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Particle-scale origins of shear strength in granular media
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LMGC, CNRS-Université Montpellier 2, CC048, 34095 Moritjge, France.
radjai@Imgc.univ-montp2.fr.

Abstract. The shear strength of cohesionless granular materiaknisrglly attributed to the com-
pactness or anisotropy of their microstructure. An openedss how such compact or anisotropic
microstructures, and thus the shear strength, depend quatkiele properties. We first recall the
role of fabric and force anisotropies with respect to théaai-state shear stress. Then, a model of
accessible geometrical states in terms of particle coivitgcand contact anisotropy is presented.
This model incorporates in a simple way the fact that, dugdncsexclusions, the highest levels
of connectivity and anisotropy cannot be reached simuttaslg, a property that affects seriously
the shear strength. We also analyze the force anisotrofyeitight of the specific role of weak
forces in sustaining strong force chains and thus the maicharésm that underlies anisotropic
force patterns. Finally, we briefly discuss the effect okiparticle friction, particle shape, size
polydispersity and adhesion.

keyword: granular media; shear strength; fabric anisotropy; weaksamong forces.

1 Introduction

Since the early work of Coulomb in 1773, the plastic yielddgar of granular materials
has remained an active research field in close connectidnswit mechanics and pow-
der technology/|[Mitchell and Soga(20p%), Nedderman(1[99&%cording to the Mohr-
Coulomb yield criterion, for normal and shear stressesidr acting on a slip plane, the
plastic threshold-. is the sum of two terms:

Te = ¢+ o tan p, (1)

wherec is a cohesive strength agds the internal angle of friction depending only on the
nature of the granular material. This criterion expressegtessure dependence of shear
strength which is a distinctive feature of granular mediave@ (ﬂ), the shear strength

of cohesionless materialg & 0) can be represented by the (dimensionless) stress ratio
T./o = p. = tanp. Since the angle is a bulk property, it can be expressed in terms
of stress invariants. Let, (o« = 1,2, 3) be stress principal values. The average stress
isp = (01 + 02)/2in 2D andp = (o1 + 02 + 03)/3 in 3D. We define the stress



deviator byg = (01 — 02)/2 in 2D andq = (o1 — 03)/3 in 3D under axisymmetric
conditions ¢» = o3). With these notations, it can be shown tkiaty = ¢/p in 2D and
sing = 3¢/(2p + ¢) in 3D.

This picture of shear strength in granular media holds asi fect although the complex
plastic behavior of granular media can not be reduced toglesstrength parameter. In
particular, the shear strength and plastic flow (dilata@gend on the granular structure
and direction of loading, the latter reflecting the anispyrof the structure. Since the
shear strength is state-dependent, it cannot be considsradnaterial property unless
attributed to a well-defined granular state. The internglenf friction ¢ is often associ-
ated with the critical state (steady state or residual stateched after long monotonous
shearing; see Figﬂ 1. This state is characterized by a galdidnp. independent of the
loading history and initial condition§ [Wood(1990)].

The critical-state strength is below the peak shear stsessmurring for dense states with
solid fractionpy > p., but these states are metastable and often lead to straiizkton
[Parve and Laouafa(2040), Vardoulakis and Sulem(1|995}jr IBose states withyy <
pe, the critical state is reached asymptotically followinffule rearrangements. Hence,
apart from these transients, which are governed by the &onlof internal variables
pertaining to the microstructure and are important in fdating elasto-plastic models,
the critical-state shear strength represents a stablégglaeshold for a granular material.
In this paper, we are interested in the critical-state gfiteras a material property of
cohesionless granular materials. The critical-statéidincanglep. can be described as a
coarse-grained (or homogenized) friction angle betweengsanular layers sliding past
each other. Nevertheless, the macroscopic statys afs a Coulomb friction angle, on
the same grounds as those of dry friction between solid lspdigould not eclipse the
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Figure 1: Normalized shear stress as a function of cumelatiear strain in a 2D simple
shear simulation by the contact dynamics method for twecerkffit values of the initial
solid fraction.



