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In this paper direct numerical simulations of exchange flows of large density ratios are presented and
are compared with experiments by Gröbelbauer et al. fJ. Fluid Mech. 250, 669 s1993dg. These
simulations, which make use of a dynamic mesh adaptation technique, cover the whole density ratio
range of the experiments and very good agreement with the experimental front velocities and the
Froude number variations is obtained. Moreover, in order to establish more definitely the Froude
number dependency on density ratio, the simulations were carried up to ratios of 100 compared with
21.6 accessible in experiments. An empirical law for the dense front Froude number as a function
of the density parameter is proposed. The mathematical difficulty of the problem is discussed. This
difficulty arises because, when the density ratio is large, the existence of a solution is dependent on
a compatibility condition between the diffusion and viscous terms model. Moreover, a specific
numerical technique is required to treat the finite, nonuniform divergence of the mass-averaged
velocity field described by the continuity equation. © 2005 American Institute of Physics.
fDOI: 10.1063/1.1849800g

I. INTRODUCTION

Numerical simulations of gravity driven flows are rela-
tively rare compared with the number of experiments which
considered various aspects of gravity currents and of density
intrusions.1 Recent numerical simulation2,3 of gravity cur-
rents are limited to small density differences where the
Boussinesq approximation is applicable.4 In certain geophys-
ical flows, such as avalanches or pyroclastic flows, and in
industrial applications related with heavy gases, the density
change across the current fronts is, however, no longer small.
Since theoretical models or experimental results which hold
for small density ratios can, in general, not be extrapolated to
these flows, large density ratio flows need specific attention.

Direct numerical simulations of gravity currents of large
density ratios seem to be nonexistent. Most of the experi-
ments are also limited to low density ratios because these
were mostly performed with liquids where it is difficult to
establish large density ratios. Gröbelbauer et al.

5 conducted
lock-exchange flow experiments with gases of density ratios
up to 21.6. These flows exhibit some interesting behaviors.
In the Boussinesq limit the flow is symmetric and the Froude
number varies6 like Fr=UF /Îgh=̺* /Î2, where h is half the
channel depth, UF the front velocity, ̺*

=Îs̺d−̺,d / s̺d+̺,d, and ̺, and ̺d are the densities of the
light and dense fluids, respectively. For large density ratios
the exchange flow is asymmetric and asymptotic theories
sfor ̺,→0d give for the light front7 Fr

,

`=1/Î2 and for the

dense front8 Frd
`=2Î2. The experimental results of Gröbel-

bauer et al. clearly show this divergence in the respective
Froude number values and the results seem to approach the
asymptotic limits. In the lock-exchange experiments of
Keller and Chyou9 which cover density ratios up to 103

swater/aird for the light front, the Froude number limit 1 /Î2
is not reached. The reason for this is most likely viscous
effects due to the small channel dimensions used in these
experiments.

Lock-exchange flows are a good test for direct numerical
simulations of flows of miscible, large density difference flu-
ids. Numerical simulations can reach larger values of the
density ratio than accessible in experiments, except for the
limit case of nonmiscible liquid-gas exchange flows where
density ratios of order 103 are reached, and can give addi-
tional information about the variation of the Froude number
and the structure of the intrusion fronts. However, the exis-
tence of a solution of the Navier–Stokes equations in these
conditions is subject to a condition either on the density ratio
compared with Schmidt number, or on the form of the vis-
cous and diffusion terms. Furthermore, due to the unusual
condition of a finite, nonuniform divergence of the mass-
averaged velocity field, a specific technique is needed in or-
der to preserve this existence result when the equations are
discretized. Finally, dynamic mesh adaptation is necessary
when the density ratio is large. The main purpose of this
paper is to derive the appropriate equations and develop a
suitable numerical algorithm for treating the non-Boussinesq
lock-exchange problem. Comparisons with existing labora-
tory experiments for density ratios up to 21.6 validate the
numerical simulations, which are carried up to ratios of 100
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in order to establish more definitely the Froude number de-
pendency on density ratio.

In Sec. II the flow conditions, corresponding to the ex-
periments of Gröbelbauer et al. are presented. The governing
equations for large density ratio flows are derived in Sec. III
and the numerical algorithm is presented in Sec. IV. The
initial behavior of the front in the asymptotic limit of negli-
gible ̺, is derived in Sec. V and compared with numerical
results. The numerical results of the front velocities and the
variations of the Froude number are presented in Sec. VI and
compared with experiments.

II. LOCK-EXCHANGE FLOW CONDITIONS

When a horizontal channel is divided into two parts by a
vertical splitter plate and each chamber is filled with a fluid
of different density, an intruding, gravity-driven flow occurs
when the splitter plate is removed ssee Fig. 1d. It consists in

the spread of a dense current of the heavier fluid under the
lighter fluid, and of a lighter fluid current above the heavier
fluid. This is referred to as lock-exchange flow. In the experi-
ments by Gröbelbauer et al., gases with a density ratio of up
to 21.6 were released in an unevenly divided horizontal
channel of half-height h=0.15 m, as shown in Fig. 1. The
lock gate could be placed at a distance 20h from the right or
left wall, and 10h from the other one. The passage time of
either the light or dense front was measured at fixed posi-
tions on the horizontal walls of the larger chamber and the
Froude number of each front for the various gas pairs was
calculated. Table I lists the pairs of gases used and the range
of the numerical simulations conducted. The dynamic viscos-
ity m of these gases lies between 12.57310−6 Pa s sfreon
22d, 18.64310−6 Pa s sheliumd, and 21310−6 Pa s sargond,
while the kinematic viscosity n ranges from 3.43
310−6 m2 s−1 sfreon 22d to 1.10310−4 m2 s−1 sheliumd.
Thus, it is natural to keep the dynamic viscosity constant in
the attempt to reproduce these experiments by numerical
simulation. This might be different for liquids. The theoreti-
cal formulation below is sufficiently general to include liq-
uids provided the physical properties are known.

