we give a necessary condition for a com-
plex number to be an eigenvalue. We also exhibit a sufficient condition for a complex
number to be a continuous eigenvalue, which involves the underlying matrix struc-
ture of the nested sequence of Kakutani-Rokhlin partitions defining (X, T ). This is
used in the last section to prove for natural probability spaces associated to families
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of linearly recurrent systems, and under a condition of “hyperbolicity”, that almost
every system of such family has only continuous eigenvalues. We give in Section 4
several examples to illustrate the results of the paper.

2. Definitions and background

2.1. Dynamical systems. By a topological dynamical system we mean a couple
(X, T ) where X is a compact metric space and T : X → X is a homeomorphism.
We say that it is a Cantor system if X is a Cantor space; that is, X has a countable
basis of its topology which consists of closed and open sets (clopen sets) and does
not have isolated points. The topological dynamical system (X, T ) is minimal
whenever X and the empty set are the only T -invariant closed subsets of X . We
only deal here with minimal Cantor systems. A complex number λ is a continuous
eigenvalue of (X, T ) if there exists a continuous function f : X → C, f 6= 0, such
that f ◦ T = λf ; f is called a continuous eigenfunction associated to λ. If (X, T )
is minimal, then every continuous eigenvalue is of modulus 1 and every continuous
eigenfunction has a constant modulus.

When (X, T ) is a topological dynamical system and µ is a T -invariant probability
measure, i.e., Tµ = µ, defined on the Borel σ-algebra BX of X , we call the triple
(X, T, µ) a dynamical system. We do not recall the definitions of ergodicity, weak
mixing and strong mixing (see [Wa] for example). A complex number λ is an
eigenvalue of the dynamical system (X, T, µ) if there exists f ∈ L2(µ), f 6= 0, such
that f ◦T = λf , µ-a.e.; f is called an eigenfunction (associated to λ). If the system
is ergodic, then every eigenvalue is of modulus 1, and every eigenfunction has a
constant modulus. By abuse of language we will also say that an eigenvalue is
continuous when the associated eigenfunction is continuous.

In this paper we mainly consider topological dynamical systems (X, T ) which
are uniquely ergodic, that is systems that admit a unique invariant probability
measure; this measure is then ergodic.

2.2. Partitions. Sequences of partitions of a minimal Cantor system were used
in [HPS] to build a representation of the system as an adic transformation on an
ordered Bratteli diagram. We recall some definitions and fix some notations we
shall use along this paper.

Let (X, T ) be a minimal Cantor system. A clopen Kakutani-Rokhlin partition
(CKR partition) is a partition P of X of the kind:

(2.1) P = {T−jBk; 1 ≤ k ≤ C, 0 ≤ j < hk}

where C is a positive integer, B1, . . . , BC are clopen subsets of X and h1, . . . , hk

are positive integers. For 1 ≤ k ≤ C, the k-th tower of P is the family {T−jBk; 0 ≤
j < hk}, and the base of P is the set B =

⋃

1≤k≤C Bk. Let

(2.2)
(

P(n) = {T−jBk(n) : 1 ≤ k ≤ C(n), 0 ≤ j < hk(n)} ; n ∈ N
)

be a sequence of CKR partitions. For every n we write B(n) for the base of P(n),
and we assume that P(0) is the trivial partition, that is B(0) = X , C(0) = 1 and
h1(0) = 1.

We say that this sequence (P(n); n ∈ N) is nested if for every n ≥ 0 it satisfies:

(KR1) B(n + 1) ⊂ B(n) and
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(KR2) P(n + 1) � P(n); i.e., for all A ∈ P(n + 1) there exists A
′

∈ P(n) such

that A ⊂ A
′

.

We consider mostly nested sequences of CKR partitions which satisfy also the
properties:

(KR3) ∩∞
n=0B(n) consists of a unique point;

(KR4) the sequence of partitions spans the topology of X ;

In [HPS] it is proven that for each minimal Cantor system (X, T ) there exists
a nested sequence of CKR partitions fulfilling (KR1)-(KR4) (i.e., (KR1), (KR2),
(KR3) and (KR4)) and the following conditions:

(KR5) for all n ≥ 1, 1 ≤ k ≤ C(n−1), 1 ≤ l ≤ C(n), there exists 0 ≤ j < hl(n)
such that T−jBl(n) ⊂ Bk(n − 1);

(KR6) for all n ∈ N, B(n + 1) ⊂ B1(n).

To such a sequence of partitions we associate a sequence of matrices (M(n); n ≥
1), where the matrix M(n) = (ml,k(n); 1 ≤ l ≤ C(n), 1 ≤ k ≤ C(n− 1)) is given by

ml,k(n) = #{0 ≤ j < hl(n); T−jBl(n) ⊂ Bk(n − 1)}.