fact that the granular friction angle is a bulk property toiethadequate tensorial stress
analysis should be applied (this was indeed the contributfdviohr) and where the slip
planes are noa priori defined, in contrast to solid friction which is a surface mxp
at the macroscopic scalg [Radjai et al.(2004)]. Dependimghe boundary conditions,
the critical state occurs either homogeneously in the wholeme of a granular sample
or inside a thick layer of several particle diameters in tbeeat of strain localization
[Bardet and Proubet(1992), Herrmann et al.(1p95), Ver(i860),|Moreau(199)7)]. In
both configurationsp,. stems from various granular phenomena such as frictiondstw
particles, anisotropy of the microstructure, organizatibforce networks and dissipation
due to inelastic collisions. We consider below these effacid their respective roles in
enhancing or restraining granular friction.

2 Effect of interparticlefriction

While solid friction between particles underlies the fiactal behavior of granular mate-
rials, it is not obvious how and through which physical metdkias it comes into play. If
shear deformation took place as a result of sliding betw#eoiatacts along a slip plane,
the friction anglep. would simply echo the friction between particles. An exaengi
such a configuration is a regular pile of cubic blocs subgbtdea vertical load. Horizon-
tal shearing of this pile implies sliding between at least taws so that the shear strength
of the pile is a straightforward effect of friction betweédretblocs. However, discrete nu-
merical simulations suggest that in sheared granular mmggmlling prevails over sliding
[Radjai et al.(1998)]. In quasistatic shear, sliding oscaironly~ 10% of contacts, and
these sliding contacts belong essentially to weak confaetsbelow) oriented on average
along the minor principal stress directiofs [Radjai etl8I99) [ Staron and Radjai(20p5),
Btaron et al.(200B)]. Hence, the relationship betwggmand the local friction angle,
involves the inhomogeneous distribution of forces and tiwaiion (or activation) of the
friction force at rolling contacts.

This relationship is far from linear as shown in Fi§] 2. Théical-state coefficient
1e = tan @, is aboveu, = tan o4 at small values of the latter, and at larger values it tends
to a plateaw, < us [Corriveau et al.(1997), Taboada et al.(2006)]. The titiorsirom

e — fbs < 010 e — s > 0 0ccurs aju. = s ~ 0.5. Beyondus = 0.5, u. is practically
independent ofis. The independence ¢f, with respect tap, at large values of the latter
indicates that the role of interparticle friction is moréotia than expected from simple
models. Moreover, the nonzero valueyf shows clearly that the interparticle friction is
not the only source of frictional behavior in the criticadigt [Roux and Radjai(2001)].
The direct contribution of interparticle friction to shear strengile. without interposi-
tion by the microstructure as will be analyzed below, may veuated from a decom-
position of the shear stress. The stress temsgrin a control volumeV can be ex-
pressed ag [Rothenburg and Selvadurai(]1981), Chrisseffiest al.(198].), Moreau(19H7),
Bagi(1999)| Staron et al.(2005)]

Tap = no{lofh), )



wheren,, is the number density of bonds (contact§)js thea-component of the branch
vector£' joining the centers of particles at contacand fé is the 5-component of the
force vectorf acting at the contactbetween the two particles.

The contribution of friction forces can be estimated by aepig in equation[{Z)f by
f-tt, wheret is the unit vector along the friction force. The contributimf normal forces
is the complementary tensor obtained by replagifyy f-n n, wheren is the unit vector
perpendicular to the contact plane. The corresponding sttieangthsy, andg,, can then
be calculated in the critical state. Numerical simulatishew that the ratiq, /¢ is quite
low (below 10%)[Eambou(1993)]. This counterintuitive finding undertinthe role of
interparticle friction as a parameter acting “behind thenss” rather than a direct actor
of shear strength. Our simulations show that, due to dis@ade force/moment balance
conditions as well as kinematic constraints such as ratdticstration, the friction forces
inside a granular packing are strongly coupled with norroedds. For example, highly
mobilized friction forces are rare events and the distrdouof friction forces reflects for
the most part that of normal forces. We consider below sufgtisfin connection with
granular microstructure.

