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Abstract. Nowadays, ontologies are used in a lot of diverse research
fields. They provide with the capability to describe a huge set of in-
formation contents. Therefore, several approaches for storing ontologies
and their instances in databases have been proposed. We call Ontology
Based Database (OBDB) a database providing such a capability. Several
OBDB have been developed using different ontology models and differ-
ent representation schemas to store the data. This paper proposes a data
model and an algebra of operators for OBDB which can be used whatever
are the used ontology model and representation schema. By extending
the work done for object oriented databases (OODB), we highlight the
differences between OODB and OBDB both in terms of data model and
query languages.
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1 Introduction

Nowadays, ontologies are used in a lot of diverse research fields including natural
language processing, information retrieval, electronic commerce, Semantic Web,
software component specification, information systems integration and so on. In
these diverse domains, they provide with the capability to describe a huge set
of information contents. Therefore, the need to manage ontologies as well as the
data they describe in a database emerged as a crucial requirement.

We call Ontology Based Database (OBDB) a database that stores data to-
gether with the ontologies defining the semantics of these data. During the last
decade, several OBDB have been proposed. They support different ontology
models such as PLIB [1], RDFS [2] or OWL [3] for describing ontologies and
they use different logical schemas for persistancy: unique table of triples [4], ver-
tical representation [5] or table-like structure [6, 7] for representing the huge sets
of data described by the ontologies.

In parallel to this work, ontology query languages like SPARQL [8] for RDF,
RQL [9] for RDF-Schema, or OntoQL [10] for PLIB and a subset of OWL have
been defined. Because of the lack of a common data model for OBDBs, dealing
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with the heterogeneity of OBDB data models in order to implement these lan-
guages on top of OBDBs, is a major concern of current research activities. In
this paper, we propose a data model for OBDBs which can be used whatever
are the used ontology models and the representation schema.

Our work started by trying to answer to the following question: since ontolo-
gies use extensively object oriented concepts, why don’t we use Object Oriented
Database (OODB) models as the kernel of such a model? The answer to this
question is that the OODB model is not usable without a necessary tuning effort.
This answer led us to (1) highlight the existing differences between OODBs and
OBDBs either from the conceptual or from the structural points of view and (2)
propose another algebra of operators (to provide OBDBs with a formal seman-
tics) extending the algebra defined for OODBs and (3) clarify the differences
between OODBs and OBDBs query languages.

The objective of this paper is two-fold. On the one hand, we study and show
the differences between OODB and OBDB models. For building our comparison
and proposal, we have chosen ENCORE [11] as the OODB data model and its
corresponding algebra of operators. On the other hand, we propose a generic
algebra of operators defining a generic formal semantics for OBDB and show
how these operators are used to describe queries of specific OBDB languages.
Three languages based on different OBDB models illustrate this work: OntoQL
[10], RQL [9] and SPARQL [8].

Compared to the OntoQL definition presented in [10], where we have pre-
sented the concrete syntax of OntoQL and its use on the OntoDB OBDB model
[6], this paper presents a generic algebra of operators for OBDB models plus
extensions and contributions like:

– support of the multi-instanciation paradigm;
– discussions of the differences between OODB and OBDB models and the

corresponding query languages;
– the capability of the proposed model and algebra to overcome the hetero-

geneity of OBDBs data models;
– presentation of the query algebra at the different querying levels enabled by

an OBDB: data, ontology and both data and ontology.

This paper is structured as follows. Next section presents a formal represen-
tation of the OBDB data model proposed in this paper. The differences between
this data model and the OODB data model are highlighted as well. Section 3
presents the ENCORE algebra for OODBs and shows its insufficiencies to man-
age OBDBs. Then, an algebra based on the OBDB data model is presented as
an extension of the ENCORE algebra. Section 4 discusses related work. Finally,
section 5 concludes and introduces future work.