We notice that Property (KR5) is equivalent to the condition that for every n ≥ 1
the matrix M(n) has positive entries. As the sequence of partitions is nested, we
get

hl(n) =

C(n−1)
∑

k=1

ml,k(n)hk(n − 1), n ≥ 1, 1 ≤ l ≤ C(n).

We rewrite this formula in a matrix form. For every n ≥ 0, let H(n) = (hl(n); 1 ≤
l ≤ C(n))t, that is the column vector with entries h1(n), h2(n), . . . , hC(n)(n). Then
we have H(n) = M(n)H(n − 1) for n > 0. For n > m ≥ 0 we define

P (n, m) = M(n)M(n − 1) . . .M(m + 1) and P (n) = P (n, 1) .

We have:

Pl,k(n, m) = #
{

j; 0 ≤ j ≤ hl(n), T−jBl(n) ⊂ Bk(m)
}

and

P (n, m)H(m) = H(n) = P (n)H(1) .

2.3. Linearly recurrent systems.

Definition 1. A minimal Cantor system (X, T ) is linearly recurrent (with constant
L) if there exists a nested sequence of CKR partitions (P(n) = {T−jBk(n); 1 ≤ k ≤
C(n), 0 ≤ j < hk(n)}; n ∈ N) satisfying (KR1)-(KR6) and

(LR) there exists L such that for all (l, k) ∈ {1, . . . , C(n)} × {1, . . . , C(n − 1)}
and all n ≥ 1

hl(n) ≤ L hk(n − 1) .

The notion of linearly recurrent dynamical Cantor system (also called linearly
recurrent system) is the extension of the concept of linearly recurrent subshift
introduced in [DHS]. Of course it can be proved that linearly recurrent subshifts
are linearly recurrent Cantor systems (see [Du1, Du2]). Examples of such systems
are substitution subshifts [DHS] and Sturmian subshifts whose associated rotation
number has a continued fraction with bounded coefficients [Du1, Du2].
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Lemma 2. Let (X, T ) be a linearly recurrent system and (P(n); n ∈ N) a se-
quence of CKR partitions satisfying Properties (KR1)-(KR6), and Property (LR)
with constant L. Then:

(1) for every n ∈ N we have C(n) ≤ L;
(2) for every n ∈ N, 1 ≤ k ≤ C(n) and 1 ≤ k′ ≤ C(n) we have hk(n) ≤

L hk′(n).

Proof. Property (1) follows directly from the hypotheses (KR5) and (LR). Indeed
C(n)hi(n) ≤ h1(n + 1) ≤ Lhi(n) where hi(n) = min{hk(n); 1 ≤ k ≤ C(n)}.

In a similar way we prove Property (2). From (KR5) it comes that all hi(n+1) are

greater than
∑C(n)

j=1 hj(n). Consequently, from (LR) we obtain for all 1 ≤ k ≤ C(n)

and 1 ≤ k′ ≤ C(n)

hk(n) ≤

C(n)
∑

j=1

hj(n) ≤ hi(n + 1) ≤ Lhk′(n).

This ends the proof. �

From this lemma we deduce that the set {M(n); n ≥ 1} is finite. The following
proposition, whose proof is left to the reader, tells us this is in fact a necessary and
sufficient condition to be linearly recurrent.

Proposition 3. Let (X, T ) be a minimal Cantor system. The system (X, T ) is
linearly recurrent if and only if there exist a nested sequence of CKR partitions
(P(n); n ∈ N), satisfying (KR1)-(KR6), and a constant K such that: for all n ≥ 1
and all (l, k) ∈ {1, . . . , C(n)} × {1, . . . , C(n − 1)},

1 ≤ ml,k(n) ≤ K,

where (M(n) = (ml,k(n); 1 ≤ l ≤ C(n), 1 ≤ k ≤ C(n − 1)); n ≥ 1) be the associated
sequence of matrices.

2.4. Unique ergodicity and absence of strong mixing of linearly recur-
rent systems. In this subsection (X, T ) is a linearly recurrent system with a
nested sequence of CKR partitions (P(n) = {T−jBk(n); 1 ≤ k ≤ C(n), 0 ≤
j < hk(n)}; n ∈ N) satisfying (KR1)-(KR6) and (LR) with constant L. Let
(M(n) = (ml,k(n); 1 ≤ l ≤ C(n), 1 ≤ k ≤ C(n − 1)); n ≥ 1) be the associated
sequence of matrices.

We notice that for each T –invariant probability measure µ and for every n ≥ 1
and 1 ≤ k ≤ C(n − 1) we have

(2.3) µ(Bk(n − 1)) =

C(n)
∑

l=1

ml,k(n)µ(Bl(n))

and

(2.4)

C(n)
∑

k=1

hk(n)µ(Bk(n)) = 1 .