3 Harmonic representation of the microstructure

The microscopic expression of the stress tensor in equ@bdﬂ an arithmetic mean in-
volving the branch vectors and contact forces. Hence, falyaing the particle-scale
origins of the shear strength, we need a statistical degmmipf the granular microstruc-
ture and force transmission. Noticing that the shear stesgsponds to the deviation
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Figure 2: The critical-state friction coefficiept as a function of sliding friction coeffi-
cientu, between particles in biaxial shearing of a sample of 5000qgies.



of stress components from the mean stiess tr(o)/d (for space dimensiod) along
different space directions, the useful information fosthnalysis is the density and av-
erage force of all contacts pointing in the same direction &mction of this direction.
These functions can be expanded in Fourier series in 2D asgharical harmonics in
3D[Rothenburg and Bathurst(1989), Ouadfel and RotherfR0@d)]. Since the contacts
have no polarity, the period is.

For illustration, we consider here only the 2D expansionadated beyond the second

term:
{ Py0) = L{l+acos2(60—6,)},

(fn)(0) ({1 + an cos2(0 — 0n)}, @)
(f)(0) = (flarsin2(0 — 0y),
whereP, is the probability density function of contact normals, ghéndf; are the force
components along (radial) and perpendicular to (orthatathie branch vector, respec-
tively. The parameters, a,, anda, are the anisotropies of branch vectors, radial forces
and orthoradial forces, respectivefy, 6,, andf, being the corresponding privileged di-
rections. The sine function for the expansion of the ortli@acomponeny; is imposed
by the requirement that the mean orthoradial force is zesatisfy the balance of force
moments over particles whereas the mean radial foftés positive (repulsive). We also
note that for circular and spherical particles the radial arthoradial force components
coincide with normal and tangential forces, respectively.
This harmonic representatiowith only three anisotropy parameters provides a good ap-
proximation for numerical data. Using the functioﬂs (3} Hress components,g can
be written as an integral over space directions:

Gas = mol) / ) O)na(0) + (£)(0)t5(60)) Po(6) db, (@)

wheren, = cos(d) andn, = sin(f), t, = —sin(#) andt, = cos(f). It has been also
assumed that the branch vector lengtlase not correlated with forces.
Equation [h) together with the harmonic approximation esped in equatiorﬂ(S) yield
the following expression for the normalized stress devigRadjai et al.(2004)]:
1

LIS 5 {acos2(0, — 0p) + ay cos2(0, — 0,,) + at cos2(0, — 04)}, (5)

p
whered,, is the major principal direction of the stress tensor. Iriveg equation [f), the
cross products among the anisotropies have been neglétthé. critical state, the privi-
leged directions coincide, i.6, ~ 0,, ~ 0; ~ 0., so that[Rothenburg and Bathurst(1989),
Puadfel and Rothenburg(2001)]

.1
q; ~ 5 {a/c + Qne + atc} 9 (6)

where the anisotropy parameters refer to the critical stat8D, a similar relation can be
established by means of spherical harmorjics [Azéma e08ig)]:

dc

— ~

2
Pk {ac + ane + asc} (7)



These relations exhibit two microscopic sources of therséieangth in a granular pack-
ing: 1) fabric anisotropy, represented by the parameterd 2) force anisotropy, captured
into the parameters, anda,. Hence, the material parameters influence the shear strengt
via fabric and force anisotropies. For example, the saamaif o, for ¢, > 0.5 (sec-
tionﬂ means that, increasing the interparticle frictiogpdred this limit does not enhance
anisotropy.

4 Accessible geometrical states

In this section, we focus on the fabric anisotrapwhich represents the excess and loss
of contacts along different space directions with respe¢hé average contact density.
The latter is commonly represented by the coordination rermlfmean number of con-
tacts per particle). In a granular materialjs bounded between two limits,,;,, and
Zmaz- The lower bound,,;,, is dictated by the force balance requirement. For example,
stable particles often involve more than three contactsbra@d more than four con-
tacts in 3D. On the other hand, the upper boupgd.. is constrained by steric exclusions
[[Froadec et al.(200R)]. For example, in 2D for a system of othsperse patrticles, a par-
ticle can not have more than 6 contacts. In practice, thi ismeduced to 4 as a result of
disorder.