In a lock-exchange flow, instabilities could develop in
the wall boundary layers at the top and the bottom, at the
interface between the dense and light fluids and at the intru-
sion fronts. Concerning the wall boundary layer, it is well
known10 that for a flow past a flat plate, the boundary layer
becomes turbulent for Rex*3.53105. The Reynolds num-
bers of the two fronts based on distance x.Ut are Rex,d

=̺dU2t /m and Rex,,=̺,U2t /m. Assuming that both fronts
have a velocity U of the same order of magnitude, the Rey-
nolds numbers differ by the density ratio, Rex,d /Rex,,

=̺d /̺,. The dense front boundary layer might reach the
critical value, for instance, at x.8h for a density ratio of
9.93. For larger density ratios turbulence or at least instabili-
ties could develop at even shorter distances. A transition to

FIG. 1. Lock-exchange flow: sad experimental setup used by Gröbelbauer et

al. sRef. 5d, h=0.15 m; sbd boundary conditions in the initial configuration
used in the asymptotic study sSec. Vd.

TABLE I. Values of the density parameter ̺* and Reynolds numbers in the experiments of Gröbelbauer et al.

sRef. 5d and in the numerical simulations presented here. a= s̺d−̺,d /̺,, ̺*=Îs̺d−̺,d / s̺d+̺,d, U=Îagh,
Re=̺,Uh /m,, and n,=m, /̺,.

a ̺* Usm s−1d Re n, sm2 s−1d

99.0 0.990 12.1 1.203105 No experiment 1.51310−5

79.0 0.988 10.8 1.073105 No experiment 1.51310−5

59.0 0.984 9.32 9.253105 No experiment 1.51310−5

39.0 0.975 7.58 7.533104 No experiment 1.51310−5

20.6 0.955 5.51 7.493103 R22 and helium 1.10310−4

5.473104 No experiment 1.51310−5

8.93 0.904 3.63 4.933103 Argon and helium 1.10310−4

2.923104 No experiment 1.51310−5

6.23 0.870 3.03 4.123103 Air and helium 1.10310−4

2.443104 No experiment 1.51310−5

1.99 0.706 1.71 1.703104 R22 and air 1.51310−5

1.18 0.609 1.32 1.573104 R22 and argon 1.26310−5

1.313104 No experiment 1.51310−5

0.38 0.400 0.75 7.423103 Argon and air 1.51310−5

0.11 0.228 0.40 4.803103 CO2 and argon 1.26310−5
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turbulence would cause a decrease of the front progression
because of an increased wall shear stress. In the experiments
by Gröbelbauer et al. this is not clearly observed.

At the interface between the dense and light fluids,
shear-layer instabilities develop which give rise to Kelvin–
Helmholtz billows. The smoke visualization by Gröbelbauer
et al. indicates some instability on the interface especially
close to the dense front when the density ratio is large. As
long as this instability remains two dimensional, its essential
features are accurately captured by the direct numerical
simulations.

III. GOVERNING EQUATIONS

Let us consider an isothermal flow of local density ̺ and
velocity ũ in a domain V over a time span f0,Tg sthe symbol
, denotes dimensional counterparts of quantities and opera-
tors otherwise used in nondimensional formd. For a perfect
mixture of two incompressible fluids, of density ̺d sthe
heavier oned and of density ̺, sthe lighter oned, the local
density is ̺=̺dFd+̺,F, where Fd, F, are the volumic
fraction of the constituents, Fd+F,=1 and both, ̺d and ̺,,
are constants. The characteristic density ratio is a= s̺d

−̺,d /̺,.
Our main concern in this section is to take into account

the mutual diffusion of the fluids in the nonhomogeneous,
incompressible Navier–Stokes equations.

A. Mass and constituent conservation equations

The mass conservation of constituent i across the surface
S of a fixed volume V can be written as

−
]

] t̃
E

V

̺iFidV = E
S

̺iFiũi · ndS + E
S

̺iq̃i · ndS ,

where q̃i is the part of the mass flux which is due to diffu-
sion. Thus Fd and F, obey the equations:

DFd

Dt̃
+ Fd¹̃ · ũ = − =̃ · q̃d, s1ad

DF,

Dt̃
+ F,=̃ · ũ = − =̃ · q̃,. s1bd

Fick’s law governs the diffusive fluxes of one fluid into

the other with q̃d=−Dd,sFdd=̃Fd and q̃,=−D,dsFdd=̃F,

=D,dsFdd=̃Fd, where the Dij coefficients may depend on the
local composition Fd of the mixture. Since Fd+F,=1 we
can use only one volume fraction F=Fd. Now, if we sum
s1ad and s1bd multiplied, respectively, by ̺d and ̺,, we get