2 Data Models

2.1 The ENCORE Formal Data Model for OODBs

Formally, an OODB in the ENCORE data model is defined as a 8-tuple < ADT,
O, P, SuperTypes, TypeOf, PropDomain, PropRange, Value >, where:



– ADT is a set of available abstract data types. It provides with atomic types
(Int, String, Boolean), a global super type Object and user-defined ab-
stract data types;

– O is the set of objects available in the database or that can be constructed
by a query. All objects have an unique identifier;

– P is the set of properties used to describe the state of each object;
– SuperTypes : ADT→ 2ADT1 is a partial function. It associates a set of super

types to a type. This function defines a lattice of types. Its semantics is
inheritance and it ensures substitutability;

– TypeOf : O→ ADT associates to each object the lower (strongest) type in the
hierarchy it belongs to;

– PropDomain : P→ ADT defines the domain of each property;
– PropRange : P→ ADT defines the range of each property;
– Val : O× P→ O gives the value of a property of an object. This property

must be defined for the datatype of the object.

This data model supports collections of objects by providing the parameter-
ized ADT named Set[T]. Set[T] denotes a collection type of objects of type T.
{o1, . . . , on} denotes an object of this type where the oi’s are objects of type
T. Another parameterized ADT, called Tuple, is provided to create relationships
between objects. A Tuple type is constructed by providing a set of attribute
names (Ai) and attribute types (Ti). Tuple[< (A1, T1), . . . , (An, Tn) >] denotes a
type tuple constructed using the Ai’s attribute’s name and Ti’s attribute types.
< A1 : o1, . . . , An : on > denotes an object of this type where the oi’s are objects
of the corresponding type Ti. The Tuple type is equipped with the Get Ai value
functions to retrieve the value of a Tuple object o for the attribute Ai. The ap-
plication of this function may be abbreviated using the dot-notation (o.Ai). The
Tuple type construct is fundamental for building new data types. In particu-
lar, it is useful for describing new data types that are not available in the core
database schema and that may be built by expressions of the algebra.

2.2 Definition of the OBDB Data Model

The OBDB data model is based on the definition of two main parts : ontology and
content. Instances are stored in the content part while ontologies are stored in the
ontology part. The description of these two parts use extensively object-oriented
database features. Let us describe these two parts and their relationships.

Ontology. The ontology part, can be formally defined like an OODB by a 7-
Tuple as < E, OC, A, SuperEntities, TypeOf, AttDomain, AttRange, Val >. Here,
abstract data types (ADT) are replaced by entities (E), properties (P) by attributes
(A) and objects (O) by concepts of ontologies (OC). To define the built-in entities
and attributes of this part, we have considered the constructors shared by the
standard ontology models PLIB [1], RDF-Schema [2] and OWL [3]. Thus, in

1 We use the symbol 2C to denote the power set of C.



addition to atomic types, the global super type ObjectE, and the parameter-
ized types Tuple and Set, E provides the predefined entities C and P. Instances
of C and P are respectively the classes and properties of the ontologies. Each
class and each property has an identifier defined in the context of a names-
pace. This is represented by the attribute namespace : C ∪ P→ String. Entity
C also defines the attribute SuperClasses : C→ SET[C] and entity P defines the
attributes PropDomain : P→ C and PropRange : P→ C. The description of these
attributes is similar to the definition given for an OODB. Moreover, a global
super class ObjectC is predefined and the parameterized types Tuple and Set
are also available for C. Thus, an ontology is similar to an OODB schema. How-
ever, an ontology gives a precise definition of concepts which means that many
more attributes (name, comment, version . . . ) are available to describe classes
and properties of ontologies. These predefined entities and attributes constitute
the kernel of the ontology models we have considered. User-defined entities (re-
striction, objectProperty . . . ) and attributes (isSymetric, unionOf, remark . . . )
may be added to this kernel in order to take into account specific features of a
given ontology model. This capability is illustrated in the following example.

Fig. 1. An illustration of our data model based on the MOF architecture



An example of the ontology part of an OBDB. Using the UML notation,
figure 1 presents the data model defined for handling our ontologies. Let us
comment this figure in a top-down manner. The upper part presents the subset
of the data model defined to describe the used ontology model. In the MOF
terminology [12], this part is the metametamodel.

The middle part presents the used ontology model. This part corresponds to
the level M2 of the MOF namely the metamodel. Each element of this metamodel
is an instance of an element of the metametamodel. In this part, we have added to
the predefined entities C, P, and ObjectE, some specific constructors of the OWL
ontology model: OWLRestrictionAllValuesFrom, OWLObjectProperty and OWL-
DataProperty. Due to space limitations, we did not represent the whole OWL
ontology model. However, this can be handled using the OWL metamodel pro-
posed by [13].

