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Particle-scale origins of shear strength in granular media
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Abstract. The shear strength of cohesionless granular materials is generally attributed to the com-
pactness or anisotropy of their microstructure. An open issue is how such compact or anisotropic
microstructures, and thus the shear strength, depend on theparticle properties. We first recall the
role of fabric and force anisotropies with respect to the critical-state shear stress. Then, a model of
accessible geometrical states in terms of particle connectivity and contact anisotropy is presented.
This model incorporates in a simple way the fact that, due to steric exclusions, the highest levels
of connectivity and anisotropy cannot be reached simultaneously, a property that affects seriously
the shear strength. We also analyze the force anisotropy in the light of the specific role of weak
forces in sustaining strong force chains and thus the main mechanism that underlies anisotropic
force patterns. Finally, we briefly discuss the effect of interparticle friction, particle shape, size
polydispersity and adhesion.

keyword: granular media; shear strength; fabric anisotropy; weak and strong forces.

1 Introduction

Since the early work of Coulomb in 1773, the plastic yield behavior of granular materials
has remained an active research field in close connection with soil mechanics and pow-
der technology [Mitchell and Soga(2005), Nedderman(1992)]. According to the Mohr-
Coulomb yield criterion, for normal and shear stressesσ andτ acting on a slip plane, the
plastic thresholdτc is the sum of two terms:

τc = c + σ tanϕ, (1)

wherec is a cohesive strength andϕ is the internal angle of friction depending only on the
nature of the granular material. This criterion expresses the pressure dependence of shear
strength which is a distinctive feature of granular media. Given (1), the shear strength
of cohesionless materials (c = 0) can be represented by the (dimensionless) stress ratio
τc/σ = µc = tanϕ. Since the angleϕ is a bulk property, it can be expressed in terms
of stress invariants. Letσα (α = 1, 2, 3) be stress principal values. The average stress
is p = (σ1 + σ2)/2 in 2D andp = (σ1 + σ2 + σ3)/3 in 3D. We define the stress



deviator byq = (σ1 − σ2)/2 in 2D andq = (σ1 − σ3)/3 in 3D under axisymmetric
conditions (σ2 = σ3). With these notations, it can be shown thatsin ϕ = q/p in 2D and
sinϕ = 3q/(2p + q) in 3D.
This picture of shear strength in granular media holds as a basic fact although the complex
plastic behavior of granular media can not be reduced to a single strength parameter. In
particular, the shear strength and plastic flow (dilatancy)depend on the granular structure
and direction of loading, the latter reflecting the anisotropy of the structure. Since the
shear strength is state-dependent, it cannot be consideredas a material property unless
attributed to a well-defined granular state. The internal angle of frictionϕ is often associ-
ated with the critical state (steady state or residual state) reached after long monotonous
shearing; see Fig. 1. This state is characterized by a solid fractionρc independent of the
loading history and initial conditions [Wood(1990)].
The critical-state strength is below the peak shear stresses occurring for dense states with
solid fractionρ0 > ρc, but these states are metastable and often lead to strain localization
[Darve and Laouafa(2000), Vardoulakis and Sulem(1995)]. For loose states withρ0 <
ρc, the critical state is reached asymptotically following diffuse rearrangements. Hence,
apart from these transients, which are governed by the evolution of internal variables
pertaining to the microstructure and are important in formulating elasto-plastic models,
the critical-state shear strength represents a stable plastic threshold for a granular material.
In this paper, we are interested in the critical-state strength as a material property of
cohesionless granular materials. The critical-state friction angleϕc can be described as a
coarse-grained (or homogenized) friction angle between two granular layers sliding past
each other. Nevertheless, the macroscopic status ofϕc as a Coulomb friction angle, on
the same grounds as those of dry friction between solid bodies, should not eclipse the
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Figure 1: Normalized shear stress as a function of cumulative shear strain in a 2D simple
shear simulation by the contact dynamics method for two different values of the initial
solid fraction.



fact that the granular friction angle is a bulk property to which adequate tensorial stress
analysis should be applied (this was indeed the contribution of Mohr) and where the slip
planes are nota priori defined, in contrast to solid friction which is a surface property
at the macroscopic scale [Radjai et al.(2004)]. Depending on the boundary conditions,
the critical state occurs either homogeneously in the wholevolume of a granular sample
or inside a thick layer of several particle diameters in the advent of strain localization
[Bardet and Proubet(1992), Herrmann et al.(1995), Vermeer(1990), Moreau(1997)]. In
both configurations,ϕc stems from various granular phenomena such as friction between
particles, anisotropy of the microstructure, organization of force networks and dissipation
due to inelastic collisions. We consider below these effects and their respective roles in
enhancing or restraining granular friction.