D̺

Dt̃
+ ̺=̃ · ũ = =̃ · fs̺dDd, − ̺,D,dd=̃Fg . s2d

Because of mass conservation, the left-hand side of Eq. s2d is
necessarily zero. Now, in order for the right-hand side to be
zero for arbitrary distributions of the constituents, we need to
have ̺dDd,=̺,D,d=̺dDFsFd, where D is a reference dif-
fusivity and F is some function of the local composition, as
suggested by Joseph and Renardy.11

In nondimensional form, when using these specific
fluxes in s2d and s1ad, the continuity equation and the corre-
sponding equation of the volume fractions are

= · u = −
a

1 + aF

DF

Dt
, s3d

DF

Dt
+ F = · u =

1

ReSc
= · fFsFd = Fg , s4d

where ReSc=Uh /D is the product of the Reynolds and
Schmidt numbers, with U=Îagh the terminal velocity of a
dense fluid parcel in the light fluid. The variables are nondi-
mensionalized by x= x̃ /h, u= ũ /U, and t= t̃U /h.

Equation s3d, = ·uÞ0, is unusual. It arises because of
the diffusion between the two species. It is readily seen from
Eqs. s3d and s4d that when Sc tends to infinity, = ·u goes to
zero. Otherwise, diffusion will result in equal and opposite
mass fluxes of constituents d and , across the boundary of
any small volume Vstd entrained by the flow velocity. As a
result, since both constituents are incompressible and of dif-
ferent densities, the volume Vstd will vary; giving = ·uÞ0.
Note that diffusion effects are obviously negligible for
Boussinesq conditions, a!1.

B. Momentum equation

We can assume that the mixture behaves like a Newton-
ian fluid, with a dynamic viscosity m that may depend on the
local composition of the mixture F. Therefore, we write
msFd=hlsFd, where h is a constant reference dynamic vis-
cosity and l a nondimensional function of the composition
of the mixture. Denoting Du= s=u+ =uTd /2, the momentum
equation12 is

s1 + aFd
Du

Dt
= − = p +

1

Re
= · FlsFdS2Du

−
2

3
= · uIDG −

1 + aF

a
ey s5d

and here Re=̺,Uh /h. For lock-exchange flows and most
gravity-driven flows, the boundary condition for u is either
uuu]V=0 sno inflow, no-slip conditiond or u ·n=0 and a zero
wall friction s ·n− fss ·nd ·ngn=0, where n is the wall nor-
mal and s=2Du− 2

3 = ·uI sno inflow, slip conditiond. Then,
for both mechanical and mathematical reasons, the boundary
condition for F will be =F ·n=0.

In Sec. II we have argued that for gases, lsFd>1. How-
ever, in this case, proofs of existence of a global weak
solution13 are subject to the condition that 2Sc.a, which
means that as far as we know the model may be ill-posed in
other situations. There is no physical reason for the Schmidt
number to behave this way when a varies; indeed, its value
remains of order 1 for common gases. In practice, a blow-up
of the numerical solution occurred within the relevant time
range for lock-exchange flows for a*60.

Bresch et al.,14 on the contrary, show that if the relation
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=lsFd =
a

2Sc
s1 + aFdFsFd = F s6d

holds, then the unconditional existence of global weak solu-
tions can be proved. This condition is never satisfied if we
choose lsFd=1. If we take a constant kinematic viscosity
n=m /̺, that is, if lsFd=1+aF, then the relation is matched
for Sc=1/2, which is close to the actual Schmidt number for
gas mixtures, and a diffusivity of the form FsFd
=1/ s1+aFd. This form of the mass diffusivity is a common
choice, and can be shown to correspond to the case when the
molecular diffusivity of species are equal and independent of
the local composition of the mixture.15

In numerical simulations, a nonconstant F is neverthe-
less an additional difficulty, which requires a specific and
computationally expensive treatment.16 Thus the numerical
simulations presented here were all performed with a con-
stant mass diffusivity sF=1d. This means that condition s6d
was not satisfied in most numerical simulations, but never-
theless the solutions for constant kinematic viscosity flsFd
=1+aFg and FsFd=1 were stable in all cases sa up to 100
was testedd. Tests were conducted for a=20.6, with l=1 and
l=1+aF. The results showed that the choice of F has no
effect on the front velocities.

It should be kept in mind that, when a is large, the
meaning of the Reynolds number is very different in cases of
lsFd=1 and lsFd=1+aF. Indeed, suppose two solutions of
s5d, one for each choice of l. The actual Reynolds number of
the light front si.e., that could be calculated a posteriori from
measurements of the light front velocityd will be the same for
both solutions, while the actual Reynolds number of the
dense front is a+1 times larger in the case of constant l than
in the case of constant kinematic viscosity. This is because
the kinematic viscosity of the dense fluid is a+1 times
smaller. The dilemma is that one model is not able to treat
density ratios of a*60, and the other does, strictly speaking,
not conform to the conditions of the experiments considered,
but remains stable.

Note also that numerical simulations can be found in
literature se.g., Ref. 17d which are based on the volume-
averaged velocity v=u+ sa /ReScdFsFd¹F, because this
vector field is solenoidal: = ·v=0. Nevertheless, this choice
introduces additional inertial terms15 of higher order in the
transformed momentum equation, which cannot be neglected
when a is large. The problem is not simplified in doing this.