To prove that linearly recurrent systems are uniquely ergodic we need the fol-
lowing lemma that is used through all this paper.
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Lemma 4. Let µ be an invariant measure of (X, T ). Then, for all n ∈ N and
1 ≤ k ≤ C(n) we have

hk(n)µ(Bk(n)) ≥
1

L
.

Proof. Fix k with 1 ≤ k ≤ C(n). By Equation (2.3), since all the entries of M(n+1)
are positive, we get

µ(Bk(n)) ≥

C(n+1)
∑

ℓ=1

µ(Bl(n + 1)) .

By (LR), for every l we have hk(n) ≥ hl(n + 1)/L thus

hk(n)µ(Bk(n)) ≥

C(n+1)
∑

ℓ=1

hl(n + 1)

L
µ(Bl(n + 1)) =

1

L
.

�

Proposition 5. Every linearly recurrent system is uniquely ergodic.

Proof. Let (X, T ) be a linearly recurrent system. Given a T –invariant probability
measure µ, we define the numbers

µn,k = µ(Bk(n)), n ≥ 0, 1 ≤ k ≤ C(n) .

These nonnegative numbers satisfy the relations

(2.5) µ0,1 = 1 and µn−1,k =

Cn
∑

l=1

µn,lml,k(n) for n ≥ 1, 1 ≤ k ≤ C(n − 1) .

In a matrix form: with V (n) = (µn,1, . . . , µn,C(n)), we have V (n− 1) = V (n)M(n).
Conversely, let the nonnegative numbers (µn,k; n ≥ 0, 1 ≤ k ≤ C(n)) satisfy these
conditions. As the partitions P(n) are clopen and span the topology of X , it is
immediate to check that there exists a unique invariant probability measure µ on
X with µn,k = µ(Bk(n)) for every n ∈ N and k ∈ {1, . . . , C(n)}.

From Lemma 4, there exists a constant δ > 0 such that

µn,i ≥ δµn−1,k

for every n ≥ 1 and (i, k) ∈ {1, . . . , C(n)} × {1, . . . , C(n − 1)}, and every invariant
measure µ. Without loss of generality we can assume δ < 1/2.

Let µ, µ′ be two invariant measures, and µn,k, µ′
n,k be defined as above. We

define

Sn = max
k

µ′
n,k

µn,k

=
µ′

n,i

µn,i

, sn = min
k

µ′
n,k

µn,k

=
µ′

n,j

µn,j

, and rn =
Sn

sn

for some i, j. For every k ∈ {1, . . . , C(n − 1)} we have:

µ′
n−1,k =

∑

l 6=j

µ′
n,lml,k(n) + µ′

n,jmj,k(n)

≤ Sn

∑

l 6=j

µn,lml,k(n) + snµn,jmj,k(n)

= Snµn−1,k − (Sn − sn)µn,jmj,k(n) ≤ µn−1,kSn − (Sn − sn)µn,j

≤ µn−1,ksn

(

rn(1 − δ) + δ
)

.

And in similar way, for every k ∈ {1, . . . , C(n − 1)} we have
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µ′
n−1,k ≥ µn−1,ksn

(

δrn + (1 − δ)
)

.

We deduce that

rn−1 ≤ φ(rn) where φ(x) =
(1 − δ)x + δ

δx + (1 − δ)
.

The function φ is increasing on [0, +∞) and tends to (1 − δ)/δ at +∞. Writing
φm = φ ◦ · · · ◦ φ (m times), for every n, m ∈ N we have 1 ≤ rn ≤ φm(rn+m) ≤
φm−1((1 − δ)/δ). Taking the limit with m → +∞, we get rn = 1. �

From now on we call µ the unique invariant measure on (X, T ). Let m ≥ 1 and
0 ≤ k ≤ C(m). By unique ergodicity,

1

N
#{0 ≤ j < N ; T−jx ∈ Bk(m)} → µ(Bk(m))

uniformly as N → ∞. But for n > m, 1 ≤ l ≤ C(n), for every x ∈ Bk(n) we have

#{0 ≤ j < hl(n); T−jx ∈ Bk(m)} = Pl,k(n, m) .

We deduce:

(2.6) max
1≤l≤C(n)

∣

∣

∣

Pl,k(n, m)

hl(n)
− µ

(

Bk(m)
)

∣

∣

∣
→ 0 as n → +∞ .

Proposition 6. Linearly recurrent systems are not strongly mixing.

Proof. Let m be an integer such that µ(B1(m)) < 1/L2 and for n > m let D(n) =
B1(m)∩ T h1(n)B1(m). We prove that limn µ(D(n)) > µ(B1(m))2 which will imply
that (X, T, µ) is not strongly mixing.

