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Non-Bloch plasmonic stop-band in real-metal 
gratings 

Evgeny Popov, Nicolas Bonod, Stefan Enoch 
Institut Fresnel, CNRS UMR6133,Université de Provence,  

Domaine universitaire de St Jérôme, 13397 MARSEILLE Cedex 20, France 

Recent studies of plasmon surface wave (PSW) propagation in short-period 
perfectly conducting gratings have shown formation of stop-band that are 
not linked to the interaction between two (counter) propagating surface 
waves. We study the properties of this stop-band in real metals. While for 
both perfectly conducting and real metals the propagation constant of PSW 
grows with the groove height, the stop-band in real metals appears for 
groove heights significantly smaller than in perfect metals. A physical 
explanation of the formation of the stop-band is proposed both by using a 
homogenisation of the corrugated layer and by analysis of the tangential 
electric field component. 
©2007 Optical Society of America 
OCIS codes: (240.6680) Surface plasmons; (050.1950) Diffraction gratings 
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Introduction 

Stop-bands in periodic media are usually due to interaction between different eigenmodes, an 
interaction which modifies modal dispersion curves close to their intersection points. Recently 
[1], it has been demonstrated that another type of stop-band can appear in short-period 
gratings made of infinitely conducting metal, creating conditions of existence for plasmon-
like surface wave. The explanation of this phenomenon was found in the interaction between 
the surface states and the modes propagating inside the grooves [2]. Our aim is to extend the 
study to real metals, and to show significant differences between real and perfect metals. 
When considering real metals, considerable activity has been observed since the start of the 
20th century [3] and, in particular during the last 25 years. An interested reader can find an 
early review by Maystre [4] and later by Popov [5] on the role of plasmon excitation on 
shallow and deep [6] metallic gratings, a topic of increasing interest during the last 10 years 
[7-11].  

Our aim is to extend the work made in [1] to real-metal gratings in order to investigate 
the similarities and the differences from the perfectly conducting case. In particular, the stop 
band for real metals appears for groove height values significantly smaller than for perfectly 
conducting metals. The other difference is that, contrary to perfect metals, the stop-band 
height for real metals decreases with the grating period. An increase of the propagation 
constant of the surface mode with the groove height is observed in both cases. We give 
physical insight thanks to homogenization of the corrugated layer and observation of field 
maps.  

First section is devoted to stop bands for perfectly conducting gratings. The position of 
the stop band as a function of the period and the groove height of the grating is studied, to be 
followed in the second section by a similar study for the real-metal case, namely for 
aluminium in visible. Stop bands are also observed, but emphasis is then made on the 
difference with the perfect metal case. Firstly, the stop band appears for smaller groove 
height. Secondly, the stop band critical value of the groove height h decreases with the grating 
period d, contrary to the behaviour observed in perfect metals. It has been shown in [1] that in 
the limit when d , the modal structure of the equivalent homogenized optically 
anisotropic layer explains the existence and the dependence of the stop band with the groove 
height. In perfectly conducting case, the homogenized layer presents anisotropic permittivity 
and permeability, whereas with real metals, the homogenized layer presents only anisotropic 
permittivity. It is shown in the third section that this difference explains why the stop band 
appears for smaller groove heights in real metals. In the fourth section, we present an 
alternative approach to explain the increase of the propagation constant with the groove height 
and the formation of the stop band. The approach is based on an analysis of the tangential 
component (E

0→

x) of the electric field at the top and bottom of the groove, which clearly 
indicates whether the conditions for the existence of a surface wave are satisfied or not. The 
tangential component must almost vanish at the surface of a highly conducting metal, a 
condition satisfied on the lamellae tops and at the groove bottoms. However, as the groove 
depth varies, the values of Ex at the groove openings becomes significantly non-vanishing, 
which perturbs the propagation of the surface wave, reduces its velocity (i.e. increases its 
propagation constant) and, under certain conditions can lead to a complete cut-off of the 
surface wave.  

 



Stop bands in corrugated perfectly conducting metals 

Plasmon-like surface wave can propagate on the surface of a corrugated perfectly conducting 
metal. Periodic perturbation of the surface (having a period d) can couple the counter 
propagating modes, modifying their propagation constants (denoted as kx) in the regions close 
to the boundaries of the Brillouin zone. The results presented in this section are already 
known, but they are necessary for making the comparison with the real-metal case. 
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Fig.1. Dispersion curves of plasmon-like surface waves in a lamellar grating made of perfectly 
conducting metal. Dotted lines present Brillouin zone boundaries (kx = π/d), dashed lines 
indicate lower boundary of the forbidden zone created by the interaction between counter 
propagating surface waves.  