Finally, the lower part presents a toy example of an ontology inspired from the
SIOC Ontology (http://sioc-project.org/). This part constitutes the level
M1 of the MOF. Each concept of the ontology is an instance of the ontology
model defined at level M2. The SIOC ontology describes the domain of online
communities by defining concepts such as Community, Usergroup or Forum. In
this example, we have represented the classes User and Post and refined them by
the classes Administrator and InvalidPost. The class InvalidPost is defined
as an OWLRestrictionAllValuesFrom on the property hasModifiers whose
values must be instances of the class Administrator. Thus, an invalid post is a
post which has been modified by an administrator only. Notice that the UML
notation doesn’t allow us to show the whole description of the classes and of the
properties of this ontology (labels, comments, documents . . . ).

Content. The content part allows to store instances of ontology classes. Dif-
ferent representation schemas have been proposed and used by OBDBs (see [14]
for a survey). The simplest and more general one uses an unique table of triples
[4] where the data is stored in triples of the form (subject, predicate, object).
Another representation schema is the vertical structure [5] where a binary table
is used for each property and a unary table for each ontology class. Recently,
horizontal approaches have been proposed [6, 7]. They associate, to each class, a
table which columns represent those properties that are valued for at least one
instance of the class. Our formalization is based on this latter approach.

In the proposed data model for OBDBs, the content part is a 5-tuple< EXTENT,
I, TypeOf, SchemaProp, Val > where:

– EXTENT is a set of extensional definitions of ontology classes;
– I is the set of instances of the OBDB. Each instance has an identity;
– TypeOf : I→ 2EXTENT associates to each instance the extensional definitions

of the classes it belongs to;
– SchemaProp : EXTENT→ 2P gives the properties used to describe the instances

of an extent (the set of properties valued for its instances);
– Val : I× P→ I gives the value of a property occurring in a given instance.

This property must be used in one of the extensional definitions of the class



the instance belongs to. Since Val is a function, an instance can only have
a unique value (which can be a collection) for a given property. Thus, if
the same property is defined on different classes the instance belongs to, this
property must have the same value in each extent associated to these classes.

Relationship between each part. The relationship between ontology and its
instances (content) is defined by the partial function Nomination : C→ EXTENT.
It associates a definition by intension with a definition by extension of a class.
Classes without extensional definition are said abstract. The set of properties
used in an extensional definition of a class must be a subset of the properties
defined in the intensional definition of a class (propDomain−1(c) ⊇ SchemaProp(
nomination(c))).

An example of the content part of an OBDB. Figure 2 illustrates the
OBDB data model on the content part. The horizontal representation of the
extents of the four classes of our toy ontology are presented on figure 2(A). As
shown on this example, some of the properties of an ontology class may not be
used in class extent. For example, the property content encoded, described in
the ontology as ”the encoded content of the post, contained in CDATA areas”,
is not used in the extent of the class Post. This example also demonstrates that
properties used in the extent of a class may not be used in the extent of one
of its subclasses. This is the case for the properties first name and last name
which are used in the extent of User but not in the extent of Administrator.

On figure 2(B), the two main representations proposed for the content of
an OBDB, i.e. the vertical and triple schemas are showed. Because of space
limitations, the vertical representation corresponding to the extent of the class
User is solely represented.

Fig. 2. Example of the content of an OBDB



A generic approach. Although, we have been using this approach on specific
OBDBs with specific query languages (like OntoQL, RQL or SPARQL in this
paper), this approach is generic and can be applied to other OBDBs thanks to
the following capabilities.

1. The metametamodel offers the capability to add other attributes encoding
specific information of a given ontology model.

2. The content or extent is associated to a class whatever is the logical model
used to represent it (vertical, table-like, etc). A view can be associated to
represent the extent of a class in order to hide the specific logical model.

3. From an implementation point of view, the operators of the algebra, we
are discussing in this paper, define a generic Application Programming In-
terface allowing to access any logical model for contents provided that an
implementation of these operators is supplied.

From these three features, we notice that our approach is flexible enough
to handle different ontology models either from a conceptual modeling point of
view (1,2) or from an implementation point of view (2, 3).

2.3 Differences between OODB and OBDB Data Models

This section describes the differences between the OODB and OBDB data model.
Indeed, one can ask why another database model. Below, we describe a list of
main identified differences from a structural and logical point of views.

