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Abstract: Gratings insensitive to light polarization may be useful in many areas of optical 

engineering, particularly in light demultiplexing application. We study different kinds of 

binary gratings able to present reflected efficiencies higher than 98% in the –1st order. 

These are metallic gratings, dielectric gratings deposited on a metallic substrate, total 

internal reflection gratings and gratings lying on a dielectric multilayer. We study each 

configuration with respect to manufacturing constraints and optical performances to 

conclude by providing the most suitable design. 
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1. Introduction 

Gratings present dispersive properties which are widely used in spectroscopy analysis, light 

demultiplexing and also in ultrashort pulse compression1. In many cases, they are used to 

disperse unpolarized incident light. Unfortunately, their diffractive properties are largely 

dependent on light polarization, therefore inducing undesired polarization dependent losses, 

undesirable for applications such as light demultiplexing2. This paper is devoted to the design of 

gratings able to diffract almost 100% of the incident light in a specific dispersive -1st order 

simultaneously for both transverse magnetic (TM) and electric (TE) polarization.  

Three steps are necessary to diffract all the incident light in the -1st order in reflection. 

• The first one is to reflect the incident light. Metallic substrates, dielectric substrate used 

in total internal reflection, multilayer dielectric layers or photonic crystals can be used for 

this purpose.  

• The second step is to etch a grating in the reflecting device. The ratio between the period 

and the incident wavelength determines the number of propagative orders. As the incident 

light energy is desired to be almost entirely diffracted into one specific order, the number of 

propagating orders must be minimal. When the angle of incidence is known, the number of 

propagating orders is only determined by the ratio between the wavelength λ and the grating 

period d. The specular (0) order is always propagative and does not present dispersive 

properties. The second propagating order is usually the -1st order. As a consequence, the 

grating period is determined to induce only two propagative orders. The exception to this rule 

concernes echelles, grating with large period that blaze into an order with large number. They 

can be characterized with high values of efficiency in unpolarized light, however, the free 

spectral range in each diffraction order is quite limited. 
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• Finally, the last step consists of optimizing grating grooves profile to disperse all the 

incident light into the –1st order.  

In this paper, we will study different kinds of binary gratings which can diffract as much as 

possible the incident light in the –1st order at the Littrow incidence. In the first section, we will 

consider two different metallic gratings. In the first case, the modulated layer lies in the metallic 

material, and in the second case, in a silica layer deposited onto the metallic substrate. In the 

second section, dielectric gratings based on total internal reflection phenomenon will be studied. 

These gratings are well known to diffract with a very good efficiency the incident light in the -

1st order but to the best of our knowledge, no design has been proposed to make them insensitive 

to the incident polarization3,4. The third section is devoted to gratings etched on the surface of 

dielectric reflecting multilayers. We shall study both gratings recorded either on a dielectric 

mirror (HL)7HL made of SiO2 (for L) and HfO2 (for H) or on a 2 dimensional photonic crystal 

made of macroporous silicon.  

The wavelength is equal to 1.55 µm for telecommunication applications and the period d is 1.33 

µm, except in the second section where the total internal reflection condition imposes a lower 

period taken equal to 0.6 µm. The Littrow incidence in air is defined by sinθ-1=λ/(2d), where θ-1 

is the angle of refraction of the –1st order, and is equal to 35.5 deg1. It is well known that this 

incidence favourites the diffraction in the -1st order1. 

Optimizations are made using a numerical code based on the differential method5. This method 

enables the rigorous resolution (to the numerical approximations) of Maxwell equations in 

periodic media.  
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2. Gratings based on metallic reflector 

2.1. Metallic modulated area 

The most common metallic grating is a grating presenting a periodical modulation of the metallic 

surface. In practice, the relief is recorded in a photosensitive resin deposited onto a dielectric 

substrate (glass). After the photosensitive resin development, the modulated surface is coated by 

a metallic layer. The modulation can also be transferred directly into the dielectric substrate by 

ion etching technique and then coated by a metallic layer. In all these cases, the metallic layer is 

thick enough to be considered as the substrate and the device can be represented schematically as 

in fig.1. The efficiency in the -1-st reflected order are calculated in TE and TM polarization as a 

function of the groove height h and width c, and the calculated efficiencies are given in fig.2 in 

TE (fig.2a) and TM (fig.2b) polarization together with their mean values(fig.2c). As it can be 

observed, the reflected efficiency in the -1st order depends highly on the polarization, and we 

can see in fig.2c that the unpolarized efficiency does not reach 95%. The use of the metal 

introduces too much losses thus limiting the efficiency to approximately 90% in both TE and TM 

polarization. 