2 Effect of interparticle friction

While solid friction between particles underlies the frictional behavior of granular mate-
rials, it is not obvious how and through which physical mechanisms it comes into play. If
shear deformation took place as a result of sliding between all contacts along a slip plane,
the friction angleϕc would simply echo the friction between particles. An example of
such a configuration is a regular pile of cubic blocs subjected to a vertical load. Horizon-
tal shearing of this pile implies sliding between at least two rows so that the shear strength
of the pile is a straightforward effect of friction between the blocs. However, discrete nu-
merical simulations suggest that in sheared granular materials, rolling prevails over sliding
[Radjai et al.(1998)]. In quasistatic shear, sliding occurs at only≃ 10% of contacts, and
these sliding contacts belong essentially to weak contacts(see below) oriented on average
along the minor principal stress directions [Radjai et al.(1999), Staron and Radjai(2005),
Staron et al.(2005)]. Hence, the relationship betweenϕc and the local friction angleϕs

involves the inhomogeneous distribution of forces and mobilization (or activation) of the
friction force at rolling contacts.
This relationship is far from linear as shown in Fig. 2. The critical-state coefficient
µc = tanϕc is aboveµs = tanϕs at small values of the latter, and at larger values it tends
to a plateauµ∞ < µs [Corriveau et al.(1997), Taboada et al.(2006)]. The transition from
µc −µs < 0 to µc −µs > 0 occurs atµc = µs ≃ 0.5. Beyondµs = 0.5, µc is practically
independent ofµs. The independence ofϕc with respect toϕs at large values of the latter
indicates that the role of interparticle friction is more subtle than expected from simple
models. Moreover, the nonzero value ofϕ0 shows clearly that the interparticle friction is
not the only source of frictional behavior in the critical state [Roux and Radjai(2001)].
Thedirect contribution of interparticle friction to shear strength,i.e. without interposi-
tion by the microstructure as will be analyzed below, may be evaluated from a decom-
position of the shear stress. The stress tensorσαβ in a control volumeV can be ex-
pressed as [Rothenburg and Selvadurai(1981), Christoffersen et al.(1981), Moreau(1997),
Bagi(1999), Staron et al.(2005)]

σαβ = nb〈ℓ
i
αf i

β〉, (2)



wherenb is the number density of bonds (contacts),ℓi
α is theα-component of the branch

vectorℓi joining the centers of particles at contacti andf i
β is theβ-component of the

force vectorf acting at the contacti between the two particles.
The contribution of friction forces can be estimated by replacing in equation (2)f by
f ·t t, wheret is the unit vector along the friction force. The contribution of normal forces
is the complementary tensor obtained by replacingf byf ·n n, wheren is the unit vector
perpendicular to the contact plane. The corresponding shear strengthsqt andqn can then
be calculated in the critical state. Numerical simulationsshow that the ratioqt/q is quite
low (below 10%)[Cambou(1993)]. This counterintuitive finding underlines the role of
interparticle friction as a parameter acting “behind the scenes” rather than a direct actor
of shear strength. Our simulations show that, due to disorder and force/moment balance
conditions as well as kinematic constraints such as rotation frustration, the friction forces
inside a granular packing are strongly coupled with normal forces. For example, highly
mobilized friction forces are rare events and the distribution of friction forces reflects for
the most part that of normal forces. We consider below such effects in connection with
granular microstructure.