IV. NUMERICAL APPROACH

The large density difference flows considered are com-
posed of intrusion fronts,18 where density and velocity gra-
dients are locally steep, and of large areas away from these
fronts which have a uniform density and small velocity gra-
dients away from the walls. This calls for a method capable
of automatic and unconstrained mesh adaptation, since the
location of the interface between dense and light parts of the
flow is unknown. However, refining the mesh in areas of
steep density gradients makes it difficult to control numerical
stability conditions such as iuiDt,Dx, where Dt and Dx are
the time step and a local mesh-resolution indicator. Thus we

use the method of characteristics for the time discretization
of the convective part of the equations, which is not subject
to such a condition.19 For the space discretization, we have
used a finite elements method, for which mesh adaptation
based on the error control is well developed and which al-
lows to use the method of characteristics because the ap-
proximation of the velocity is a continuous function. A clas-
sical choice for solving the Stokes problem is obtained with
the Taylor–Hood finite element,20 which is a piecewise qua-
dratic approximation of the velocity and a piecewise linear
one for the pressure. The volume fraction F is also dis-
cretized in a piecewise quadratic functional space.

The discretization we have used is given in more detail
in the Appendix, but one technical difficulty specific to high-
density ratio Navier–Stokes equations needs to be pointed
out here. The continuity Eq. s3d is = ·u=−x for some func-
tion x which is one of the unknowns of the problem. Now if
there is no inflow at the boundary,21 it is clear from the
divergence theorem that −eVxdx=eV= ·udx=0. In general,
this is not true anymore for the numerical approximation xh

of x swhere h denotes the diameter of the largest element in
the meshd, and we have eVxhdx of the same order like the
numerical error. This is not sufficiently small to guarantee
that an approximation uh of u exists such that = ·uh=−xh,
and thus the numerical method will break down. In the Ap-
pendix we propose an additional projection step which re-
solves this problem without reducing the quality of approxi-
mation, and we show16 that this is optimal in the sense of a
finite elements approximation.

The mesh adaptation is an iterative process: a first guess
of the solution at time tn+1 is calculated on a uniform coarse
mesh, and is used to generate a new mesh on which a better
approximation of the solution can be calculated. When iter-
ated, this procedure reaches a fixed point corresponding to
the best approximation space of a given dimension for the
solution.22 This process is handled by the mesh generator
BAMG sRef. 23d for both F and u, using refinement ratios of
order 103 between the coarsest triangle size and the finest
one. Figure 2 shows the mesh refined around the vorticity
sheets of a dense intruding front. The whole of the finite
elements resolution is embedded in the open-source C++
environment RHEOLEF.24

V. ASYMPTOTIC BEHAVIOR AT THE RELEASE

Following Stoker,8 who obtained an asymptotic solution
for the dam-break flow, we have conducted an analytical
study of the onset of the lock-exchange flow in the case
when a tends to infinity, noting that, away from the walls,
viscous effects are negligible in the limit t→0. The boundary
conditions are shown in Fig. 1sbd, and in addition we sup-
pose that the left boundary is at the infinity. Also, we suppose
that the side walls of the channel allow a perfect slip and thus
that the solution is spanwise invariant sin z directiond. Note
that since we neglect ̺,, only the left part of the domain V−

is considered in the calculation. Because a is then infinity,
we do not use the same nondimensional form as in Sec. III,
but we use U8=Îgh. Thus, in Lagrange representation with
sa ,bd the coordinates corresponding to the initial positions of
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the particles, if we denote Xsa ,b ; td and Ysa ,b ; td the dis-
placement of the particles and psa ,b ; td the pressure, the Eu-
ler equations can be rearranged such that

XttXa + sY tt + 1dYa + bpa = 0, s7ad

XttXb + sY tt + 1dYb + bpb = 0, s7bd

XaYb − XbYa = 1, s7cd

in which the only dimensional quantities are the pressure and
b=h /̺dU8

2.
The initial conditions correspond to the gate in Fig. 1

with the fluid at rest, so that a Taylor expansion of the dis-
placements around t=0 gives Xsa ,b ; td=a+gt2+ost2d and
Ysa ,b ; td=b+dt2+ost2d, and keeping the Ost2d terms in s7d:

2gs1 + gat2d + s2d + 1ddat2 + bpa = 0, s8ad

2ggbt2 + s2d + 1d + s1 + dbt2d + bpb = 0, s8bd

ga + db = 0. s8cd

Summing Eqs. s8ad and s8bd, and taking the derivatives with
respect to b and a, respectively, yields

gb − da = 0. s9d

We recognize in Eqs. s8cd and s9d the Cauchy–Riemann con-
ditions, thus, it is necessary and sufficient that the complex

function d+ ig be an analytic function of a+ ib in its domain
so that g ,d are solutions of the problem.

Now we make use of the boundary conditions. Obvi-
ously, d vanishes for b=0 and b=2. For a=0, using the free
surface condition p=0, the first-order term in s8bd gives d
=−12, and for a→−` we have d→0. From Eqs. s8cd and
s9d, we infer that =g ·n]V− =0.

Since the system s8cd and s9d implies that Dg=Dd=0 in
V−, there cannot be more than one solution for d, and g is
unique up to a constant. This constant is easy to determine,
since there must be no influx from infinity, so e0

2sa ,bddb

tends to 0 when a tends to infinity.
Using the mapping w̄=coshfps−a+ ibd /2g, Stoker exhib-

its an analytic function which enforces the boundary condi-
tions:

d + ig = −
i

2p
ln

w̄ − 1

w̄ + 1
.