For n > m we write

E(n) = {0 ≤ j < h1(n − 1); T−jB1(n − 1) ⊂ B1(m)} .

By hypothesis (KR6) we have B(n) ⊂ B1(n − 1) and for j ∈ E(n) we get

T−j−h1(n)B1(n) ⊂ T−jB(n) ⊂ T−jB1(n − 1) ⊂ B1(m)

and T−jB1(n) ⊂ D(n). It follows that µ(D(n)) ≥ #E(n) ·µ(B1(n)). But #E(n) =
P1,1(n− 1, m) thus #E(n)/h1(n− 1) converges to µ(B1(m)) as n → +∞ by Equa-
tion (2.6). Therefore

lim
n

µ(D(n)) ≥ lim
n

h1(n − 1)µ(B1(n))µ(B1(m))

≥ lim
n

1

L
h1(n)µ(B1(n))µ(B1(m)) (by (LR))

≥
1

L2
µ(B1(m)) (by Lemma 4)

and the proof is complete. �

It is well-known that there exist substitution subshifts, and a fortiori linearly
recurrent systems, which are weakly-mixing (see [Qu]).
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3. Some conditions to be an eigenvalue

In this section we suppose (X, T, µ) is linearly recurrent, that is to say (P(n); n ≥
0) satisfies (KR1)-(KR6) and (LR) (with constant L). Let (M(n); n ≥ 1) be its
associated sequence of matrices.

We give a sufficient condition to be a continuous eigenvalue and a necessary
condition to be an eigenvalue. We define for n ≥ 1, 1 ≤ k ≤ C(n−1), 1 ≤ l ≤ C(n),

J(n, k, l) =
{

0 ≤ j < hl(n); T−jBl(n) ⊂ Bk(n−1)
}

, J(n) =
⋃

1≤k≤C(n−1)
1≤l≤C(n)

J(n, k, l) .

so that #J(n, k, l) = ml,k(n).

Proposition 7. Let λ ∈ C satisfy
∞
∑

n=1

max
1≤k≤C(n)

|λhk(n) − 1| < ∞ .

Then λ is a continuous eigenvalue of (X, T, µ).

Proof. For every n ∈ N, let fn be the function on X defined by

fn(x) = λ−j for x ∈ T−jBk(n),

1 ≤ k ≤ C(n) and 0 ≤ j < hk(n).
We compare fn and fn−1. By construction, for every x, fn(x)/fn−1(x) belongs

to the set {λ−j ; j ∈ J(n)}. But each integer in J(n) is a sum of terms of the form
hk(n − 1), and this sum contains at most L terms. We get

||fn − fn−1||∞ ≤ L max
1≤k≤C(n−1)

|λhk(n−1) − 1| .

By hypothesis, the series
∑

n≥1 ||fn−fn−1||∞ converges. Thus the sequence (fn; n ∈

N) converges uniformly to a continuous function f , which is clearly an eigenfunction
for λ. �

Proposition 8. If λ ∈ C is an eigenvalue of (X, T, µ) then
∞
∑

n=1

max
1≤k≤C(n)

∣

∣λhk(n) − 1
∣

∣

2
< ∞ .

Proof. We use the sets J(n, k, l) defined above.
Assume that λ = exp(2iπα), α ∈ R, is an eigenvalue, and that f is a corre-

sponding eigenfunction of modulus 1. For every n ∈ N, let fn be the conditional
expectation of f with respect to the σ-algebra spanned by Pn. For 1 ≤ k ≤ C(n),
fn is constant on Bk(n), and we write c(n, k) this constant.

The sequence (fn; n ∈ N) is a martingale ([Do]), and converges to f in L2(µ).
Moreover the functions fn − fn−1, n ≥ 1, are mutually orthogonal in L2(µ), hence
we have

(3.1)

∞
∑

n=1

||fn − fn−1||
2
2 < ∞

(see [Do] for the details).
We fix n ≥ 1, 1 ≤ l ≤ C(n) and 1 ≤ k ≤ C(n − 1), and we choose some j ∈

J(n, k, l). Looking at the structure of the towers, we see that j +hk(n−1) ≤ hl(n).
For 0 ≤ p < hk(n − 1) we have j + p < hl(n), and T−(j+p)Bl(n) ⊂ T−pBk(n − 1).
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For x ∈ T−(j+p)Bl(n), we have fn(x) = exp(−2iπ(j + p)α)c(n, l) and fn−1(x) =
exp(−2iπpα)c(n − 1, k). We get

||fn − fn−1||
2
2 ≥ hk(n − 1)µ(Bl(n))|exp(−2iπjα)c(n, l) − c(n − 1, k)|2 .