Within the harmonic approximation, the geometrical stdte granular system is defined
by its position in the space of coordinatesa). We define two limit states: 1) the loosest
isotropic state, characterized by = z,.:n,a = 0), and 2) the densest isotropic state,
characterized byz = z,..,a = 0). These states can be reached only by complex
loading. For example, it is generally difficult to bring a gudar system towards a dense
isotropic state via isotropic compaction. The reason i$ tha rearrangements occur
mainly in the presence of shearing, and the latter lead<ticfanisotropy.

It is natural to assume that all accessible geometricastaie enclosed between the two
isotropic limit states. In order to represent the geomakstates, it is useful to define the
state function

E0)=zPy(0) = %{1—}—@0052(9—917)}. (8)

The two limit isotropic states atB,,;, = zmin/m™ @NAE 42 = Zmaz /7. The assumption
that the geometrical states are constrained to stay betthedmwo isotropic limit states,
implies that the anisotropy can not exceed a maximumy, ., depending on the value of
z. With harmonic approximatiorﬂ(S), we obtain

maa (%) :min{2 (1— Z";") ,2(@ - 1)} 9)

z

This function is shown in Fid] 3. By construction,, oz (Zmin) = @maz(Zmaz) = 0. The
largest anisotropy is
Gmax — Amin (10)

)

Qe = Amax (Zc) =2
Umaz + Amin

with z. = (Zmin + Zmaz)/2. According to equatioan)gmax increases with: for
z < z., and itdeclines with for z < z.. Whena = a.. is reached along a monotonic path,



neither anisotropy nor coordination number evolve sincé lsontact gain and contact
loss are saturated. In this picture, the critical stateesponds to the intersection between
the two regimes withe = z. anda = a.. In 2D with weakly polydisperse circular
particles and.; > 0.5, a good fit is provided by assuming,;, = 3 andz,,q, = 4. This
yieldsz, = 3.5 anda. = 2/7. For lower values ofis, a. declines.

max

min max

Figure 3: Domain of accessible geometrical states baseldeoharmonic representation
of granular microstructure.
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Figure 4: Evolution of the geometrical state of a shearedtipgdor two different initial
states simulated by the contact dynamics method.



Fig. E shows the evolution aef with z in simulated biaxial compression of two initially
isotropic samples with initial coordination numbegs= 3.1 andzy, = 3.7. In both simu-
lations,z tends to the same critical-state valye~ 3.35 with a. ~ 0.24. Remarkably, the
anisotropy of the dense packing reaches and then folloveglgldhe limit states. Equa-
tion (§) provides here an excellent fit to the data with onlg §iting parametet,,,,,... In
the loose case, the trajectory remains entirely inside tmeain of accessible states and
the limit states are reached only at the critical state

Equation ) predicts that the critical state anisotrapyncreases with,,4: — Zmin -
The shape, size and frictional characteristics of the gdagimay therefore influeneg via
Zmin @Ndzp,q.. FOr example, increasing the sliding friction between thdiples allows
for lower values ot,,,;,, (stable configurations with less contacts) without chag@gjf..
(which depends only on steric exclusions) and leads to la@jees ofa...

One interesting aspect of the model of accessible statesmied in this section is to show
that the largest values af and =z can not be reached simultaneously. The critical value
a. is not obtained with,,, . but with z. which is belowz,, ... But higher levels of force
anisotropies,. anda,;. can be achieved with higher values:zof

5 Weak and strong force networks

According to equatioan), the shear strength is propoatito force anisotropies,,.
anda,. in the critical state. As for fabric anisotropy which was discussed in the last
section, we would like to analyze here the mechanisms tragnyforce anisotropies. A
basic feature of force distribution in granular media isadlceurrence of numerous weak
forces together with a subnetwork of strong forces appgasften sequentially (force
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Figure 5: The partial shear stress, normalized by the meassstas a function of force
thresholde.