Finally we obtain the initial acceleration:

2gsa,bd =
1

p
ln1 cos2pb

4
+ sinh2pa

4

sin2pb

4
+ sinh2pa

4
2 , s10d

2dsa,bd = −
2

p
arctan1 sin

pb

2

sinh
pa

2
2 . s11d

The acceleration is independent of ̺d, but depends only on
U8

2 /h=g. There is a singularity in the acceleration at the
junction points between the free surface and the walls. This
of course would be damped by viscous forces, nevertheless
we can expect a strong boundary layer at these points. More-
over, since the viscous effects propagate as nt, we can com-
pare the velocity profile of the solution of a viscous model
with the analytical results outside the boundary layer.

In Fig. 3 we have plotted the velocity obtained from
asymptotic theory of the a=0 particles at time t. For com-
parison, we have included the velocity of the particles at x

=0 at the same instant25 obtained from a numerical simula-
tion with a=79. Figure 3 shows that the numerical error is
small.

VI. RESULTS AND COMPARISON WITH EXPERIMENTS

A. Evolution of front positions

In order to validate the numerical simulations presented
in this paper, the conditions of the experiments Gröbelbauer
et al. were reproduced as closely as possible. No-slip bound-
ary conditions, which are known to be the relevant condi-
tions for gas-solid interfaces, were used for all boundaries,
except when specified otherwise ssee Fig. 9d. The parameters
of seven of these experiments reproduced by numerical
simulation are shown in Table I. The characteristic Reynolds
number of these flows was calculated with the viscosity m,

and density ̺, of the lighter gas, Re=̺,Uh /m,. Since the

FIG. 2. Local zoom in domain V showing sad the nondimensional vorticity
and sbd the mesh used for its calculation; dense intruding front for a=1.99 at
nondimensional time t=6.
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dynamic viscosity is nearly invariant, the Reynolds number
for a given density ratio a is directly proportional to ̺, and,
therefore, differs by nearly an order of magnitude, depending
on whether the light gas is air or helium. It was found that
for the large density ratio flows presented here, the influence
of the characteristic Reynolds number on the front progres-
sion remains noticeable up to large values of Re. This is seen
in Fig. 4, where the Froude number variation with Reynolds
number is shown for two density ratios a sa=6.23 and a
=20.6d for the light and dense fronts. Values obtained by
Birman et al.

4 for a=1.5 are included for comparison. For
this reason, additional numerical simulations were carried
out for different values of a, keeping the kinematic viscosity
of the light fluid unchanged sequal to the kinematic viscosity
of aird, so that the characteristic Reynolds number in these
simulations varies like Îa.

The flow is two dimensional except for the instability at
the leading edge, giving rise to the so-called lobe-and-cleft
structure, and, possibly, for the boundary layer instability of
the dense intrusion when a is large. The Kelvin–Helmholtz
instability at the interface is mainly a two-dimensional pro-
cess but three-dimensional structures at a smaller scale are
known to develop as well. All these three-dimensional mo-

tions resulting from instabilities can be assumed to have a
negligible effect on the bulk properties and geometry of the
exchange flow and the simulations using the Boussinesq ap-
proximation conducted by Härtel et al.

2 support this assump-
tion. This justifies to restrict our direct numerical simulations
to two dimensions. The advantage of this restriction is its
much lower computational cost, thus enabling us to use
much finer meshes than in a three-dimensional simulation.

In Fig. 5, we compare the numerical results obtained
with the constant dynamic viscosity model sl=1d with the
experimental results of Gröbelbauer et al. For the light front

FIG. 3. Velocity profile at x=0 and
different instants of time. —, Numeri-
cal results; −−, analytical asymptotic
approximation snondimensional
valuesd.

FIG. 4. Froude number dependence on the Reynolds number of the light and
dense fronts. Froude number of the light front Fr,: - + -, a=20.6, and l=1;
-n -, a=6.23, and l=1; -h -, Birman et al. sRef. 4d, a=1.5, and l=1
+aF. Froude number of the dense front Frd: +—, a=20.6, and l=1; n—, a

=6.23, and l=1; h—, Birman et al. sRef. 4 d, a=1.5, and l=1+aF.

FIG. 5. Comparison of the numerical and experimental results sin dimen-
sional unitsd. Plot sad light front, plot sbd dense front. —, Numerical results
for a=20.6 and +, experimental values. ---, Numerical results for a=8.93
and 3, experimental values. − ·−, Numerical results for a=1.99 and h,
experimental values. The Reynolds number in the simulations is the same as
in the experiments.
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the agreement between the arrivals of the simulated and the
experimental fronts is very good. For the dense front, how-
ever, a nearly constant shift in time between the calculated
and measured front arrivals is observed fFig. 5sbdg. Possible
explanations for this time shift are either a large numerical
inconsistency in time around t=0 or a time lag in the mea-
surements. The first hypothesis is eliminated by the
asymptotic study of the onset of the lock exchange carried
out in Sec. V, showing that the numerical solution does fit the
analytical prediction. Thus, we are left to suppose that there
is either a uniform time lag in the measured arrival time of
the front, which may be due to a detection problem, or that
the time shift is due to the opening of the gate. Gröbelbauer
et al. claim that its manual opening was fast enough and did
not induce a large scatter in their measurements, but their
chief concern was the established front velocity and not the
initial acceleration. It was pointed out that the front detection
probes were located at a distance from the floor or the ceiling
amounting to 25% of the total height. The foremost front
considered in the numerical results may, therefore, have a
consistent lead over the front position detected by the probes.
This may not explain the whole difference but would account
for part of it.