2.2. Dielectric modulated area 

Let us now consider gratings made of a modulated dielectric layer deposited on a flat metallic 

substrate. The modulation is made into a usual dielectric material like silica deposited on a 

metallic reflective substrate. Silica presents a low refractive optical index allowing a larger 

tolerance to manufacturing imprecision with respect to the original profile. Gold is chosen since, 

compared to silver, it presents a much lower reflectivity at a wavelength λ/3, used during the 

interference recording of the grating, which fact is of great importance in reducing the standing-
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wave effect inside the photoresist. The device under study is depicted in fig.3. It has been shown 

recently that such grating can diffract 99% of the incident light into the -1st order6 in TE 

polarization. Guided modes in the silica layer are radiated by the modulated structure and 

constructive interferences between the propagated modes explain the almost perfectly 

diffraction6.  

The efficiency calculated as a function of the two parameters h, c with e = 50 nm is shown in 

figs.4. The mean value of diffraction efficiencies in both polarizations is higher than 95%. 

However, manufacturing of such profiles will be a hard task due to the large value of the groove 

height compared to the wavelength. Moreover, the groove width values, around 0.4 µm, which 

lead to the highest reflected efficiencies are small compared to the period d (c/d = 0.3, and h/λ > 

1). And indeed, conventional technologies used by grating manufacturers allow ratios c/d around 

0.3 only when the ratio h/λ is largely smaller than 1. Despite this technological limitation, such a 

grating present attractive properties.  

3. Total internal reflection gratings 

In order to avoid the use of metal, undesirable for high energy applications, dielectric gratings 

based on the total internal reflection condition are now considered. The modulated area is 

illuminated from the material  having higher optical index n. It is now well known that this kind 

of grating can diffract almost all of the incident light in the -1st order3,4. We first define the 

conditions on the grating period in order to satisfy the total internal reflection condition with two 

orders of propagations in Littrow incidence θi. The total internal condition writes : 

sinθi > 1/n        

The Littrow incidence is defined by:     
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sinθ-1= −λ/(2nd)        

With the use of the two preceding conditions, one obtains:     

d < λ/2          

The -1st order is propagating if: 

d > λ/2n        

Finally, the condition imposed on the grating period writes: 

λ/2n < d < λ/2         

With λ = 1550 nm and n = 1.45, one obtains: 

534 nm< d <775 nm       

The period is taken equal to d = 600 nm and the Littrow incidence is then equal to sinθI = λ/2nd = 

63°. Calculations of efficiencies, similar to the preceding section as a function of d and c lead to 

results shown in figs.6. The average between diffraction efficiencies in TE and TM polarization 

reaches 98%, unfortunately on a very narrow area. The optical properties of this grating appear 

to be highly dependent on the groove geometry, which is a severe technological limitation.  

4. Multilayer dielectric gratings 

The most common dielectric reflecting device is the well known dielectric Bragg mirror. A stack 

of alternatively high and low optical index material is deposited onto a dielectric substrate. The 

optical thickness of the layers is equal to λ/4nicosθi where ni is the optical index of the I-th layer 

and θi is the angle of refraction of the plane wave in this layer. The stack under study contains 7 

bilayers of high and low optical index plus a layer of high optical index on the top, and is 

denoted as (HL)7H. A thicker layer of low-index material is then deposited to be etched 

periodically. The residual thickness of the low-index is denoted as e (fig.7). This kind of grating 
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was designed in the middle of the 90’s to increase the laser damage threshold of gratings used for 

ultrashort laser pulses compression7-8.  

At first, we study the reflectivity of the mirror (HL)7H as a function of the angle of incidence θ  

for the both polarizations (fig.8). As the reflectivity is much better in TE polarization than in TM 

polarization, we expect to observe diffracted efficiencies largely dependent on the polarization. 

And indeed, the averaged reflectivity does not reach 90%, due to the insufficient reflectivity of 

the stack (fig.9) in TM polarization. To eliminate this difficulty, we can increase the number of 

bilayers, but mechanical stress grows resulting in crackings inside the stack or deformation of the 

wavefront depending on the coating process. 

Another possibility is to increase the optical contrast between the layers. Let us increase the 

value of the high optical index up to 3.4, which corresponds to the silicon at λ=1.55 µm, keeping 

the same number of bilayers. We can observe in fig.10 that the increase of the optical contrast 

leads to a better reflectivity of the dielectric mirror, even if the reflectivity in TM polarization is 

still lower, especially at grazing incidences.  