3 Harmonic representation of the microstructure

The microscopic expression of the stress tensor in equation(2) is an arithmetic mean in-
volving the branch vectors and contact forces. Hence, for analyzing the particle-scale
origins of the shear strength, we need a statistical description of the granular microstruc-
ture and force transmission. Noticing that the shear stresscorresponds to the deviation
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Figure 2: The critical-state friction coefficientµc as a function of sliding friction coeffi-
cientµs between particles in biaxial shearing of a sample of 5000 particles.



of stress components from the mean stressp = tr(σ)/d (for space dimensiond) along
different space directions, the useful information for this analysis is the density and av-
erage force of all contacts pointing in the same direction asa function of this direction.
These functions can be expanded in Fourier series in 2D and inspherical harmonics in
3D[Rothenburg and Bathurst(1989), Ouadfel and Rothenburg(2001)]. Since the contacts
have no polarity, the period isπ.
For illustration, we consider here only the 2D expansions truncated beyond the second
term:







Pθ(θ) = 1

π
{1 + a cos 2(θ − θb)},

〈fn〉(θ) = 〈f〉{1 + an cos 2(θ − θn)},
〈ft〉(θ) = 〈f〉at sin 2(θ − θt),

(3)

wherePθ is the probability density function of contact normals, andfn andft are the force
components along (radial) and perpendicular to (orthoradial) the branch vector, respec-
tively. The parametersa, an andat are the anisotropies of branch vectors, radial forces
and orthoradial forces, respectively,θb, θn andθt being the corresponding privileged di-
rections. The sine function for the expansion of the orthoradial componentft is imposed
by the requirement that the mean orthoradial force is zero tosatisfy the balance of force
moments over particles whereas the mean radial force〈f〉 is positive (repulsive). We also
note that for circular and spherical particles the radial and orthoradial force components
coincide with normal and tangential forces, respectively.
Thisharmonic representationwith only three anisotropy parameters provides a good ap-
proximation for numerical data. Using the functions (3), the stress componentsσαβ can
be written as an integral over space directions:

σαβ = nb〈ℓ〉

∫ π

0

{〈fn〉(θ)nα(θ) + 〈ft〉(θ)tβ(θ)}Pθ(θ) dθ, (4)

wherenx = cos(θ) andny = sin(θ), tx = − sin(θ) andty = cos(θ). It has been also
assumed that the branch vector lengthsℓ are not correlated with forces.
Equation (4) together with the harmonic approximation expressed in equation (3) yield
the following expression for the normalized stress deviator [Radjai et al.(2004)]:

q

p
≃

1

2
{a cos 2(θσ − θb) + an cos 2(θσ − θn) + at cos 2(θσ − θt)} , (5)

whereθσ is the major principal direction of the stress tensor. In deriving equation (5), the
cross products among the anisotropies have been neglected.In the critical state, the privi-
leged directions coincide, i.e.θb ≃ θn ≃ θt ≃ θσ, so that [Rothenburg and Bathurst(1989),
Ouadfel and Rothenburg(2001)]

qc

p
≃

1

2
{ac + anc + atc} , (6)

where the anisotropy parameters refer to the critical state. In 3D, a similar relation can be
established by means of spherical harmonics [Azéma et al.(2008)]:

qc

p
≃

2

5
{ac + anc + atc} (7)



These relations exhibit two microscopic sources of the shear strength in a granular pack-
ing: 1) fabric anisotropy, represented by the parametera and 2) force anisotropy, captured
into the parametersan andat. Hence, the material parameters influence the shear strength
via fabric and force anisotropies. For example, the saturation of ϕc for ϕs > 0.5 (sec-
tion 2 means that, increasing the interparticle friction beyond this limit does not enhance
anisotropy.

4 Accessible geometrical states

In this section, we focus on the fabric anisotropya which represents the excess and loss
of contacts along different space directions with respect to the average contact density.
The latter is commonly represented by the coordination numberz (mean number of con-
tacts per particle). In a granular material,z is bounded between two limitszmin and
zmax. The lower boundzmin is dictated by the force balance requirement. For example,
stable particles often involve more than three contacts in 2D and more than four con-
tacts in 3D. On the other hand, the upper boundzmax is constrained by steric exclusions
[Troadec et al.(2002)]. For example, in 2D for a system of monodisperse particles, a par-
ticle can not have more than 6 contacts. In practice, this limit is reduced to 4 as a result of
disorder.
Within the harmonic approximation, the geometrical state of a granular system is defined
by its position in the space of coordinates(z, a). We define two limit states: 1) the loosest
isotropic state, characterized by(z = zmin, a = 0), and 2) the densest isotropic state,
characterized by(z = zmax, a = 0). These states can be reached only by complex
loading. For example, it is generally difficult to bring a granular system towards a dense
isotropic state via isotropic compaction. The reason is that the rearrangements occur
mainly in the presence of shearing, and the latter leads to fabric anisotropy.
It is natural to assume that all accessible geometrical states are enclosed between the two
isotropic limit states. In order to represent the geometrical states, it is useful to define the
state function

