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ABSTRACT. In this paper, two-dimensional direct numerical simulations (DNS) of
dense clouds moving down steep slopes are presented for the first time. The results
obtained are in good agreement with the overall characteristics, i.e. the spatial growth
rate and velocity variations, of clouds studied in the laboratory. In addition to the overall
flow structure, DNS provide local density and velocity variations inside the cloud, not
easily accessible in experiments.The validity of two-dimensional simulations as a first ap-
proach is confirmed by the dynamics of the flow and by comparison with experimental
results.The interest of the results for powder-snow avalanches is discussed; it is concluded
that two-dimensionality is acceptable and that large density differences need to be taken
into account in future simulations.

INTRODUCTION

Apowder-snowavalanche is adense cloudof suspended snow

particles moving down a steep slope. These flows can reach

front velocities uf of 100m s^1, and heights h of the order of

100m.Measurements by intrusive probes are therefore very

hazardous. In addition, powder-snow avalanches are rare

events. Techniques such as georeferenced photography and

radarnowinuseprovideextremelyvaluableinformationcon-

cerning the avalanche dimensions, their shape and front

velocities, as well as velocities behind the front (Dufour and

others, 2001a, b). However, density or snow-concentration

measurements still rely on intrusive probes andare relatively

uncertain.

In parallel, laboratory experiments, simulating ava-

lanches, were developed which provided useful information

about the dynamics of these flows and the dependency of

avalanche velocity and shape on slope angle. A review of la-

boratory experiments and the related theoretical models

can be found in Hopfinger (1983) and Hutter (1996). The

theoretical models show that entrainment of snow from the

snow cover is an important aspect of avalanche motion

(Hopfinger andTochon-Danguy, 1977; Fukushima and Par-

ker,1990; Rastello and Hopfinger, 2004). Generally, labora-

tory experiments are, unfortunately, limited to Boussinesq

fluids of Boussinesq number ð%2 � %1Þ=%2 � 1. The princi-

pal similarity parameter is the densimetric Froude number

provided the Reynolds number is sufficiently large for the

flow to be fully turbulent (in free shear flows, a continuous

energy spectrum with a k�5=3 spectral slope emerges when

the flow Reynolds number is greater than 3� 104).

Commercial avalanche codes use depth-averaged

models and in some cases turbulence k� " models for the

powder cloud. Often these models are combined with a

dense flow layer below the powder cloud and a transition

layer in between (see, e.g., Naaim and Gˇrer,1998 ).

Progress in understanding the flow structure requires

more refined experiments (field studies and laboratory ex-

periments). Direct numerical simulations (DNS) and large

eddy simulations (LES) are alternative approaches. These

give access to all the flow quantities desired and would be

of particular interest for the study of the interaction of an

avalanche with structures, for instance. Unfortunately, the

complex structure of avalanches makes such numerical

simulations difficult. For this reason, only Boussinesq grav-

ity currents on a horizontal boundary have been simulated

at present (Necker and others, 2002). Here we present the

first DNS of dense-cloud motion on slopes. These simula-

tions are, at present, two-dimensional and for

ð%2 � %1Þ=%2 � 1; the relevance of two-dimensional simu-

lations, which allow high Reynolds numbers to be reached,

is supported by the dynamics of avalanches discussed below.

Before refining the simulations by going to a three-dimen-

sional code, it is of interest to study such first-order effects

as snow entrainment and large ð%2 � %1Þ=%2. Ultimately,

DNS and LES can serve as benchmark tests for averaged

models used in practice.

CHARACTERISTICS ANDDYNAMICS OF

POWDER-SNOWAVALANCE FLOW

The density of avalanches ranges from about 20 kgm^3 near

the start to about 2 kgm^3 at the end. The settling velocity

and volume concentration of the snow particles are small, so

thattheenergyrequiredtokeeptheparticles insuspensionisa

small fraction of the turbulent kinetic energy. Furthermore,

theparticle time-scale �p ¼ ws=g,wherews is the fallvelocity

andgthegravitationalacceleration) is aboutone-tenthof the
flow time-scale h=uf. Hence, the particles closely follow the

localvelocityof thecloud,whichallows, as a first approxima-

tion, treatmentof theavalancheasavariabledensity fluid.

Laboratory experiments with dense clouds carried out

by Beghin and others (1981), Hermann and others (1987)

and more recently by Rastello (2002) showed that the main

features of avalanche flow can be reproduced with single-
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phase, variable-density flows, and demonstrated two essen-

tial features of these flows:

The force balance governing the flow is between the

driving buoyancy force and the entrainment of ambient

fluid (air in the case of avalanches). As ambient fluid is

entrained, it has to be accelerated, and this momentum

transfer results in an effective drag, which has an effect of

much larger magnitude than ground friction. There is

practically no flow separation, so the form drag is negli-

gible. The interfacial friction is included in the entrain-

ment.