The same calculations of efficiency as a function of h and c result in plots shown in fig. 11.  

It is well shown in fig.11c that diffraction efficiency in the -1st order in unpolarized light is 

higher than 97% over a large area, i.e. with high tolerances to manufacturing defaults. As a 

consequence, a grating based on a high-contrast dielectric mirrors appears to be well adapted for 

the design of polarization insensitive gratings.  

5. Photonic crystal diffraction grating 

Nowadays, the progress of technology has made possible the realization of 2D photonic crystals. 

They appear as new opportunities to design reflection gratings. We have chosen a photonic 

crystal consisting of square holes in a silicon matrix9. The geometry is invariant in the z 
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direction, periodic and infinite in the x direction (fig.12). The period d of square holes (0.66 µm) 

equal to the half of the grating period (1.33 µm), is small enough to prevent propagation of 

dispersive orders. In the y direction, photonic crystal is made of 8 layers of periodical square 

holes of length equal to 0.8d. Substrate is pyrex, and cladding is air. The residual thickness of 

silicon above and below the square lattice is equal to the half of the thickness of the layer 

positioned between the two layers of periodic square holes, i.e, equal to d(sin(π/3)-0.8)/2. This 

photonic crystal presents photonic band gaps common to both TE and TM polarizations, centred 

around the wavelength of study 1.55 µm. The reflectivity of the device is studied as a function of 

the angle of incidence at λ=1.55 µm for both polarizations (fig.13). It can be observed that the 

reflectivity is almost perfect for both polarizations over a broad range of incidence. Contrary to 

the dielectric mirror studied in the preceding section, the reflectivity of the photonic crystal is 

better in TM polarization than in TE polarization. 

To observe the propagation of the -1st dispersive order, a grating with period 2d is etched in a 

silica layer deposited on the top of the photonic crystal, with a residual thickness of silica 

denoted e (Fig.13). Such a device can be called photonic crystal diffraction grating11. To 

rigorously model such a device, a numerical code has been developed to solve Maxwell 

equations in periodical devices presenting 2 periods, one being twice bigger than the other. 

Calculations of efficiencies as a function of groove width c and height h similar to preceding 

sections is undertaken. Mean efficiency higher than 97% can be observed over a large area of 

ggrrov parameters (fig.14). Moreover, the groove width values leading to the highest reflected 

efficiencies are increased compared to the study of metallic grating (fig.4c), which makes easier 

the manufacturing of the profile.  
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To conclude this study, the angular tolerances of both the grating and the photonic crystal are 

compared. The reflected efficiencies are calculated as a function of the incident angle θ with 

profile dimensions h = 1850 nm and c = 450 nm, a couple which leads to the highest mean 

efficiency. We present in figs.15 the -1st order and the sum of the both reflected orders (0th and 

–1st) as a function of θ, for both TE (15.a) and TM (15.b) polarizations. The sum of the reflected 

efficiencies is directly related to the angular tolerance of the photonic crystal, and as expected, 

we can observe in fig.15 the perfect reflection of the device over the range of incidence and 

conclude that the angular tolerance of the photonic crystal diffraction grating is imposed by the 

angular tolerance of the grating.  

Conclusion 

We discuss different possibilities to design binary diffraction gratings able to diffract almost all 

the incident light  (98%) in the –1st order in reflection, simultaneously for both fundamental 

polarizations. These gratings may considerably reduce the polarization dependent losses in 

telecommunication applications. We have studied and compared several types of gratings based 

on: metallic mirror, total internal reflection phenomenon and photonic crystal band gaps. 

Diffraction efficiencies of gratings with a metallic modulated surface are limited by losses 

induced by the metal, despite of the use of a highly conducting metal (silver). Much better 

performances are obtained when the modulated area lies inside a dielectric layer made of silica, 

whatever the reflecting device. Mean efficiencies averaged on both polarizations can reach 

values as high as 98% . The criterion used to select the best design is the stability of optical 

properties with respect to variations of groove geometry induced by technological processes. 