 
Figure 1 presents the dispersion curves in the case of lamellar metallic gratings for 

several values of the grating period d. The period d and the incident wavelength λ are in µm. 
The dotted lines indicate the Brillouin zone boundaries: 

 x,maxk
d
π

=  (1) 

and the dashed lines indicate the lower boundary of the forbidden zone created by the 
interaction between the counter-propagating waves. For very small groove depth values (weak 
counter-propagating interaction), the two boundaries are linked through the free-space 
relation: 
 
 max x,max/ c k , h 0ω = →

0

 (2) 
 
These boundaries increase with the period reduction, as observed in Fig.1. It can be expected 
from eq.(2) that ωmax grows to infinity when d is reduced. However, as shown in [1], there is 
an upper limit reached asymptotically when , a limit which depends on the groove 
depth h through the simple relation 

d →
4hλ = , as shown by the blue line in Fig.2. 

Surface wave propagation constant kx increases from the free-space value k0 = 2π/λ with 
the increase of the groove depth (Fig.2), due to the stronger counter-propagating modal 
interaction. As observed in Fig.2, this difference kx – k0 for a fixed wavelength and groove 
depth values is smaller for shorter periods, because the shorter the period the farther the 
Brillouin zone boundary. However, as already observed in Fig.1, a stop-band is formed in 
Fig.2 in the h-space for , even when . h /> λ 4 d 0→

This phenomenon finds its explanation in the modal structure of the equivalent 
waveguide formed inside the corrugated layer, a waveguide having anisotropic optical 



constants [1, 2]. In the next sections, we detail this homogenization approach for both real and 
perfectly conducting metals, and point out their differences.  
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Fig.2. Normalized propagation constant of the plasmon-like surface wave as a function of the 
groove height of the grating for 3 values of the period and wavelength λ = 0.6 µm. In the limit 
d→0, the cut-off height is equal to λ/4. 

 

Stop bands in real metals  

Plasmon surface wave along real-metal grating has absorption losses, and Fig.3 represents the 
real and imaginary part of the propagation constant of the eigenmode kx as a function of the 
groove height in the case of an aluminium grating illuminated in the visible (wavelength λ = 
0.6 µm and refractive index n = 1.378 + i 7.616). Qualitatively, the effect is similar to that one 
observed in Fig.2, but several important differences must be evidenced. First, close to the cut-
off, the imaginary part of the plasmon propagation constant starts to grow rapidly, 
accompanied by a maximum of its real part. This behavior is quite typical to the modes of 
lossy systems close to their cut-off [12, 13].  
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Fig.3. Same as in Fig.2 but for a real metal (aluminum in visible). Cut-off is characterized by 
the sharp increase of the imaginary part of the propagation constant. As for perfect metals, the 
real part of kx increases at the cut-off. 

 
Second, the decrease of the period for real metal case (Fig.3) moves the cut-off towards 

smaller groove depth values, contrary to the perfectly conducting case (Fig.2). Third, although 
contrary to perfectly conducting metal in Figs.1 and 2, the position of the cut-off is not quite 



well defined, its values for real metals are much lower than for the perfectly conducting case. 
Whether this is due to the penetration of the electromagnetic field inside the substrate, which 
increases the visible groove depth, is a question that can partially explain this difference, by 
taking into account that the skin depth is approximately equal to 12 nm. However, this reason 
does not provide a complete explanation, as shown in Fig.4, where the PSW propagating 
constants are presented as a function of the groove depth for a very short-period grating (d = 
0.0015 µm) having aluminium lamellae and, respectively, aluminium or perfectly conducting 
substrates. As observed, even in the case of perfectly conducting substrate and lossy lamellae, 
the cut-off height is almost twice smaller than in Fig.2. 
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Fig.4. Same as in Figs.2 and 3 but for two different gratings. Lamellae and substrate made of 
aluminum (black and red lines), and lamellae made of aluminum and substrate made of perfect 
metal (green and blue lines). Wavelength λ = 0.6 µm. 