Ontology part. From a functional point of view, the OBDB data model
differs from the OODB model in the sense that the former stores not only the
logical database model but it also stores the ontology which provides (1) data
definition and descriptions independently of any context of use, while the latter
stores the logical model of a database for a given application and (2) a formal
theory which allows to check some level of consistency and to perform some level
of automatic reasoning over the ontology-defined concepts.

Incomplete information. An extent of an ontology class is similar to a
typed table associated to a user-defined type in the relational-object data model
or to an extent of an object class in the ODL object-oriented data model. How-
ever, there is a crucial difference between ontologies and conceptual models of
classical databases. Indeed, while a conceptual model prescribes which attributes
shall be represented for each instance of each particular class, an ontology just
describes which properties may be associated with instances of a class. Thus,
the extent of an ontology class gathers only the set of properties valued for its
instances.

Subsumption relationships. As we have pointed out in the previous sec-
tion, applicable properties are distinguished from used properties in the OBDB
data model. If the applicable properties are inherited through the subsumption
relationship as in the object-oriented data model, this is not the case for used
properties. Ontology classes may be linked by a subsumption relationship with-
out implicit inheritance of valued properties (partial inheritance).



Universal identification of classes and properties. The identifier of
classes and properties are defined in the context of a namespace allowing to
universally refer to this concept from any other environment, independently of
the particular system where this concept was defined.

3 Query Algebras

On top of the proposed data model, an algebra which can be the basis of an
ontology query language whatever is the used ontology model is built. From
the listing of the previous differences, it appears that the algebras defined for
OODBs are not fully adequate for OBDBs although, as stated previously, the
OBDB data model uses extensively OODB features. As a consequence, we have
chosen to tune, specialize, extend and reuse the operators of the ENCORE al-
gebra in order to get benefits of their properties (e.g., closure, completeness and
equivalence rules). Next subsection reviews the main operators of this algebra
and subsection 3.2 presents the OntoAlgebra algebra we propose.

3.1 Main Operators of the ENCORE Query Algebra

Each operator of the ENCORE algebra takes a collection of objects whose type
is an ADT T and returns a collection of objects whose type is an ADT Q. Thus, the
signature of such an operator is Set[T]→ Set[Q]. Following our formalisation,
we use the signature ADT× 2O → ADT× 2O in order to record the datatype and
its set of objects. Let us briefly describe the main operators of the ENCORE
algebra.

Image. The Image operator returns the collection of objects resulting from
applying a function to a collection of objects. Its signature is ADT× 2O × Function
→ ADT× 2O. Function contains all the properties in P and all properties that
can be defined by composing properties of P (path expressions). It is easy to
extend the domain of PropDomain, PropRange and Val from P to Function. So,
this operator is defined by:

Image(T, {o1, . . . , on}, f) = (PropRange(f), {Val(o1, f), . . . , Val(on, f)}) .

Project. The Project operator extends Image allowing the application of
more than one function to an object. The result type is a Tuple whose attribute
names are taken as parameter. Its signature is ADT× 2O × 2String×Function → ADT
×2O and it is defined by:

Project(T, Ot,{(A1, f1), . . . (An, fn)}) =
(Tuple[< (A1, PropRange(f1)), . . . , (An, PropRange(fn)) >],

{< A1 : Val(o, f1), . . . , An : Val(o, fn) > |o ∈ Ot}) .

Select. The Select operator creates a collection of objects satisfying a se-
lection predicate. Its signature is ADT× 2O × Predicate→ ADT× 2O and it is
defined by:

Select(T, Ot, pred) = (T, {o|o ∈ Ot ∧ pred(o)}) .



OJoin. The OJoin operator creates relationships between objects of two
input collections. Its signature is ADT× 2O × ADT× 2O × String× String×
Predicate→ ADT× 2O and it is defined by:

OJoin(T, Ot, R, Or, A1, A2, pred) =
(Tuple[< (A1, T), (A2, R) >], {< A1 : t, A2 : r > |t ∈ Ot ∧ r ∈ Or ∧ pred(t, r)}) .

The definition of this operator is modified when it takes a type Tuple as pa-
rameter. Indeed, it becomes necessary to flatten the resulting nested tuples in
order to preserve composition. In this case, the flattening operation allows the
preservation of the associativity of this operator.