By Lemma 4 and (LR), hk(n− 1)µ(Bl(n)) ≥ L−2 , and from Equation (3.1) we get

(3.2)

∞
∑

n=1

max
1≤l≤C(n)

max
1≤k≤C(n−1)

max
j∈J(n,k,l)

|exp(−2iπjα)c(n, l) − c(n − 1, k)|2 < ∞ .

We use this bound first with k = 1 and an arbitrary l. By (KR6), 0 ∈ J(n, 1, l)
and from Equation (3.2) we get

∞
∑

n=1

max
1≤l≤C(n)

|c(n, l) − c(n − 1, 1)|2 < ∞ .

Using this three times, we get

(3.3)

∞
∑

n=1

max
1≤l≤C(n)

max
1≤k≤C(n−1)

|c(n, l) − c(n − 1, k)|2 < ∞ .

For each n ∈ N and 1 ≤ k ≤ C(n), the function |fn| is constant and equal to
|c(n, k)| on the k-th tower of P(n). By Lemma 4, the measure of this tower is not
less than 1/L. Since ‖fn‖2 → ‖f‖2 = 1, we get that infk |c(n, k)| converges to 1
when n → +∞. Hence from Equations (3.2) and (3.3), we get

∞
∑

n=1

max
1≤l≤C(n)

max
1≤k≤C(n−1)

max
j∈J(n,l,k)

|exp(−2iπjα) − 1|2 < ∞ .

We use this bound with two consecutive elements of the same set J(n, l, k) and get
the announced result. �

The following sufficient condition for weak mixing follows from Proposition 8. A
similar condition appears in [FHZ].

Corollary 9. For every n ∈ N, let

Kn = inf
{

|hi(n) − hj(n)| : 1 ≤ i, j ≤ C(n), hi(n) 6= hj(n)
}

and let K = limn Kn. If K is finite, then (X, T, µ) has at most K eigenvalues. In
particular, if K = 1 then this system is weakly mixing.

Now we restate Proposition 7 and Proposition 8 in terms of matrices.

Notation. For every real number x we write |||x||| for the distance of x to the
nearest integer. For a vector V = (v1, . . . , vm) ∈ Rm, we write

‖V ‖ = max
1≤j≤m

|vj | and |||V ||| = max
1≤j≤m

|||vj ||| .

We use similar notations for real matrices. With these notations, the two preceding
Theorems can be written as follows.

Theorem 10. Let α ∈ R and λ = exp(2iπα).

(1) If λ is an eigenvalue of (X, T, µ) then
∑

n≥1

|||αP (n)H(1)|||2 < ∞.

(2) If
∑

n≥1

|||αP (n)H(1)||| < ∞ then λ is a continuous eigenvalue of (X, T, µ).
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Proposition 11. Let α ∈ R and λ = exp(2iπα).
If λ is an eigenvalue of (X, T, µ) then it satisfies at least one of the two following

properties:

(1) α is rational, with a denominator dividing gcd(hi(m) : 1 ≤ i ≤ C(m)) for
some m ∈ N. In this case λ is a continuous eigenvalue.

(2) There exist m ∈ N and integers wj, 1 ≤ j ≤ C(m), such that α =
C(m)
∑

j=1

wjµ(Bj(m)).

Moreover, if α is rational, with a denominator dividing gcd(hi(m) : 1 ≤ i ≤ C(m))
for some m ∈ N, then λ is an eigenvalue of (X, T, µ).

The proof of Proposition 11 needs the following lemma.

Lemma 12. Let u be a real vector such that |||P (n)u||| → 0 as n → +∞. Then
there exist m ∈ N, an integer vector w and a real vector v with

P (m)u = w + v and ‖P (n, m)v‖ → 0 as n → +∞ .

Proof. By hypothesis, for every n ∈ N we can write P (n)u = vn + wn, where wn

is an integer vector and vn a real vector with ‖vn‖ → 0 as n → +∞. Since all the
matrices M(m) belong to a finite family, ‖M(m)vm − vm+1‖ converges to 0 as m
goes to infinity. But for every m ∈ N we have P (m + 1)u = M(m + 1)P (m)u, thus

M(m)vm − vm+1 = −M(m)wm + wm+1

and M(m)vm−vm+1 is an integer vector. Therefore the sequence (M(m)vm−vm+1)
is eventually zero. There exists m ∈ N such that vn = P (n, m)vm for every n > m.
The vectors v = vm and w = wm satisfy the announced properties. �

Proof of Proposition 11. Let u = αH(1). Since λ is an eigenvalue, |||P (n)u||| → 0
as n → ∞ by Theorem 10. Let m, v and w be as in Lemma 12. We recall that
P (m)u = αH(m). We distinguish two cases.