 

Homogenized corrugated layer for perfect and real metals 

As discussed in detail in [1], the perfectly conducting lamellar grating behaves, in the limit of 
 as an anisotropic waveguide with both relative permittivity and relative permeability 

being tensors: 
d → 0

 
1

xx yy zz
1 ,

−

ε = ε = ε = ∞
ε

   (3) 

 xx yy zz xxµ 1, µ µ 1/= = = ε     (4) 

where the angular brackets stay for the mean value. When d , both the spectral and the 
groove-depth dependency, as presented in Figs.1 and 2, approach the characteristics of a 
planar anisotropic waveguide. While the anisotropic homogenized tensor <ε> is quite well 
known since long time [14, 15], the anisotropic homogenized tensor <µ> depicted by eq.2 is 
necessary only for perfectly conducting lamellae in order to ensure that the electromagnetic 
waves travelling inside the grooves in direction of either y and z have, correspondingly, the 
wavevector components equal to 

0→

y 0k / k 1=  and  z 0k / k 1= . This is due to the fact that for 
small groove width, the only propagating mode inside the grooves is the fundamental TEM 
mode. And indeed, when observing the black curve in Fig.5, which gives the vertical 
distribution of |Ex| inside the groove for an almost infinitely conducting material (made with 
εmetal = -104 + i 107, corresponding to Al in the microwave domain), one observes that |Ex| 
reaches from a minimum at the groove bottom to a maximum at the groove opening at a 
distance along the y-axis exactly equal to a quarter-wavelength. This result shows that the 



component ky of the fundamental mode inside the groove (which determines the y-dependence 
of the field) is equal to the free space constant k0,  i.e. ky= k0. 
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Fig.5. Vertical distribution of |Ex| inside the groove with depth h = 0.13 µm for a perfect (black 
line) and real-metal (red line) case. Incident electric field modulus is equal to 1. 

 
On the other hand, finitely conducting gratings have equivalent homogenized 

presentation, which represents a waveguide, anisotropic in its dielectric permittivity whereas 
its magnetic permeability is isotropic: 

 
1

xx yy zz
1 ,

−

ε = ε = ε = ε
ε

,    (5) 

 xx yy zzµ µ µ 1= = = ,     (6) 

And indeed, numerical results show that when , the curves presented in Fig.3 for  
tend towards the curve for an anisotropic waveguide with permittivity given by eq.(5) similar 
to eq.(3), but with isotropic permeability presented by eq.(6). The discontinuity in the 
transition between highly but finitely conducting metals to a perfectly conducting material in 
the homogenization procedure is known since more than 20 years [14-16] and is still waiting 
for a satisfactory explanation. Anyway, the main difference is that in the case of a finite 
conductivity, the propagation constant in y-direction inside the homogenized anisotropic 
waveguide becomes different from k

d → 0 d 0≠

0: 

 
1/ 2

y 0
1k / k

−

=
ε

 .    (7) 

If we consider a highly conducting grating with filling ratio of 0.5, then y 0k / k 2= , i.e., the 
electromagnetic field components vary inside the equivalent anisotropic waveguide more 
rapidly than for perfect metals. This can be observed in Fig.5, where the second curve is for a 
grating made of Al illuminated in the visible. This more rapid variation explains why the 
surface wave cut-off appears at shallower grooves for lossy gratings when compared to 
lossless material. The increase of the mode propagation constant with the groove depth can be 
understood from the analogy with an equivalent waveguide. Plasmon-like surface wave in real 
but highly conducting metals is characterized by a propagation constant almost equal to the 
free-space wavenumber, with a slightly greater real part and small positive imaginary part. 
When a dielectric layer with x 1/ 1/ε = ε  ( 2≈  for filling ratio of 0.5) is deposited on the 
metallic surface, the propagation constant of the PSW increases its values, the increase being 
larger when the layer thickness grows up. Moreover, unlike the isotropic waveguide, the 
anisotropic waveguide has an upper cut-off thickness, which explains the PSW cut-off 
observed in Figs.2 and 3. 