Large optical tolerance are obtained in figs.(4,6,13), in which the domain of high reflected 

efficiencies (> 95%) covers a large area of groove parameters . The largest area is obtained in 
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case of diffraction grating recorder on a 2D photonic crystal. This device appears to have high 

tolerances with respect to groove profile variations and provides polarization insensitive 

properties around values of c slightly lower than d/2 and h slightly higher than λ, which are 

easily accessible with actual technology. Photonic crystals are able to reflect light over a large 

range of angle of incidence. In order to know if this property may be useful for the design of 

grating poorly sensitive to incidence, reflected efficiencies of both propagating orders are plotted 

as a function of the angle of incidence. It is clearly shown that the angular tolerance is only 

determined by the grating's one since the sum of the both orders is almost equal to 1 over the 

whole range of incidence.  
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List of figures 

Fig.1. Binary grating with groove height h and width c. The grating is illuminated by a 

monochromatic plane wave of wavelength λ = 1.55 µm, with angle of incidence θ. Grating 

period d is equal to 1.33 µm. Substrate is made of silver of optical index n = 0.322+ i10.9935 

and cladding is air. 

 

Fig.2 . Efficiencies in the -1st  reflected order as a function of groove width c and height h. (a): 

TE polarization, (b) TM polarization, (c) mean values of efficiencies for TE and TM 

polarization. 

 

Fig.3. A silica layer is deposited on a metallic substrate (gold) and etched periodically with a 

period d, a groove thickness h and width c. The residual thickness of silica is e. 

 

Fig.4. Same as fig.2, but for the grating presented in fig.3. 

 

Fig.5. Binary grating, working in total internal reflection and etched in silica illuminated by a 

monochromatic plane wave from the cladding made of silica, substrate is air. 

 

Fig.6.Same as figs.2 and 4, but for the grating presented in fig.5 

 

Fig.7. Multilayer dielectric grating (HL)7H. Substrate is pyrex, high optical index material is 

HfO2, and low optical index material is SiO2. 
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Fig.8 . Reflectivity of the dielectric mirror (HL)7H. nH = 1.9 and nB = 1.46. 

 

Fig.9. Efficiency of the -1st order in reflection, averaged in TE and TM polarizations with e = 

50 nm. 

 

Fig.10. Reflectivity of the dielectric mirror (HL)7H. nH = 3.4 and nL = 1.46. 

 

Figs.11.Efficiency in the -1st reflected order averaged between the both polarizations of the 

grating recorded on the stack (HL)7HL with nH = 3.4 and nL = 1.46, e = 50 nm. 

 

Figs.12.(a) A 2 dimensional photonic crystal of triangular lattice, finite in the y direction, infinite 

and periodic in the x direction, and invariant in the z direction. It is made of 8 periodically 

modulated layers of period d = 0.66 µm. Square holes made in silicon have a length equal to 

0.8d. (b) A grating is etched in a silica layer deposited on the photonic crystal. The grating period 

is twice bigger than the square holes period d. 

 

Fig.13. Average of diffraction efficiencies in TE and TM polarization as a function of groove 

height and width for the grating made inside a silica layer deposited on the top the photonic 

crystal at Littrow incidence with λ=1.55µm. 

 

Fig.14. The 0th (line) and -1st (dashed line) reflected orders and their sum (dotted line) of the 

photonic crystal diffraction grating as a function of the angle of incidence θ, with h = 1850 nm 

and c = 450 nm. TE (a) and (TM) (b) polarization.   
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Figure 3 
 

 θi

SiO2, n=1.45 

Au

Air, n=1 

e 

h c 
d

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N. Bonod et al. 
 

 1



Figure 4 

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
100

200

300

400

500

600

700

800

900

1000
 

 

0

0.1250

0.2500

0.3750

0.5000

0.6250

0.7500

0.9500

1.000

Groove height h in nm

G
ro

ov
e 

w
id

th
 c

 in
 n

m

 
(a) 

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
100

200

300

400

500

600

700

800

900

1000

TM

G
ro

ov
e 

w
id

th
 c

 in
 n

m

Groove height h in nm

 

 

0.1000

0.2125

0.3250

0.4375

0.5500

0.6625

0.7750

0.9500

1.000

   
(b) 
 

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
100

200

300

400

500

600

700

800

900

1000

(TE+TM)/2 

 

0.1000

0.2125

0.3250

0.4375

0.5500

0.6625

0.7750

0.9500

1.000

Groove height h in nm

G
ro

ov
e 

w
id

th
 c

 in
 n

m

 
(c) 

 
 

N. Bonod et al. 
 

 1



 
Figure 5 
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Figure 6 
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Figure 7 
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Figure 9 
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Fig.10 
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Fig.11. 
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Figure 12 
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Figure 13 
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Figure 14 
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