In addition to these main operators, the ENCORE algebra includes set op-
erations (Union, Difference, and Intersection) and collection operations (Flat-
ten, Nest and UnNest). All these operators define an algebra allowing to query
OODBs. Next, we show how the definitions of these operators could be reused
and extended for querying an OBDB.

3.2 OntoAlgebra: Adaptation of Encore Query Algebra to the
OBDB Data Model

Signatures of the operators defined on the OBDB data model are (E ∪ C)×
2OC∪I → (E ∪ C)× 2OC∪I. The main operators of this algebra are OntoImage, On-
toProject, OntoSelect and OntoOJoin. Next subsections present the semantics
of these operators for each part of the OBDB data model.

Ontology part. Signatures of the operators defined on the ontology part of the
OBDB data model are restricted to E× 2OC → E× 2OC. Since the data model of
this part is similar to the OODB data model, the semantics of the operators of
the ENCORE algebra is well adapted to the OntoAlgebra operators on this part.
To illustrate the OntoAlgebra operators, we show how several queries are decom-
posed into calls to the operators of this algebra. These queries are expressed in
OntoQL (a), RQL (b) and SPARQL (c). To simplify, the namespaces used in
these examples are not explicitly specified.

Example 1. Retrieve the superclasses of the class named Administrator.

a. SELECT c.#superClasses FROM #class c WHERE c.#name = ’Administrator’

b. SELECT superClassOf($C) FROM $C WHERE $C = ’Administrator’

c. SELECT ?csup WHERE { ex:Administrator rdfs:subClassOf ?csup }

ext∗ : E→ 2OC denotes the function returning the instances of an entity. Using
this notation and the lambda notation, this query is expressed by applying the
following OntoAlgebra operators:

ClassAdministrator:= OntoSelect(C, ext∗(C), λc•c.name =′ Administrator′)
Result:= OntoImage(ClassAdministrator, λc•c.superClasses)

ResultSPARQL:= OntoFlatten(Result)



The OntoSelect operator is applied to find the class named Administrator.
Thus, the type of ClassAdministrator is SET[C]. Then, the OntoImage oper-
ator applies the attribute superClasses to this class. The type of Result is
SET[SET[C]]. Contrariwise to OntoQL and RQL, SPARQL doesn’t support col-
lections. Thus, we need to flatten the result using the OntoFlatten operator
defined by:

OntoFlatten(Set[T], OsetT) =(T, {r|∃t ∈ OsetT ∧ r ∈ t}) .

As a consequence, the type of SPARQLResult is SET[C].

Example 2. List the properties with their domain.

a. SELECT p, c FROM #propery as p, #class as c WHERE p.#scope = c.#oid

b. SELECT @P, $C FROM @P, $C WHERE domain(@P)=$C

c. SELECT ?p, ?c WHERE { ?p rdfs:domain ?c }

This query is expressed by applying the OntoOJoin operator:

Result := OntoOJoin(P, ext(P), C, ext(C), p, c, λp λc•p.propDomain = c)

The type of Result is SET[Tuple < (p : P), (c : C) >].

Content part. Signatures of the operators defined on the content part of the
OBDB data model are restricted to C× 2I → C× 2I. The data model of the
content part presents some particularities which impose to redefine the ENCORE
operators on this part.

OntoImage. Contrariwise to the OODB data model, one of the properties
occurring in the function parameter may not be valued in the extensional defini-
tion of the class. Thus, we can not use the Val function to define the semantics
of this operator as it is done in the definition of the Image operator. It becomes
necessary to extend its domain to the properties defined on the intensional def-
inition of a class but not valued on its extensional definition. This novelty of
our algebra requires the introduction of the UNKNOWN value. We call OntoVal the
extension of Val. It is defined by:

OntoVal(i, p) = Val(i, p), if ∃e ∈ TypeOf(i) such that p ∈ SchemaProp(e)
else, UNKNOWN .

UNKNOWN is a special instance of ObjectC like NULL is a special value for SQL.
Whereas NULL may have many different interpretations like value unknown, value
inapplicable or value withheld, the only interpretation of UNKNOWN is value un-
known, i.e., there is a value, but we don’t know what it is. To preserve compo-
sition, OntoVal applied to a property whose value is UNKNOWN returns UNKNOWN.
So, OntoImage is defined by:

OntoImage(T, {i1, . . . , in}, f) =
(PropRange(f), {OntoVal(i1, f), . . . , OntoVal(in, f)}) .