These numerical results are obtained using the differential theory of gratings [17] in its 
rigorous coupled-wave version [18-20]. The method is based on a projection of Maxwell 
equations of a Fourier basis and thus reducing them to a set of ordinary differential equations, 
by playing special attention to the factorization rules used in a truncated basis of functions 
[19, 20]. In the case of lamellar groove profile, the set of equations is solved using eigenvalue-
eigenvector technique [18], which increases significantly the computation speed. The 
numerical results are supported by analytical analysis of the guided wave propagation in an 
anisotropic waveguide, made in the Appendix. The result, described by eq.(15) in the case of 
highly (or perfectly, as discussed in ref.[1]) conducting substrate and lamellae confirm the 
behavior of the mode propagating constant kx, presented in Figs.2 and 3. With the increase of 
the groove depth, kx increases as tg(ky,2h), i.e., there is a cut-off situated at h = π/2ky,2. This 
formula explains, as well, the difference between the perfectly conducting and real-metal case, 
when taking into account the couples of eqs. (3) and (4) or (5) and (6): 

 cut
y,2 zz xx

, p.c
4h

2k 4 µ f , f .c
4

λ⎧
⎪π λ ⎪= = = ⎨λε ⎪
⎪⎩

 (8) 

where p.c. and f.c. stand for perfect or finite conductivity and f is the ratio between the groove 
width and period. 

In addition, eq.(15) contains a second (or higher) branch of the surface plasmon, existing 
in deep gratings (h ~ λ/2), shown in the right-hand side of Fig.3 and discussed in detail in [7] 
for lamellar grooves and in [21] for sinusoidal gratings.  

 

Local field analysis 

As expected for highly conducting metals, the PSW wave has an almost vanishing electric 
field component Ex tangential to the metal surface. When a surface corrugation is introduced, 
the same condition is fulfilled on both the lamella top and the groove bottom.  
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Fig.6. Map of |Ex| within one period of the grating with h = λ/4. Wavelength λ = 0.6 µm, period 
d = 0.01 µm, and εmetal = -104 + i 107. |Ex| vanishes on the top of the lamella and at the bottom 
of the groove, and has a maximum at the groove opening. 

 



When considering a flat surface of a perfect metal, the propagation constant of the surface 
wave kx is equal to k0, and the tangential component of the electric field Ex is null. With the 
presence of a grating, the electric field component Ex is not null at the surface of the vertical 
walls, because it represents the normal component to the wall (Ey is then null). As a 
consequence, the propagation constant of the surface mode must be different from k0 
(otherwise  everywhere), and only the condition kxE ≡ 0 x > k0 corresponds to a surface wave. 
This analysis explains why, if the PSW exists on a corrugated surface, its propagating 
constant is greater than for the wave on a flat surface. 

In addition, when going up from the metal surface into the cover (vacuum or dielectric), 
|Ex| increases (at least up to a given height), because kx ≠ k0. Thus even for very shallow 
grooves, the condition: 

 xE 0≈  at  y = 0,     (9) 

i.e. on the straight line lying on the lamella surface is not fulfilled over the groove openings, 
while still holding on the lamellae tops. Thus the condition (9) necessary for the ‘ideal’ 
surface wave propagation along a highly conducting metal-dielectric interface is perturbed, as 
shown in Fig.6, a perturbation resulting in slowing down the plasmon, i.e. in increasing its 
propagation constant kx.  
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Fig.7. Comparison of the values of |Ex| at the top of the lamellae (black line) and at the groove 
opening (red line) as a function of the height of the groove. λ = 0.6 µm, d = 0.01 µm, and 
aluminium in the microwave domain, εmetal = -104 + i 107.  

 
The perturbation grows with the groove depth, as observed in Fig.7, which shows the 

values of |Ex| on the lamellae top and in the middle of the groove opening for different groove 
depths of a very short-period lamellar grating (λ/d = 60) made of very highly conducting 
material. It is observed that |Ex| (normalized so that |E| = 1) exhibits a sharp jump from 
lamellae top to groove opening, a jump which grows with h and perturbs the propagation of 
the plasmon surface waves thus reducing its speed for deeper grooves.  

The fundamental TEM mode inside the grooves forms a standing wave with a period 
equal to λ/2. When the groove depth approaches a quarter-wavelength, |Ex| reaches a 
maximum at the groove openings (see Fig.7) and the surface plasmon is so perturbed that it 
cannot propagate (its velocity becomes zero and its propagation constant tends toward 
infinity), i.e., the mode is cut-off.  

Similar is the behavior when lossy grating material is considered. The difference lies in 
the fact that when kx increases (i.e., when the plasmon velocity diminishes), the absorption 
losses increase [3]. This phenomenon has already been observed in Fig.3 with the sharp 
increase of the imaginary part of the propagation constant close to the cut-off, i.e., when the 
|Ex| component at the top of the groove is maximum. A second difference lies in the fact that 



in lossy metals, the propagation constant of the fundamental mode inside the groove is larger 
than k0. As a consequence, the variation in y-direction of the electric field components is 
faster than for perfectly conducting gratings. Thus when increasing the groove height,  |Ex| 
will reach its maximum value at a groove height h smaller than λ/4.  