E(θ) = zPθ(θ) =
z

π
{1 + a cos 2(θ − θb)}. (8)

The two limit isotropic states areEmin = zmin/π andEmax = zmax/π. The assumption
that the geometrical states are constrained to stay betweenthe two isotropic limit states,
implies that the anisotropya can not exceed a maximumamax depending on the value of
z. With harmonic approximation (8), we obtain

amax(z) = min
{

2
(

1 −
zmin

z

)

, 2
(zmax

z
− 1

)}

. (9)

This function is shown in Fig. 3. By construction,amax(zmin) = amax(zmax) = 0. The
largest anisotropy is

ac = amax(zc) = 2
amax − amin

amax + amin

, (10)

with zc = (zmin + zmax)/2. According to equation (10),amax increases withz for
z < zc, and it declines withz for z < zc. Whena = ac is reached along a monotonic path,



neither anisotropy nor coordination number evolve since both contact gain and contact
loss are saturated. In this picture, the critical state corresponds to the intersection between
the two regimes withz = zc anda = ac. In 2D with weakly polydisperse circular
particles andµs > 0.5, a good fit is provided by assumingzmin = 3 andzmax = 4. This
yieldszc = 3.5 andac = 2/7. For lower values ofµs, ac declines.
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Figure 3: Domain of accessible geometrical states based on the harmonic representation
of granular microstructure.

Figure 4: Evolution of the geometrical state of a sheared packing for two different initial
states simulated by the contact dynamics method.



Fig. 4 shows the evolution ofa with z in simulated biaxial compression of two initially
isotropic samples with initial coordination numbersz0 = 3.1 andz0 = 3.7. In both simu-
lations,z tends to the same critical-state valuezc ≃ 3.35 with ac ≃ 0.24. Remarkably, the
anisotropy of the dense packing reaches and then follows closely the limit states. Equa-
tion (9) provides here an excellent fit to the data with only one fitting parameterzmax. In
the loose case, the trajectory remains entirely inside the domain of accessible states and
the limit states are reached only at the critical state
Equation (10) predicts that the critical state anisotropyac increases withzmax − zmin.
The shape, size and frictional characteristics of the particles may therefore influenceac via
zmin andzmax. For example, increasing the sliding friction between the particles allows
for lower values ofzmin (stable configurations with less contacts) without changing zmax

(which depends only on steric exclusions) and leads to larger values ofac.
One interesting aspect of the model of accessible states presented in this section is to show
that the largest values ofa andz can not be reached simultaneously. The critical value
ac is not obtained withzmax but with zc which is belowzmax. But higher levels of force
anisotropiesanc andatc can be achieved with higher values ofz.

5 Weak and strong force networks

According to equation (10), the shear strength is proportional to force anisotropiesanc