B. Variation of Froude number with density ratio

In Figs. 6 and 7, we compare experimental and numeri-
cal Froude numbers, Fr,=U, /Îgh and Frd=Ud /Îgh, of both
the light and dense fronts for different density ratios. We use
the same density parameter as the one introduced by
Gröbelbauer et al., that is,

̺
* =Î̺d − ̺,

̺d + ̺,

.

Since the Froude number only accounts for the established
velocity of the front, the shift in front arrival between nu-
merical and experimental results has no effect.

It is seen in Fig. 6 that, for the light front, the constant
dynamic viscosity model sl=1d is in close agreement with
the experiments of Gröbelbauer et al. It is interesting to note
that both the numerical and experimental results concerning
Fr, deviate from the straight line ̺* /Î2. Nevertheless, the
numerical results carried to a=59 show that when Re is
large, Re= s̺air

Îgh /mairdÎa sthat is keeping the same light
fluidd, the nondissipative limit Fr

,

`=1/Î2 is approached. The
Froude number values obtained for large a and for Reynolds
numbers corresponding to experiments are only slightly

FIG. 6. Froude number of the light front Fr, vs ̺* in
experiments and numerical simulations for both viscos-
ity models. +, Experimental values; +, numerical simu-
lations with constant dynamic viscosity model sl=1d
and Re=̺airhÎagh /mair; h, numerical simulations with
constant kinematic viscosity model sl=1+aFd and
Re=̺airhÎagh /mair; n, numerical simulations with
constant dynamic viscosity model sl=1d and Re
=̺HehÎagh /mHe. Error bars for the experimental val-
ues represent the discrepancies found between Figs. 2
and 6 in the paper by Gröbelbauer et al. sRef. 5 d −·−,
joins the theoretical limits for ̺*=0 and ̺*=1 accord-
ing to Fr,=̺* /Î2.

FIG. 7. Froude number of the dense front Frd vs ̺* in
experiments and numerical simulations for both viscos-
ity models. For symbols see Fig. 6; − ·−, 2Î2f1− s1
−̺*d0.3g; ---, 1.8Î2f1− s1−̺*d0.3g.
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lower. In the same figure, we show the results obtained with
the constant kinematic viscosity model sl=1+aFd; this in-
creases the dense fluid viscosity by the density ratio a+1.
The results indicate that this model is clearly not consistent
with the experiments by Gröbelbauer et al. and neither ap-
proaches the asymptotic limit; the velocity is strongly re-
duced by the increase of viscosity of the dense fluid. The
results come actually closer to the experimental observations
of Keller and Chyou9 where viscous effects are important.

Figure 7 shows that for the dense front the constant ki-
nematic viscosity model sl=1+aFd as well as the dynamic
viscosity model sl=1d for Reynolds numbers corresponding
to the experiments of Gröbelbauer et al. fit closely the ex-
periments. The simulations with larger Re s̺,=̺aird and
constant dynamic viscosity give slightly higher values of Frd

when a is large. The data points can be closely fitted by a
power law of the form

Frd = Frd
`f1 − s1 − ̺

*dng .

From the logarithmic plot shown in Fig. 8sad, it is seen that
the high Reynolds number results fall on a straight line over
nearly two decades when Frd

`=2Î2 and n=0.3. The lower
Reynolds number results, including the experimental points,
are better approximated by Frd

`=1.8Î2 and n=0.3. These re-
sults imply that when the Reynolds number is sufficiently

large, the dense front can be considered to be nondissipative
in the sense of Stoker.8 Therefore, at large Reynolds number
friction in the boundary layer must remain negligibly small.

In order to clarify the importance of the wall boundary
layers at the top and bottom of the channel we performed
calculations for the same density ratio sa=20.6d with slip
boundary conditions on the channel walls. The results are
presented in Fig. 9 where the nondimensional dense and light
front velocities are plotted as functions of nondimensional
distance xd. It is seen from this figure that when there is a
free slip on the wall the established dense front velocity is
found to be practically the same for both viscous models l

=1 and l=1+aF. Furthermore, a no-slip wall boundary
condition has practically no effect on the dense front velocity
in the case of the constant dynamic viscosity model sl=1d.
On the contrary, for the constant kinematic viscosity model
sl=1+aFd, the dense front progression is reduced by fric-
tion in the wall boundary layer. The constant kinematic vis-
cosity model increases the effective dynamic viscosity, hence
decreases the effective Reynolds number, in the dense intru-
sion boundary layer by md= sa+1dm,. Consequently, the wall
shear stress increases from tm=1/Re]ux /]y when l=1 to
tn= sa+1d /Re]ux /]y if l=1+aF. Thus, it can be con-
cluded that the experimental results of Gröbelbauer et al. are
probably affected by non-negligible wall friction when a

FIG. 8. Correlation law between Froude number of the
dense front Frd and 1−̺*. sad +, Numerical simulations
with constant dynamic viscosity model sl=1d and Re
=̺airhÎagh /mair; − ·−, 2Î2f1− s1−̺*d0.3g. sbd +, Ex-
perimental values; h, numerical simulations with con-
stant kinematic viscosity model sl=1+aFd and Re
=̺airhÎagh /mair; n, numerical simulations with con-
stant dynamic viscosity model sl=1d and Re
=̺HehÎagh /mHe. ---, 1.8Î2f1− s1−̺*d0.3g.

036601-8 Étienne, Hopfinger, and Saramito Phys. Fluids 17, 036601 ~2005!