First we assume that v = 0. Then αH(m) is equal to the integer vector w, and
α is rational with a denominator dividing gcd(hi(m) : 1 ≤ i ≤ C(m)). For n ≥ m
the vector αH(m) has integer entries, thus |||αH(m)||| = 0 and λ is a continuous
eigenvalue by Theorem 10.

Now suppose v 6= 0. For n > m we have

C(m)
∑

k=1

µ(Bk(m))vk =

C(m)
∑

k=1

C(n)
∑

l=1

Pl,k(n, m)µ(Bl(n))vk by (2.3)

=

C(n)
∑

l=1

(P (n, m)v)l µ(Bl(n)) ≤ ‖P (n, m)v‖

and the last term converges to 0 as n → +∞, thus

C(m)
∑

k=1

µ(Bk(m))vk = 0 .

As w = αH(m) − v, that is, wj = αhj(m) − vj for 1 ≤ j ≤ C(m), we get

C(m)
∑

j=1

wjµ(Bj(m)) = α

C(m)
∑

j=1

hj(m)µ(Bj(m)) = α .
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The rest of the proof is left to the reader. �

4. Examples

We study some examples where we can explicitly say that the eigenfunctions are
continuous or there do not exist non trivial eigenvalues. We keep the notations and
hypotheses of the preceding section.

4.1. Example 1: The sequence (M(n); n ≥ 2) is ultimately constant. Let
(M(n); n ≥ 1) be the sequence of matrices associated to the linearly recurrent
system (X, T, µ). We say that (X, T, µ) has a stationary sequence of matrices if
there exist a square matrix M and an integer n0 ∈ N such that M(n) = M for all
n ≥ n0. Without loss we can assume that n0 = 2. We have Pn = Mn−1 for n ≥ 2.

Substitution subshifts and odometers with constant base belong to the family of
linearly recurrent systems with a stationary sequence of matrices (see [DHS]). The
following lemma was used in [Ho] to prove that eigenvalues of substitution subshifts
are continuous.

Lemma 13. Let M be a matrix with integer entries. If u is a real vector such that
‖Mnu‖ → 0 when n → ∞, then the convergence is exponential, i.e., there exist
0 ≤ r < 1 and a constant K such that ‖Mnu‖ ≤ Krn for all n ∈ N.

From this Lemma and Theorem 10 we get:

Proposition 14. Let (X, T, µ) be a linearly recurrent Cantor system with a station-
ary sequence of matrices. Then every eigenfunction of this system is continuous.

Moreover all the linearly recurrent Cantor systems with the same stationary se-
quence of matrices have the same eigenvalues.

4.2. Example 2: A family of weakly mixing systems. We build a family
of linearly recurrent systems which are the Cantor analogues of interval exchange
transformations considered in [FHZ] (Theorem 2.2). Let N be a positive integer.
Let (M(n); n ≥ 2) be a sequence of matrices in the family











l k − 1 1
l − 1 k 1
l − 1 k − 1 1



 ,





l − 1 k 1
l k − 1 1
l k 1



 : 1 ≤ l, k ≤ N







and let (X, T ) be a linearly recurrent system with this sequence of matrices. For
any n and any v = (v1, v2, v3)

t, the vector u = M(n)v satisfies |u1−u2| = |v1 − v2|.
Consequently if we suppose |h1(1)− h2(1)| = 1 then it follows by induction that

for all n ≥ 1 we have |h1(n)−h2(n)| = 1. By Corollary 9 the system (X, T, µ) does
not have non trivial eigenvalues, i.e. it is weakly mixing.

4.3. Example 3: The sequence (M(n); n ≥ 1) has infinitely many rank 1
matrices.

Proposition 15. Let (X, T, µ) be a linearly recurrent Cantor system and let the
associated sequence of matrices be (M(n); n ≥ 1). Suppose that M(n) has rank one
for infinitely many values of n. Then λ = exp(2iπα) is an eigenvalue of (X, T, µ)
if and only if α is rational with a denominator equal to gcd(hi(m) : 1 ≤ i ≤ C(m))
for some m ∈ N. Moreover every eigenfunction is continuous.
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Proof. Let λ = exp(2iπα) be an eigenvalue of (X, T, µ). As in the proof of Propo-
sition 11, we write u = αH(1), and take m, v and w as given by Lemma 12. We
choose n > m such that M(n) is of rank 1. We have

ker(P (n, m)) ⊂
{

x ∈ R
C(m) : ‖P (l, m)x‖ →l→∞ 0

}

⊂
{

x ∈ R
C(m) :

C(m)
∑

j=1

xjµ(Bj(m)) = 0
}

where the last inclusion follows from the proof of Proposition 11. The third of these
three spaces is of codimension 1 in RC(m). The matrix P (n, m) is not zero and has
a rank ≤ 1, thus the first of these three linear spaces is of codimension 1 also, and
these spaces are actually equal. Since v belongs to the second space, it belongs
to the first one, and P (n, m)v = 0. Thus αH(n) = P (n, m)w and it has integer
entries. We conclude as in the proof of Proposition 11. �

4.4. Example 4: 2 × 2 matrices with determinant equal to ±1. Here we
assume that the matrices (M(n); n ≥ 2) of the linearly recurrent system (X, T, µ)
are 2 × 2 matrices with entries in {1, . . . , L} and determinant ±1. We assume also
that h1(1) = h2(1) = 1. We set

Pn =

[

xn yn

zn wn

]

and ∆n = det(P (n)) = ±1 .