andatc in the critical state. As for fabric anisotropya, which was discussed in the last
section, we would like to analyze here the mechanisms that underly force anisotropies. A
basic feature of force distribution in granular media is theoccurrence of numerous weak
forces together with a subnetwork of strong forces appearing often sequentially (force
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chains). The probability density function (pdf)Pn(fn) of normal forces in a macro-
scopically homogeneous system in the critical state is suchthat more than58% of con-
tact forces are below the mean force〈fn〉 and they have a nearly uniform distribution
[Radjai et al.(1996), Mueth et al.(1998), Tsoungui et al.(1998)]. Theseweakforces con-
tribute only≃ 29% to the mean stressp. The pdf ofstrongforces (above the mean normal
force〈fn〉) decays exponentially Radjai1996a, Coppersmith1996a, Radjai1999, Majmu-
dar2005, Metzger2004. The very large number of weak forces,reflecting the arching
effect, is a source of weakness for the system. Weak regions inside a packing correspond
to locally weak pressures and they are more susceptible to fail. A quantitative analysis of
grain rearrangements indicates that during a quasistatic evolution those weak regions un-
dergo local rearrangements, and nearly all sliding contacts are localized in weak regions
[Staron et al.(2002), Staron et al.(2005), Nicot and Darve(2006)].
Let S(ξ) be the set of contacts with a normal forcefn < ξ〈fn〉. The setS(∞) is the
whole contact set. The weak and strong sets areS(1) andS(∞) − S(1), respectively.
The partial shear stressq(ξ)/p and the fabric and force anisotropiesa(ξ), an(ξ) andat(ξ)
can be calculated as a function ofξ [Radjai et al.(1998)]. Our simulations show that
q(ξ) ≃ 0; see Fig. 5. This means that nearly the whole stress deviatoris carried by the
strong contact network, the weak contacts contributing only to the mean stress. Hence,
the total stress tensorσ is a sum of two terms:

σ = pwI + σs, (11)

Figure 6: Weak and strong normal forces represented in two different grey levels. Line
thickness is proportional to the normal force.



whereI is the unit tensor,pw is the weak pressure, andσs represents the strong stress ten-
sor. Hence, from the stress transmission viewpoint, the weak contact set is a “liquidlike”
phase whereas the strong contact set appears as a “solidlike” backbone transmitting shear
stresses. The weak and strong networks are shown in Fig. 6 in thickness of segments join-
ing particle centers for an assembly of 4000 particles subjected to biaxial compression.
The zero shear stress in the weak network implies that, according to equation (6), at least
one of the corresponding anisotropies is negative. Since the critical-state angles are as-
sumed to be equal (θb ≃ θn ≃ θt ≃ θσ), a negative value corresponds to a rotationπ/2 of
the principal axes. Indeed, our numerical data show that theprivileged direction of weak
contacts is perpendicular to the major principal stress direction [Radjai et al.(1998)]. The
strong forces occur at contacts that are, on average, aligned with the major principal di-
rection of the stress tensor. Lateral weak forces prop the particles against deviations from
alignment at strong contacts. In other words, the weak contacts play the same stabilizing
role with respect to the particles sustaining strong forcesas the counterforts with respect
to an architectural arch. Thisbimodaltransmission of shear stresses corresponds thus to
a statistical description of arching effect in granular media.
This stress-fabric correlation can be interpreted as a way for a granular system to optimize
the shear strength. Indeed, the stress deviatorq increases if a larger number of strong
forces occur at contacts aligned with the major principal direction, implying thus a surplus
of weak contacts in the perpendicular direction. Thisweakeningof forces at contacts
pointing in one direction has the same effect for force anisotropy as the loss of contacts in
the same direction for fabric anisotropy. As a result, forceweakening in the weak network
is all the more efficient as it leads to lower amount of contactloss. This condition can, for
example, be achieved for higher level of connectivity, i.e.larger values ofz in the critical
state.

6 Effect of material parameters

In this section, we briefly discuss the effect of several material parameters with respect to
the mechanisms that underly shear strength in granular media. More details will be given
elsewhere.
There are several shape parameters that may lead to enhancedshear strength through
force anisotropy or fabric anisotropy. We consider here polygonal particles as compared
to circular particles [Azéma et al.(2007)]. The first sample, denoted S1, is composed
of 14400 regular pentagons of three different diameters:50% of diameter2.5 cm, 34%
of diameter3.75 cm and16% of diameter5 cm. The second sample, denoted S2, is
composed of 10000 disks with the same polydispersity. The coefficient of friction is 0.4
between particles and 0 with the walls. At equilibrium, bothnumerical samples are in
isotropic stress state. The solid fraction is0.80 for S1 and0.82 for S2. The isotropic
samples are subjected to vertical compression by downward displacement of the top wall.
Figure 7 displays the evolution ofa as a function of the cumulative shear strainεq in
both packings. In both cases,a increases from 0 to its largest value in the critical state.
Surprisingly, the fabric anisotropy is quite weak in the pentagon packing whereas the
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Figure 7: Evolution of the anisotropya with cumulative shear strainεq for a packing of
pentagons (S1) and a packing of disks (S2).