chains). The probability density function (pdhb,(f,) of normal forces in a macro-
scopically homogeneous system in the critical state is suahmore thab8% of con-
tact forces are below the mean for¢g,) and they have a nearly uniform distribution
[Radjai et al.(1996), Mueth et al.(1998), Tsoungui et &i98)]. Thesaveakforces con-
tribute only~ 29% to the mean stregs The pdf ofstrongforces (above the mean normal
force(f,)) decays exponentially Radjai1l996a, Coppersmith1996djaR®99, Majmu-
dar2005, Metzger2004. The very large number of weak fonedecting the arching
effect, is a source of weakness for the system. Weak regisitel a packing correspond
to locally weak pressures and they are more susceptiblé té\fguantitative analysis of
grain rearrangements indicates that during a quasistadlatéon those weak regions un-
dergo local rearrangements, and nearly all sliding costa localized in weak regions
[Btaron et al.(200P), Staron et al.(2dJ05), Nicot and D&066)).

Let S(¢) be the set of contacts with a normal fore < £(f,). The setS(co) is the
whole contact set. The weak and strong sets&fig andS(c0) — S(1), respectively.
The partial shear stregéS) /p and the fabric and force anisotropieg), a,,(£) anda: (&)
can be calculated as a function fRadjai et al.(1998)]. Our simulations show that
q(¢) ~ 0; see Fig.[p. This means that nearly the whole stress devitarried by the
strong contact network, the weak contacts contributing ¢mithe mean stress. Hence,
the total stress tenser is a sum of two terms:

o =p,I + oy, (11)
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Figure 6: Weak and strong normal forces represented in tfereint grey levels. Line
thickness is proportional to the normal force.



wherel is the unit tensor,, is the weak pressure, and represents the strong stress ten-
sor. Hence, from the stress transmission viewpoint, th&kweatact set is a “liquidlike”
phase whereas the strong contact set appears as a “sdlltiklebone transmitting shear
stresses. The weak and strong networks are shown if]Figh&kness of segments join-
ing particle centers for an assembly of 4000 particles stbgeto biaxial compression.
The zero shear stress in the weak network implies that, degpto equation|]6), at least
one of the corresponding anisotropies is negative. Sineefitical-state angles are as-
sumed to be equab{ ~ 0,, ~ 0, ~ 0,), a negative value corresponds to a rotatig of
the principal axes. Indeed, our numerical data show thaptivéeged direction of weak
contacts is perpendicular to the major principal stressctiion [Radjai et al.(1998)]. The
strong forces occur at contacts that are, on average, dligite the major principal di-
rection of the stress tensor. Lateral weak forces prop thecfes against deviations from
alignment at strong contacts. In other words, the weak ctsfday the same stabilizing
role with respect to the particles sustaining strong foesethe counterforts with respect
to an architectural arch. ThiEmodaltransmission of shear stresses corresponds thus to
a statistical description of arching effect in granular maed

This stress-fabric correlation can be interpreted as a wag iranular system to optimize
the shear strength. Indeed, the stress deviaiocreases if a larger number of strong
forces occur at contacts aligned with the major principaation, implying thus a surplus
of weak contacts in the perpendicular direction. ThWisakeningof forces at contacts
pointing in one direction has the same effect for force anigy as the loss of contacts in
the same direction for fabric anisotropy. As a result, faveakening in the weak network
is all the more efficient as it leads to lower amount of conlia&s. This condition can, for
example, be achieved for higher level of connectivity, leeger values ot in the critical
state.

6 Effect of material parameters

In this section, we briefly discuss the effect of several mi@tparameters with respect to
the mechanisms that underly shear strength in granularankttire details will be given
elsewhere.

There are several shape parameters that may lead to enhsimesdstrength through
force anisotropy or fabric anisotropy. We consider herggahal particles as compared
to circular particles[[Azéma et al.(2007)]. The first saepllenoted S1, is composed
of 14400 regular pentagons of three different diametgd$t of diameter2.5 cm, 34%

of diameter3.75 cm and16% of diameter5 cm. The second sample, denoted S2, is
composed of 10000 disks with the same polydispersity. Tledficgnt of friction is 0.4
between particles and 0 with the walls. At equilibrium, batimerical samples are in
isotropic stress state. The solid fractionis0 for S1 and0.82 for S2. The isotropic
samples are subjected to vertical compression by downwspthdement of the top wall.
Figure|} displays the evolution af as a function of the cumulative shear strajnin
both packings. In both casesjncreases from 0 to its largest value in the critical state.
Surprisingly, the fabric anisotropy is quite weak in the tagon packing whereas the
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Figure 7: Evolution of the anisotropywith cumulative shear straisy, for a packing of
pentagons (S1) and a packing of disks (S2).