We notice that

xn + yn = h1(n) and zn + wn = h2(n) .

Since for every n ≥ 2 all the entries of M(n) are positive, we get easily that
h1(n) ≥ 2n−1 and h2(n) ≥ 2n−1.

By Equation (2.6), as n → ∞, we have

xn

h1(n)
→ µ(B1(1)) ,

yn

h1(n)
→ µ(B2(1)) ,

zn

h2(n)
→ µ(B1(1)) ,

wn

h2(n)
→ µ(B2(1)) .

Lemma 16. For a vector v ∈ R2 we have limn→∞ ‖P (n)v‖ = 0 if and only if v is
collinear with

(

µ(B2(1)),−µ(B1(1))
)

. In this case the convergence is exponential.

Proof. We write µ1 = µ(B1(1)) and µ2 = µ(B2(1)); clearly µ1 + µ2 = 1.
Let v ∈ R2. As in the proof of Proposition 11, if ‖P (n)v‖ → 0 then µ1v1 +

µ2v2 = 0, and v is collinear with (µ2,−µ1). It remains to show that ‖P (n)v‖ → 0
exponentially when v is collinear with (µ2,−µ1). Obviously we can restrict ourselves
to the case where these vectors are equal.

We check that xn+1h1(n) − xnh1(n + 1) = −m1,2(n + 1)∆n, and deduce that
∣

∣

∣

xn+1

h1(n + 1)
−

xn

h1(n)

∣

∣

∣
=

∣

∣

∣

m1,2(n + 1)∆n

h1(n + 1)h1(n)

∣

∣

∣
≤

L

h1(n + 1)h1(n)
.

Since xn/h1(n) → µ1 as n → ∞, we get

∣

∣

∣

xn

h1(n)
− µ1

∣

∣

∣
≤

∞
∑

i=n

L

h1(i + 1)h1(i)
≤

C

2nh1(n)

for some constant C. From xn + yn = h1(n) and µ1 + µ2 = 1, we obtain

|xnµ2 − ynµ1| = |xn − h1(n)µ1| ≤ C2−n .
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In a similar way, we have |znµ2 − wnµ1| ≤ C2−n. We conclude ‖P (n)v‖ ≤ C2−n.
�

Proposition 17. Let (X, T, µ) be a linearly recurrent Cantor system and let the
associated sequence of matrices (M(n); n ≥ 1) be 2 × 2 matrices with entries in
{1, . . . , L} and determinant ±1. Suppose also that h1(1) = h2(1) = 1. Let α ∈ R

and λ = exp(2iπα). Then λ is an eigenvalue of (X, T, µ) if and only if α belongs
to the set {p1µ(B1(1)) + p2µ(B2(1)) : p1, p2 ∈ Z}. Moreover every eigenfunction of
(X, T, µ) is continuous.

Proof. Let λ = exp(2iπα) be an eigenvalue of (X, T, µ). By Theorem 10 we have
|||αP (n)H(1)||| → 0 as n → ∞. We take u = αH(1), and let v, w and m as
given by Lemma 12. We write v′ = P (m)−1v and w′ = P (m)−1w. We have
αH(1) = v′ + w′, ‖P (n)v′‖ → 0 as n → ∞, and the vector w′ is an integer vector
because the matrix P (m) has integer entries and |det(P (m))| = 1. By Lemma 16,
there exists k ∈ R with v′1 = kµ(B2(1)) and v′2 = −kµ(B1(1)). Since u1 = u2 = α
and µ(B1(1)) + µ(B2(1)) = 1, we have k = v′1 − v′2 = −w′

1 + w′
2 ∈ Z, and α has the

announced form.
Conversely, if α = p1µ(B1(1)) + p2µ(B2(1)) for some integers p1 and p2, the

vector αH(1) can be written as the sum of an integer vector w and a vector v
collinear with

(

µ(B2(1)),−µ(B1(1))
)

. By Lemma 16, ‖P (n)v‖ → 0 exponentially
as n → ∞, thus |||αP (n)H(1)||| → 0 exponentially as n → ∞, and α is a continuous
eigenvalue by Theorem 10. �

4.5. Example 5: Two commuting matrices. Let (X, T, µ) be a linearly recur-
rent system with H(1) = (1, 1)t. We assume that each matrix M(n), n ≥ 2, is one
of the two following ones:

A =

[

5 2
2 3

]

and B =

[

2 1
1 1

]

.