*10. In the calculations with the constant dynamic viscosity
model and Reynolds number larger than the experimental
values, wall friction is negligible.

For the light intrusion front Fig. 9 shows that for the
constant dynamic viscosity model the wall boundary condi-
tion has practically no effect on the front velocity; the veloc-
ity is nearly the same with and without wall slip. The con-
stant kinematic viscosity model does not change the wall
conditions but increases the viscosity of the displaced dense
fluid.

An interesting feature of the flow is the interfacial insta-
bility behind the two fronts exhibited by the numerical re-

sults. Images of the intrusions are shown in Fig. 10 for three
different dense front positions and four density ratios. These
images show that in the Boussinesq limit sa=0.11d the flow
is practically symmetric and the interfacial instability is lo-
cated in the central part of the flow. The start-up rolls are also
clearly visible. With increasing density ratio, the instability
moves more and more to the dense side and even up to the
front ssee images for a=20.6 and 39d, which is in agreement
with the stability analysis of Benjamin;7 the light front gets
more stable with increasing density ratio. The decrease of the
thickness of the unstable interface sdecrease in size of the
Kelvin–Helmholtz billows as well as of the start-up rollsd
with increasing density ratio is most likely the reason why
the limit of Frd=2Î2 is approached in spite of dissipation at
the interface; as the density ratio goes to infinity, the ratio of
energy dissipation rate to the kinetic energy flux of the dense
intrusion goes to zero. For this limit to be reached, the dis-
sipation in the wall boundary layer must also be negligible,
which is the case for large Reynolds number sFig. 9d and as
long as the boundary layer remains laminar.

C. Stability of the interface

In order to see why the interface of the light intrusion is
more stable, it is of interest to evaluate the interfacial Rich-
ardson number Ri=gDi̺ /̺i di / sDiUd2, where di is the inter-
facial shear layer thickness, DiU and Di̺ are, respectively,
the velocity and density changes across the shear layer and
̺i is the mean interfacial density. Behind the light front,
DiU=C1U,.C1

Îgh /2 ̺* and Di̺ /̺i.2s̺*d2, which gives
Ri,,di /h when C1,2. Since di /h is of order 10−1, with di

increasing somewhat with the density ratio, Ri, is of order
10−1 or less. The light intrusion interface should, therefore,

FIG. 9. Nondimensional velocities of the dense and light fronts, respec-
tively, Ud and U, as functions of the nondimensional dense front position xd

for a=20.6 and Re=̺airhÎagh /mair. Velocity Ud supper curvesd: -- --, no-
slip boundary condition and l=1+aF sconstant kinematic viscosityd; --,
no-slip condition and l=1 sconstant dynamic viscosityd; − ·−, free slip con-
dition and l=1+aF; —, free slip condition and l=1. Velocity U, slower
curvesd: −3−, no-slip condition and l=1; 3—, free slip condition and l=1.

FIG. 10. Nondimensional vorticity maps for different density ratios and at different stages in the flow development for the constant dynamic viscosity model
lsFd=1. The dense front positions are taken the same for the three density ratios.
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be weakly unstable but gets more stable with increasing ̺*.
This is consistent with Benjamin’s stability analysis.7 At the
dense side, DiU=C2Ud=C22Î2ghs1−Î4 1−̺*d, with C2 de-
creasing from 2 to about 1.2 as the density ratio increases,
and again Di̺ /̺i.2s̺*d2. The dense intrusion Richardson
number is, therefore, Rid= s̺*d2di / f4hC2

2s1−Î4 1−̺*d2g.
When ̺*!1, we have C2=C1.1, giving Rid=Ri,,di /h by
Taylor expansion. As ̺* goes to 1, C2 grows close to 1 and
Rid tends to d /4h. The dense intrusion interface becomes
more unstable as the density ratio increases. This is also in
agreement with Benjamin’s stability analysis.7 Furthermore,
the coherent structures move more and more with the dense
front velocity with increasing density ratios, with the ten-
dency of the structures to move closer to the front as seen in
Fig. 10.

Concerning the diffusion, it is of interest to point out that
the assumption that F is a constant ssee Sec. IIId overesti-
mates the diffusion of light fluid into the dense one, so that
the density gradient is reduced. This has, however, little ef-
fect on the value of the Richardson number, hence the inter-
facial instability, because Di̺ /̺i,1. Simulations with
FsFd=1/ s1+aFd for the case a=20.6 support this conclu-
sion.

VII. CONCLUSIONS

The direct numerical simulations presented in this paper
are, to our knowledge, the first simulations of exchange
flows of miscible fluids of very large density ratios. The dif-
ficulty of the numerical simulation of such flows are exposed
and an appropriate numerical scheme is designed. A finite
element discretization is used, allowing a dynamic mesh ad-
aptation which is an essential feature in the simulations of
this type of flow. The results concerning front velocities and
the related Froude number variation with density ratio are in
good agreement with the experiments by Gröbelbauer et al.

5

which covered density ratios ̺d /̺,ø21.6. In addition, the
numerical simulations were extended to density ratios of 100
and allowed to establish more definitely the dependency of
the Froude numbers Frd and Fr, on the density parameter ̺*.
A different, empirical law for the variation of the Froude
number of the dense front with the density parameter is pro-
posed.