The entrainment of ambient fluid is caused by the over-

turning motion of the large structures of the flow.

The generation of the large structures responsible for the

entrainment of ambient fluid is essentially a two-dimen-

sional mechanism. The smaller-scale three-dimensional

turbulence of the flow is superimposed on the larger fea-

tures. The effect of these three-dimensional structures on

the air entrainment can be neglected in a first-order ap-

proach. Indeed, Normand (1990) demonstrated by compar-

ison with numerous laboratory experiments that two-

dimensional simulations of a mixing layer reproduce well

the actual spreading rate of the flow. Therefore, we can ex-

pect that two-dimensional DNS can reproduce fairly well

the essential physics and dynamics of laboratory clouds and

also powder-snow avalanches.This allows us to focus on sol-

ving accurately this simplified problem rather than dealing

with the complexity of three-dimensional simulations.

Within this frame, we shall proceed first with validating

our assumptions by comparing the simulations with labora-

tory clouds, for which we have accurate quantitative results.

Then the simulations are extended to avalanches.

The comparison with laboratory experiments allows

two further approximations which will provisionally be

used in our simulations: (i) The ratio of the density of the

aerosol to the ambient fluid density is close to one (whereas

it is closer to 10 for avalanches), i.e. we can use the Boussi-

nesq approximation; (ii) the Reynolds number is of order

104, rather than 109 for avalanches. It should be noted that

the actual value of the Reynolds number is not of primary

importance (because the dynamics is controlled by the

large-scale features and depends only weakly on the smaller

scales) as long as it is sufficiently large (Re�104).

Fig. 1. Definition sketch.The star denotes dimensional coun-

terparts ofquantities otherwise used in non-dimensionalform.

Fig. 2. Detail of the adaptive mesh in Figure 5. Note the re-

finement in the boundary layer close to the ground and along

the density map isolines (shown as background).

Fig. 3. Comparison of the non-dimensional front velocity vs

non-dimensional front position in simulations and in experi-

mental clouds of Rastello (2002).

Fig. 4. Comparison of the spatial growh of cloud length and

height in simulations on a slope of angle � ¼ 32‡.
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Small-scale laboratory dense clouds are limiting cases of

avalanches, as was clearly shown by Rastello (2002)by com-

paring laboratory results with observations by Dufour and

others (2001a).

VARIABLE-DENSITY FLOW EQUATIONS

Let us consider a fluidwhich is amixture of twomiscible spe-

cies with different properties, anddefine avolume fraction of

each of them, �1 and �2, in a domain �, such that

�1 þ �2 ¼ 1.Inourcase, thespeciesaretheinitialdensefluid

(snowaerosol) andtheambient fluid (air).

Following Joseph and Renardy (1993), we assume that

the diffusion within the mixture is governed by Fick’s law,

and assuming Boussinesq conditions we obtain the system:

@

@t
þ u � r

� �

�1 ¼ r � ðDr�1Þ ð1aÞ

@

@t
þ u � r

� �

u ¼ �rp0 þ
1

Re
r�ðruþru

TÞ � 1ez

ð1bÞ
r � u ¼ 0 ð1cÞ

which is non-dimensionalized by the velocity scale

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð%1 � %2ÞgL=%2�
p

, which is the free-fall, terminal

velocity of the fluid in the light one. TheReynolds number is

definedasRe ¼ %2LU=�2.Thecharacteristic lengthL is cho-

senasthe length ‘0 of theheavy fluidvolumeinitially released

(note that often the characteristic length scale is taken as

L ¼
ffiffiffiffiffiffiffiffiffi

‘0h0

p
) (see Fig.1). All results are presented in this non-

dimensional form, i.e. velocity is normalized by U, the dis-
tancex� andclouddimensionsbyL, andthe timebyL=U.We

use non-slip conditions on the boundary; the domain is cho-

sen large enough so that its finiteness does not affect the

solution.

NUMERICALMETHOD

Time discretization

Inorder toavoidthenumerical instabilitiesthatusuallyorigi-

nate fromhalf-implicit schemeswith large time-steps, we use

the characteristicsmethodproposedbyPironneau (1989), i.e.

wediscretizedirectlythematerialderivative ½ð@=@tÞ þ u � r�
along the trajectory of a fictious particleXmoving with the

velocity u(X). It is thus possible to write an implicit Euler

scheme forEquations (1a)and(1b^1c), respectively.

Space discretization

We use the Taylor^Hood finite element (Hood and Taylor,

1973), which is a continuous piecewise quadratic approxima-

tionofuand�,andacontinuouspiecewise linearapproxima-

tionofp. Equation (1c) is enforceduptomachineprecisionby

Fig. 5. Qualitative comparison between (a) laboratory cloud

of Rastello (2002)and (b) numerical simulation of a Bous-

sinesq cloud at time t ¼ 12:8 on a 32‡ slope, with

Re ¼ 104. Superimposed in black are the large eddy motions

and inwhite the air-entrainment process.Themesh of the front

part is shown in Figure 2.