Example 3. List the first names of users.

a. SELECT u.first_name FROM User u

b. SELECT fn FROM User{u}.first_name{fn}
c. SELECT ?fn WHERE { ?u rdf:type ex:User .

OPTIONAL { ?u ex:first_name ?fn } }

This query is expressed by applying the OntoImage operator:

Result := OntoImage(User, ext∗(User), λu•u.first name)

The type of Result is SET[String]. Since the property first name is not val-
ued for the class Administrator, this expression returns the value UNKNOWN for
each administrator. In the SPARQL vocabulary, the variable is said unbound.
This is not the case for the RQL query because this language doesn’t allow
to express optional patterns. As a result, this query doesn’t return a value for
administrators.

OntoProject. Project is also extended to OntoProject using the OntoVal
operator previously defined :

OntoProject(T, It,{(A1, f1), . . . (An, fn)}) =
(Tuple[< (A1, PropRange(f1)), . . . , (An, PropRange(fn)) >],

{< A1 : OntoVal(i, f1), . . . , An : OntoVal(i, fn) > |i ∈ It}) .

OntoSelect. The semantics of OntoSelect is similar to the one of Select :

OntoSelect(T, It, pred) = (T, {i|i ∈ It ∧ pred(i)}) .

If the predicate taken as parameter of OntoSelect contains function applications,
then OntoVal must be used. So, operations involving UNKNOWN, that may appear
in a predicate, must be extended to handle this value. Because UNKNOWN is often
interpreted by NULL, the same semantics as NULL is given to UNKNOWN. Thus,
arithmetic operators like × or + applied to UNKNOWN return UNKNOWN, and com-
paring UNKNOWN to any instance using a comparison operator like = or > returns
UNKNOWN.

Example 4. List the posts created by an user whose email end with ’@ensma.fr’.

a. SELECT p FROM Post p WHERE p.hasCreator.email LIKE ’%@ensma.fr’

b. SELECT p FROM Post{p}.hasCreator.email{e} WHERE e LIKE ’%@ensma.fr’

c. SELECT ?p WHERE { ?p rdf:type ex:Post . ?p ex:has_creator ?c .

?c ex:email ?e . FILTER (?e LIKE ’%@ensma.fr’) }

This query is expressed by applying the OntoSelect operator:

Result := OntoSelect(Post, ext∗(Post),
λp•p.hasCreator.email LIKE ′%@ensma.fr′)



The type of Result is SET[Post]. For each post created by an administrator, the
value UNKNOWN is returned for the property email. As a consequence, only post
created by users who are not administrators may be returned as result.

OntoOJoin. The semantics of OntoOJoin is similar to the one of OJoin:

OntoOJoin(T, It, R, Ir, A1, A2, pred) =
(Tuple[< (A1, T), (A2, R) >], {< A1 : t, A2 : r > |t ∈ It ∧ r ∈ Ir ∧ pred(t, r)}) .

The predicate taken in parameter of OntoOJoin is treated as for OntoSelect.

Operator *. In the ENCORE algebra, a class C refers to instances of C
and instances of all subclasses of C. The ENCORE algebra doesn’t supply a
built-in operator to write a non polymorphic query. Thus, we define the explicit
polymorphic operator, named ∗, to distinguish between local queries on instances
of a class C and instances of all the classes denoted C∗ subsumed by C. We denote
ext : C→ 2I the function which returns the instances of a class and we overload
the function ext∗ for the signature C→ 2I to denote the deep extent of a class.
If c is a class and c1, . . . cn are the direct sub-classes of c, ext and ext∗ are
derived recursively2 in the following way on the OBDB data model:

ext(c) = TypeOf−1(Nomination(c)) .
ext∗(c) = ext(c) ∪ ext∗(c1) ∪ . . . ∪ ext∗(cn) .

The ext and ext∗ make it possible to define the ∗ operator as ∗ : C→ C× 2I

where ∗(T) = (T, ext∗(T)).