disk packing is marked by a much larger anisotropy(3). Fig. [§ shows the evolution
of a,, anda;. We see that, in contrast to fabric anisotropies, the fonigoéropies in the
pentagon packing are always above those in the disk packirigmeans that the aptitude
of the pentagon packing to develop large force anisotropys&iong force chains is more
dependent on particle shape than on the buildup of an aootstructure.

According to equation|:[6), in spite of the weak fabric anispy a, the larger force
anisotropiess,, and a; allow the pentagon packing to achieve higher levels of shear
strength compared to the disk packing, as shown in Eig. 9. Mouarerical data show
that the strong force anisotropy of the polygon packing lteduoom the edge-to-edge
contacts that capture most strong force chains, wheregexvier-edge contacts belong
mostly to the weak network. The pentagons provide thus amdsting example where
the role of fabric anisotropy in shear strength is margitginilar conclusions hold for
polyhedral particles in 30 [Azéma et al.(2008)].

The effect of the coefficient of frictiop, between particles on the shear strength was
discussed in secticﬂ 2. The saturation of the criticakesti@ttion anglep. with increas-
ing 1 is related to the fact that, due to disorder, particle ebridi are fundamentally
controlled by normal forces. Ideal situations where fdntneeds to be fully mobilized
over a large number of contacts exist but are marginal. Famgte, a column of particles
each with two contacts may in principal exist, but is of picalty zero chance to occur
within a disordered granular material. The effectugfovera,. manifests itself through
zZmin Which decreases with,. On the other hand, larger valuesqfallow for reinforced
stabilizing effect of weak contacts, increasing therelrgdcanisotropies and thus shear
strength.

The effect of adhesion is to allow for tensile forces maimythe direction of exten-
sion between the particles. We find that the tensile forcéwd®n particles play the
same stabilizing role with respect to the strong compredsixces as the weak network
[Radjai et al.(2001)]. Remark that the privileged direotaf weak compressive forces co-
incides with that of tensile forces. As a result, the maintdbation to the shear strength
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comes from force anisotropy. The fabric anisotropy is galhetow and partially inhib-
ited by the presence of adhesion. Note also that adhesiorebptparticles involves a
force scale so that its contribution to the shear strengthamly expressed through the
Coulomb cohesion (equation [Il)), but it can also influence the internal an@feiction

v. through fabric anisotropy.

The size polydispersity is an important factor that affeptace-filling properties of gran-
ular materials. In particular, for a broad size span, thellspaaticles fill and stabilize
the pores between larger particles. As a result, largeefarisotropies and thus shear
strengths are expected for higher levels of size polydsfyerLarge particles capture
strong force chains whereas smaller particles are mosttiieatenter of weak forces
[Moivret et al.(2008)]. The details of force transmissiamdaforce anisotropy depend,
however, on the size distribution and not only on the spanexXpected effect of polydis-
persity is to allow for higher values of,,,.. and thus enhanced shear strength as predicted
by equation[(10).

7 Conclusion

In this paper, we presented a brief account of physical mesimes that underly the
critical-state shear strength of granular materials. Ti@tscomings of the picture of
granular friction in direct analogy with solid friction wasscussed. Recalling the expan-
sion of the stress tensor in force and fabric anisotropiespdel was presented for the
accessible geometrical states within a harmonic reprasentf the microstructure. This
model, consistent with numerical simulations, relatesdtitécal-state fabric anisotropy
to two isotropic limit states corresponding to the lowest highest contact densities of a
granular packing. The force anisotropy was analyzed ini¢/e bf the bimodal character
of force transmission. It was shown that the shear strerggthdinly sustained by the
strong force network so that force anisotropy is mainlyteglao the aptitude of a gran-
ular assembly to build up strong force chains. Finally, tfieot of material parameters
with respect to fabric and force anisotropies was discussed
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