Fig. 6. A time sequence of density maps in numerical simula-

tions, for t ¼ 11:8; t ¼ 12:3; t ¼ 12:8 and t ¼ 13:3.
Conditions are the same as in Figure 5. Note that the maxi-

mum of�1 diluted down from1 to 0.95.
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an augmented Lagrangian iterative algorithm (Fortin and

Glowinski,1983)overEquations (1b^1c).

The flow being of ‘‘impulse’’ type, with locally high gra-

dients in the shear and boundary layers, there is an obvious

benefit in locally refining the mesh as shown in Figure 2

(Saramito and Roquet, 2000). We refine according to the

Hessians of both the local energy dissipation and the phase

volume-fraction in order to have the boundary layers and

high-shear regions refined as well as the interface. It

requires approximately 6min to run a one-time-step itera-

tion of four mesh adaptations on an Intel/Linux 1GHz per-

sonal computer. A reasonable time-step is 0.05 in non-

dimensional units, that is approximately 0.25 s for a large

avalanche.

RESULTS

Validation

Our validation in this paper relies on the spatial growth and

front velocity of the aerosol cloud as itmoves down the slope.

For a fine enough mesh, the features of the solution become

mesh-invariant,whichmeansthatthenumericalconvergence

is assured. It is shown in Figure 3 that the calculated front

velocity is found similar totheexperimental frontvelocity. In

Figure 4we compare the calculatedevolutionof cloudheight

and length with laws experimentally established by Beghin

andothers (1981)andbyRastello (2002). It is seenthattheevo-

lutionsare similar.

Flow structure

Asnotedboth in realavalanchesand in laboratoryclouds, the

flow consists of two well-identified parts, namely the head,

whichreaches largeheightsanddevelops shear-layer instabil-

ities,andthetail (awake),whichflowsmoreslowly,closetothe

ground.The numerical simulations display an even stronger

separationbetweenthese twoparts.

An essential feature is the ambient fluid entrainment,

which causes the main drag. It is strongest at the rear of the

head in experiments (Hopfinger andTochon-Danguy, 1977;

Rastello, 2002) and is also clearly so in our numerical simu-

lations (Fig. 5). The shear flow instability is also seen in the

time sequence (Fig. 6) and was found in both of the above-

cited experiments. Two other vortices rotating opposite to

the shear-layer eddies are exhibited, one of them having

been noticed by Rastello (2002) in experiments. Moreover,

it was noted in these experiments that heavy fluid from the

forepart of the head was periodically rejected into the large

vortex at the rear, a process also exhibited by the numerical

simulations.

Kinetic energy and dynamic pressure

Awell-knownmanifestationofavalanches is theirdestructive

power, which is observed to be much larger in practice than

estimated from the average density and front velocity

(Berthet-Rambaud, 2001). One possible explanation is that

the dynamic pressure inside the avalanche is locally much

larger.The dynamic pressure is 1
2
%u2, and, the ambient fluid

density %2 being small in an avalanche, it is essentially equal

to 1
2
ð%1 � %2Þ�1u

2.Wecompare it tothe frontaverage stagna-

tion pressure, that is 1
2
%u 2

f
� 1

2
ð%1 � %2Þ�1u

2, where % (re-

spectively �1) is the average of the density (respectively of

�1) over thehead. It is shown inFigure7 that veryhigh ratios

(around7)arereached locallywheretherearehighvelocities

in dense areas.The existence of such large dynamic pressures

inside the avalanche behind the front was suggestedbyHop-

finger (1983) and has also been noted by other authors (per-

sonalcommunication fromD. Issler,2003).

DISCUSSION

The direct numerical simulations presented in this paper

show that two-dimensional simulations reproduce the essen-

tial features of gravity currents, including avalanches. The

assumption of two-dimensionality seems at first sight very

stringentbecause the visual appearance of anavalanche flow

in two dimensions is quite different; the large vortices seen in

avalanches aswell as in laboratoryclouds appear fully three-

dimensional.Their strength, however, is determined by the

two-dimensional mean shear, which justifies two-dimen-

sional simulations as a good first approach. Indeed, the cor-

responding numerical results compare well with laboratory

results.This is because the force balance is accounted for by

thegravitational forcewhichdrivestheavalanche, andbyen-

trainment of ambient fluid, which is the principal retarding

force and is essentially a two-dimensional process. Since la-

boratory experiments with Boussinesq fluids are well repro-

duced in our simulations and since these laboratory

avalanches have the same three-dimensional structures and

involve the same governing mechanisms as the real ava-

lanches,wecanhopetosimulateavalanchesbytakingintoac-

countthelargerdensitydifference.Thisrequirestheextension

of the model and code to non-Boussinesq flows, which was

donerecentlybyE¤ tienneandothers (2004).
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