Support of the multi-instanciation paradigm. In the ENCORE alge-
bra, the Image operator can only be applied with a property defined on the class
taken in parameter. Because of the multi-instanciation paradigm, an instance of
a class can provide a value for a property not defined on this class but on an
another class the instance belongs to. As a consequence, this paradigm raises the
need to extend the OntoImage operator. We denote OntoImage’ the definition of
OntoImage when this operator is applied to a property not defined on the class
taken in parameter. When OntoImage’ is applied to a class C1 and a property p
not defined on C1 but defined on the class C2, this operator is defined by:

OntoImage′(C1, IC1 , p) =
OntoImage(OntoOJoin(C1, IC1 , C2, ext

∗(C2), λic1 λic2•ic1 = ic2), ic2 .p) .

The other operators of OntoAlgebra are extended in the same way to handle the
multi-instanciation paradigm.

Example 5. List the file size of the posts.

a. Not supported

b. SELECT f FROM Post{p}.file_size{f}
c. SELECT ?p WHERE { ?p rdf:type ex:Post . ?p ex:file_size ?c }

2 To simplify notation, we extend all functions f by f(∅) = ∅



Let’s suppose that the property file size is defined on a class ExtResource.
This query is expressed by applying the OntoImage’ operator:

Result :=OntoImage′(Post, ext∗(Post), file size)
:=OntoImage(OntoOJoin(Post, ext∗(Post),

ExtResource, ext∗(ExtResource), p, e, λp λe•p = e), e.file size)

Ontology and content parts. OntoAlgebra provides the capability to query
simultaneously ontology and content parts.

Example 6. For each ontology class, whose name contains the word Post, list
the properties applicable (defined and inherited) on this class and the values of
the instances of this class for these properties.

a. SELECT p.#name, i.p

FROM #class as C, C as i, unnest(C.#properties) as p

WHERE C.#name like ‘%Post%’

b. SELECT @P, V FROM {i;$C}@P{V} WHERE $C like ‘%Post%’

c. applicable properties can not be expressed

This query is expressed by applying the following OntoAlgebra operators:

ClassPost:= OntoSelect(C, ext(C), λc•c.name like ′%Post%′)
ClassInst:= OntoOJoin(ClassPost, ∗(ObjectC), C, i, λC λi•i ∈ ext∗(C))

ClassPropInst:= OntoProject(ClassInst, λci•
< (C, ci.C), (i, ci.i), (p, ci.C.properties) >

UClassPropInst:= OntoUnNest(ClassPropInst, p)
Result:= OntoProject(UClassPropInst, λcip•

< (n, cip.p.name), (v, cip.i.(cip.p)) >

The first selection finds the classes whose names contain the word Post. The
result is ClassPost of type Set[C]. The OntoOJoin operator is then used to join
the classes of ClassPost and all the instances, i.e the polymorphic instances of
the root class (∗(ObjectC)). The result of this operation is ClassInst of type
SET[Tuple < (c : C), (i : ObjectC) >]. The function properties is then applied
to the classes contained in ClassInst using the OntoProject operator. The func-
tion properties returns the applicable properties of a class as a set. As a conse-
quence, the result of this step is ClassProp of type SET[Tuple < (c : C), (i : Obj-
ectC), (p, SET[P]) >]. The next step consists in unnesting the set of proper-
ties contained in each of the tuple of ClassProp. This is achieved using the
OntoUnNest operator defined by:

OntoUnNest(Tuple[< (A1, T1), . . . , (Ai, SET[Ti]), . . . , (An, Tn) >], It, Ai) =
(Tuple[< (A1, T1), . . . , (Ai, Ti), . . . , (An, Tn) >],
{< A1 : s.A1, . . . , Ai : t, . . . , An : s.An > |s ∈ It ∧ t ∈ s.Ai}) .



The result of this operation is UClassProp of type SET[Tuple < (c : C), (i : Obje-
ctC), (p, P) >]. Finally the result is obtained by applying the OntoProject op-
erator to retrieve, for each tuple, the name of the property referenced by the
attribute name p and to apply this property to the instances referenced by the at-
tribute name i. The final result is of type SET[Tuple < (name : String), (value :
ObjectC) >].

3.3 Differences between OODB and OBDB Languages

In this section, we describe a list of the identified main differences between the
query languages issued from the ENCORE and OntoAlgebra algebras.