disk packing is marked by a much larger anisotropy (≃ 0.3). Fig. 8 shows the evolution
of an andat. We see that, in contrast to fabric anisotropies, the force anisotropies in the
pentagon packing are always above those in the disk packing.This means that the aptitude
of the pentagon packing to develop large force anisotropy and strong force chains is more
dependent on particle shape than on the buildup of an anisotropic structure.
According to equation (6), in spite of the weak fabric anisotropy a, the larger force
anisotropiesan and at allow the pentagon packing to achieve higher levels of shear
strength compared to the disk packing, as shown in Fig. 9. Ournumerical data show
that the strong force anisotropy of the polygon packing results from the edge-to-edge
contacts that capture most strong force chains, whereas vertex-to-edge contacts belong
mostly to the weak network. The pentagons provide thus an interesting example where
the role of fabric anisotropy in shear strength is marginal.Similar conclusions hold for
polyhedral particles in 3D [Azéma et al.(2008)].
The effect of the coefficient of frictionµs between particles on the shear strength was
discussed in section 2. The saturation of the critical-state friction angleϕc with increas-
ing µs is related to the fact that, due to disorder, particle equilibria are fundamentally
controlled by normal forces. Ideal situations where friction needs to be fully mobilized
over a large number of contacts exist but are marginal. For example, a column of particles
each with two contacts may in principal exist, but is of practically zero chance to occur
within a disordered granular material. The effect ofµs overac manifests itself through
zmin which decreases withµs. On the other hand, larger values ofµs allow for reinforced
stabilizing effect of weak contacts, increasing thereby force anisotropies and thus shear
strength.
The effect of adhesion is to allow for tensile forces mainly in the direction of exten-
sion between the particles. We find that the tensile forces between particles play the
same stabilizing role with respect to the strong compressive forces as the weak network
[Radjai et al.(2001)]. Remark that the privileged direction of weak compressive forces co-
incides with that of tensile forces. As a result, the main contribution to the shear strength
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comes from force anisotropy. The fabric anisotropy is generally low and partially inhib-
ited by the presence of adhesion. Note also that adhesion between particles involves a
force scale so that its contribution to the shear strength ismainly expressed through the
Coulomb cohesionc (equation (1)), but it can also influence the internal angle of friction
ϕc through fabric anisotropy.
The size polydispersity is an important factor that affectsspace-filling properties of gran-
ular materials. In particular, for a broad size span, the small particles fill and stabilize
the pores between larger particles. As a result, larger force anisotropies and thus shear
strengths are expected for higher levels of size polydispersity. Large particles capture
strong force chains whereas smaller particles are mostly atthe center of weak forces
[Voivret et al.(2008)]. The details of force transmission and force anisotropy depend,
however, on the size distribution and not only on the span. Anexpected effect of polydis-
persity is to allow for higher values ofzmax and thus enhanced shear strength as predicted
by equation (10).

7 Conclusion

In this paper, we presented a brief account of physical mechanisms that underly the
critical-state shear strength of granular materials. The short-comings of the picture of
granular friction in direct analogy with solid friction wasdiscussed. Recalling the expan-
sion of the stress tensor in force and fabric anisotropies, amodel was presented for the
accessible geometrical states within a harmonic representation of the microstructure. This
model, consistent with numerical simulations, relates thecritical-state fabric anisotropy
to two isotropic limit states corresponding to the lowest and highest contact densities of a
granular packing. The force anisotropy was analyzed in the light of the bimodal character
of force transmission. It was shown that the shear strength is mainly sustained by the
strong force network so that force anisotropy is mainly related to the aptitude of a gran-
ular assembly to build up strong force chains. Finally, the effect of material parameters
with respect to fabric and force anisotropies was discussed.

Acknowledgments.N. Estrada and A. Taboada are acknowledged for figure 2 as wellas
many useful discussions about granular friction. I presentmy special thanks to S. Roux
for interesting and inspiring ideas he has shared with me about the plasticity of granular
media and its microscopic origins.
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