We notice that the matrices A, B have the same eigenvectors and commute. We
write α1, α2 for the eigenvalues of A, with α1 > α2 > 1, and β1, β2 for the eigen-
values of B, with β1 > 1 > β2 > 0. We set δ = − log(β2)/ log(α2/β2). For every n
we write an (respectively bn) for the number of occurrences of A (respectively B)

in the sequence M(2), . . . , M(n). For every n the eigenvalues of P (n) are αan

1 βbn

1

and αan

2 βbn

2 , and we have

H(n) = αan

1 βbn

1 u1 + αan

2 βbn

2 u2

where u1, u2 are two non-zero vectors.
It is not difficult to show by induction that gcd(hm(1), hm(2)) = 1 for every m.

Assume first that lim sup an/n > δ. There does not exist any m ≥ 2 and 0 6= v ∈ R
2

with ‖P (n, m)v‖ → 0. By Lemma 12, there does not exist any u ∈ R2 \ Z2 such
that |||P (n)u||| → 0. By Theorem 10 the system is weakly mixing.

Let us assume now that lim sup an/n < δ. If m is an integer and v a vector such
that ‖P (n, m)v‖ → 0 as n → +∞, then v is collinear with u2 and the convergence
is exponential. It then follows from Lemma 12 and Theorem 10 that every eigen-
function is continuous. Moreover, there exist real numbers α, s with α /∈ Z such
that the vector (α, α) − sv2 belongs to Z2. Then exp(2πiα) is an eigenvalue, and
the system is not weakly mixing. We summarize:

• If lim sup an/n > δ then the system is weakly mixing.
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• If lim sup an/n < δ then the system is not weakly mixing, and all of its
eigenfunctions are continuous.

5. A random linearly recurrent system

The preceding examples lead to the somewhat vague intuition that for “most”
of the linearly recurrent systems the eigenfunctions are continuous. We test here
this guess by building random linearly recurrent systems in a natural and relatively
general way.

Let M be a finite set of matrices, not assumed to be of the same size, and let
MN be endowed with the shift S and with the product topology. We write Ω for the
subset of MN consisting in sequences (Mn) such that the product M(n + 1)M(n)
is defined for every n and we assume that Ω is not empty. Ω is a closed S-invariant
subset of MN, and (Ω, S) is a subshift of finite type. We write M = (M(n)) for an
element of Ω.

For every sequence M in Ω let (XM , T ) be a linearly recurrent system associated
to this sequence. By choosing a probability measure ν on Ω we get a random
linearly recurrent system. We henceforth assume that ν is invariant and ergodic
under S. We show now that under some natural hypothesis the eigenfunctions of
XM are continuous for ν-almost every M .

Let k be the maximum size of the elements of M. By completing each of these
elements by zero entries we can consider them as k×k matrices. We choose a norm
on Rk and a norm on L(Rk). Let A be the map from Ω to L(Rk) which maps
each sequence M to M(2). The function M 7→ log+(‖A(M)‖) is bounded and thus
belongs to L1(ν).

By Oseledets Theorem (see [Wa]) there exists a measurable subset B of Ω, in-
variant under S and of full measure, such that for every M ∈ B the limit

(5.1) lim
n→+∞

1

n
log‖A(Sn−1M) ◦ · · · ◦ A(SM) ◦ A(M)(v)‖

exists in R ∪ {±∞}.
We say that (Ω, S, ν) is hyperbolic if the set B can be chosen so that for every

M ∈ B and every v ∈ Rk this limit is non-zero. Henceforth we assume that
this condition holds and show that for any M ∈ B the eigenfunctions of XM are
continuous.

Let m be an integer and v ∈ RC(m) a vector such that ‖P (n, m)v‖ → 0 as
n → +∞. As B is invariant under S, the sequence (M(n) : n > m) belongs to
B and the limit (5.1) exists. By hypothesis this limit can not be positive, and it
is non zero by hyperbolicity, then it is negative. It follows that ‖P (n, m)v‖ → 0
exponentially.

By Theorem 10 and Lemma 12, every eigenfunction of XM is continuous for
M ∈ B and thus ν-almost everywhere.

6. Questions

Is it true that all eigenvalues of linearly recurrent systems are continuous ? If it is
not true, is the result of Section 5 true without the assumption of “hyperbolicity” ?
If the answer is again negative could we find some necessary and sufficient condition
to have only continuous eigenvalues ? In fact, it seems that the existence of non
continuous eigenfunctions is not only a property of the sequence of matrices, but it
depends on other elements of the dynamics.
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