Two levels language. An OBDB query language offers the capability to
query ontology, data and both ontology and data. Each of these querying levels
corresponds to a specific need. Querying ontology may be useful to discover
concepts of an ontology. Querying data from the concepts of an ontology allows
to query the data independently of the structure of the data (semantic querying).
Querying both ontology and data is useful to extract a subset of an ontology
together with its instances (from the ontology to the content part of an OBDB)
or to discover how a given instance of an ontology class may be described by some
other classes (from the content to the ontology part of an OBDB). In a number
of OODB implementations, metadata are recorded in the system catalog. Using
the object query language provided, one can query these metadata. However,
object-oriented algebras define how to query the data of an OODB only. As a
consequence, it is difficult to combine querying both metadata and data.

Unknown value. OBDB query languages may return a special value for
properties defined on the intensional definition of a class but not used in its
extensional definition (see section 3.2). Contrary to the NULL value, introduces
in classical algebra, there is only one interpretation of this value: a value exists,
but we don’t know what it is. In OntoAlgebra, we have chosen to give the same
semantics to this value as the one of the NULL value in order to remain compatible
with classical database languages. As shown in [15], this is not the case of the
SPARQL semantics which has introduced some mismatches with the processing
of the NULL value in classical databases.

Path expression. OBDB query languages extend the capability of path
expressions introduced by OODB query languages. Indeed, a path expression
in an OBDB query language can be composed with a property not defined on
the previous element of the path. This capability is introduced to handle the
multi-instanciation paradigm. Moreover, a path expression can be composed with
properties determined at runtime (generalized path expression). This capability
is introduced to allow querying both ontologies and data.

Parametric language. OBDB query language may use environment vari-
ables such as the used natural language or the namespace of the ontology queried
to restrict the search space in the OBDB and to allow users to define queries in
different natural languages.



4 Related Work

To our knowledge, the SOQA Ontology Meta Model [16] is the only other propo-
sition of an independent data model of a given ontology model. It incorporates
constructors not supported by some ontology languages (e.g., methods or rela-
tionships) but it can not be extended. Our approach is dual, we have decided to
incorporate only the shared constructors but to allow the extension of this core
model thanks to the metametamodel level. This approach is much more flexi-
ble since it allows to represent all the constructors of a given ontology model.
This capability is not offered by the SOQA Ontology Meta Model. For example,
restrictions of OWL or documents of PLIB are not included in this model. As
a consequence managing ontologies which use these constructors with SOQA
Ontology Meta Model based tools is not possible without loss of data.

Concerning the query algebra, formal semantics defined for ontology query
languages [15, 17] or more generally for an ontology model [18, 19] can be re-
garded as related work. Close to our work is the relational algebra for SPARQL
presented in [15]. It presents a correspondence between SPARQL and relational
algebra queries. Based on this analysis, author points out several differences
between SPARQL and SQL semantics. With this work, we share the idea of
defining ontology query languages starting from the well known algebra of clas-
sical database languages. However, we do not address the same kind of data.
While the operators defined in its algebra regard RDF as triple data without
schema or ontology information, our algebra proposes operators to exploit the
ontology level (e.g. computation of the transitive closure of the subsumption re-
lationship . . . ). Thus, while its algebra has the expressive power of the relational
algebra, our algebra has the expressive power of object-oriented algebra to query
the ontology, the data and both the ontology and the data of an OBDB.

5 Conclusion and Future Work

In this paper, we have formally defined a data model for OBDBs independent
of the used ontology model and representation schema. Using this data model,
we have discussed and shown the differences existing between classical databases
and OBDBs. These formalization and comparison are a sound basis for engineers
willing to implement ontology databases using classical databases.

As a second step, we have proposed a formal algebra of operators for query-
ing OBDBs. We have built this algebra by extending the ENCORE algebra
proposed for OODB. As a consequence, our algebra clarifies the differences be-
tween object-oriented query languages (e.g., SQL2003, OQL . . . ) and ontology
query languages (e.g., RQL, OntoQL . . . ) in terms of semantics and expressive
power.

For the future, we plan to use the proposed algebra to study optimization
of OBDBs. By reusing the ENCORE algebra, we hope to benefit from most of
the equivalence rules defined in this algebra. The main challenge is to find new
equivalence rules deriving from the specific features of the OBDB data model.
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