 

Conclusion 

It is shown that gratings with very short period made of real metals support plasmon-like 
surface wave in the same way as it has been recently shown with perfect metals. These surface 
wave present a cut-off groove height value. A thorough comparison between perfect and real 
metals has been carried out and important differences have been pointed out. First, for real 
metals, the cut-off height diminishes with the period d, while for perfectly conducting gratings 
the tendency is the opposite. Second, the cut-off height is smaller for real metals. Third, with 
real metals, the cut-off is accompanied by a sharp increase of the imaginary part of the 
propagation constant. In all cases, the propagation constant increases with the groove height. 
We present two approaches to explain these phenomenon. The first one is based on the 
homogenization of the corrugated layer, as it has been proposed in [1, 2] for perfectly 
conducting gratings. In both cases (real and perfect metals), the equivalent homogenized layer 
presents an anisotropic dielectric permittivity, which explains why the propagation constant of 
the surface mode increases with the groove height. On the other hand, the homogenized layer 
presents an anisotropic magnetic permeability only in the case of perfect metals, a 
permeability remaining scalar in the real-metal case. This difference explains why the cut-off 
height is smaller in the latter case, as the variation of the electric field components inside the 
grooves is more rapid.  

Another explanation of these peculiarities is given by analyzing the behavior of the 
tangential component of the electric field above and inside the grooves of the grating.  

 

Acknowledgements 

The support of EC-funded project PHOREMOST (FP6/2003/IST/2-511616) is gratefully 
acknowledged. 
 

Appendix 

The behavior of the anisotropic waveguide equivalent to the lamellar metallic grating is quite 
different from the well-known behavior of isotropic dielectric or metallic waveguides. In 
particular, the anisotropic waveguide is characterized by the existence of an upper cut-off 
thickness, which explains the cut-off of the PSW for larger groove depths, observed in Figs.3 
and 4. Let us consider a waveguide with anisotropic relative permittivity and permittivity: 
 

  (10) 
xx xx

yy yy

zz zz

0 0 µ 0 0
0 0 , µ 0 µ

0 0 0 0 µ

⎛ ⎞ ⎛ε
⎜ ⎟ ⎜

ε = ε =⎜ ⎟ ⎜
⎜ ⎟ ⎜ε⎝ ⎠ ⎝

0
⎞
⎟
⎟
⎟
⎠

 
It can be easily found from the Maxwell equations that for diagonal form of anisotropy, it is 
possible to separate the two fundamental case of transverse electric (TE) and magnetic (TM) 
polarization. The propagation equation for Hz in the TM case is similar to the isotropic case: 

 
2

2 2z xx
0 xx zz x z2

yy

d H
k µ k H

dy

⎛ ⎞ε
0+ ε − =⎜⎜ ε⎝ ⎠

⎟⎟  (11) 

 



assuming an exp(ikxx) variation. The boundary conditions at the waveguide surfaces lead to 
the well-known characteristic equation for the mode propagation constant kx, which has the 
same form as for isotropic media: 
 
 ( )( ) ( )( )y,2 y,2exp( ik h) exp(ik h)β + α β + γ − = β − α β − γ  (12) 

where  characterizes the cladding with relative permittivity ε1,y 1k /α = ε 1,  

characterizes the substrate having permittivity ε
3,y 3k /γ = ε

3, and 2,y xxk /β = ε  with 
 

 2 2 xx
y,2 0 xx zz x

yy
k k µ k

ε
= ε −

ε
 (13) 

as found from eq.(11).  
Let us consider highly conducting substrate, so that γ << β  and eq.(12) is simplified to 

take the form: 
 . (14) y,2i tg(k h)α = β

For isotropic waveguides, both α and β are functions of kx. However, eq.(5) shows that εyy is 
equal to the arithmetic mean permittivity in the grating region, which is much larger in value 
than the mean harmonic permittivity εxx, for highly conducting lamellae. By taking this into 
account, the characteristic equation is drastically simplified: 
 
 y,2 2 xx y,2 0 xx zzik tg(k h) / , k k µα = ε ≈ ε . (15) 
 