It is found that the two fronts have a different sensitivity
with respect to the viscosity model used. While the light
front requires a constant dynamic viscosity model which cor-
responds to the physical properties of the fluids, the dense
front is also fairly well simulated with a constant kinematic
viscosity model. An explanation for this behavior is proposed
which relies on the wall boundary layer in the case of the
dense front and on the effective viscosity of the displaced
dense fluid by the light front.

Because of wall friction and interfacial instability the
intrusions are strictly speaking always dissipative. Neverthe-
less, Fig. 11 indicates that when a is small saø0.5d, both
currents would be loss free in the sense of Benjamin7 and of
Keller and Chyou;9 the current depth is equal to h shalf the
channel heightd. At large values of a, the light current con-
tinues to occupy close to half the channel depth fFig. 11sbdg

and when the Reynolds number is sufficiently large the loss-
free Benjamin limit Fr

,

` is approached; the interfacial insta-
bility is inhibited and the friction in the boundary layer is
negligible. On the other hand, the dense current decreases in
height and approaches the loss free Stoker solution Frd

`

=2Î2. This means that when the Reynolds number is large
the losses due to boundary layer friction and interfacial in-
stability are also negligibly small in the dense current.
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APPENDIX: NUMERICAL SCHEME

1. Discretization in time

The method of characteristics consists in approximating
the total derivative s] /]t+u · = d by a finite difference in time
along the pathlines of the flow. First we define the pathlines
with a mapping Xsx , t ; t+td between the fluid particles lo-
cated at x in V at time t and the position these reach when
advected by the fluid velocity u over a time span t :

Xsx,t;t + td = x + E
t

t+t

ufXsx,t;sd,sgds . sA1d

Then it is easily shown that

S ]

] t
+ u · =D fsx,t + Dtd

=
fsx,t + Dtd − ffXsx,t + Dt;td,tg

Dt
+ OsDtd . sA2d

Thus, if we can calculate Xn an approximation of Xs· , tn

FIG. 11. sa,bd Nondimensional vorticity maps for the steady flow slong
timesd. sad a=0.11, Re=4.803103 at nondimensional time t=8 st̃=3 sd; sbd
a=20.6, Re=5.473104 at nondimensional time t=46 st̃=1.3 sd. See Fig. 10
for the gray scale legend. scd Nondimensional density isolines, a=20.6,
Re=5.473104 at nondimensional time t=46 st̃=1.3 sd.
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+Dt ; tnd, then we can define an implicit Euler scheme be-
tween tn and tn+1= tn+Dt using this equality.

We cannot apply directly sA1d since we have used the
unknown velocity usx , t+td for tP f0,Dtg, while we only
know usx , td, but we can calculate

Xn = x − E
t

t+Dt

ufXsx,t;sd,tgds = Xsx,t + Dt;td + OsDt2d .

This does not affect the order of approximation in sA2d. Us-
ing this, Eq. s4d yields a Poisson-like, classical problem, and
Eqs. s3d and s5d a Stokes-like problem.

2. Semidiscrete algorithm

We will restrict ourselves here to the case of closed
boundaries ssuch that uuu]V=0 and ]F /]n=0d, which is not
very stringent since many variable-density problems occur in
such configurations. A slip condition would be a straightfor-
ward extension of this scheme, but would make the notations
superfluously complicated. Thus we will search the solution
sF ,u , pd in V3V0

d3Q, with V=H1sVd, V0=H0
1sVd, and Q

= hqPL2sVd ,eVqdx=0j. x is an intermediate variable in V

which stands for −= ·u.
The variational formulation is written in terms of the

multilinear forms:

asF,u,vd =
1

Dt
fu,s1 + aFdvg +

1

Re
H2fDu,lsFdDvg

−
2

3
f= · u,lsFd = · vgJ ,

bsv,qd = − sq, = · vd ,

csF,cd =
1

Dt
sF,cd +

1

ReSc
s=F, = cd .

Now we discretize the problem by choosing finite ele-
ment spaces Vh and Qh for the approximation of V and Q.

Algorithm

Initialization. n=0. Choose Fh
0 some arbitrary function

in Vh, with Fh
0sxdP f0,1g almost every xPV and

=Fh
0 ·n]V=0, almost every xP]V, and uh

0 in V0,h
d .

Loop. nù0, assuming sFn ,und are given.
Step 1. Calculate Xns·d with

Xnsxd = x − Dtuh
nSx −

Dt

2
uh

nsxdD . sA3d

Step 2. Find Fh
n+1 in Vh such that, for all chPVh,

csFh
n+1,chd = SFh

nxn +
1

Dt
Fh

n
+ Xn,chD . sA4d

Step 3. Calculate Gh
n+1

PVh, such that, for all chPVh,

sGh
n+1,chd = S a

1 + aFh
n

Fh
n+1 − Fh

n
+ Xn

Dt
,chD . sA5d

Step 4. Calculate xh
n+1=Gh

n+1− 1 / uVu seVGh
n+1dxd1.

Step 5. Find suh
n+1 , phd in V0,h

d 3Qh such that

asFh
n+1,uh

n+1,vhd + bsvh,phd

=
1

Dt
suh

n
+ Xn,vhd − S1 + aFh

n+1

a
ez,vD, ∀ v P V0,h

d ,

sA6ad

bsuh
n+1,qhd = sxh

n+1,qhd . ∀ qh P Qh sA6bd

Step 1 of the algorithm is more complicated than it ap-
pears if one considers that we use unstructured meshes with
strong local refinements. This means that the knowledge of
the coordinates of Xnsxd does not give directly the element K

of the mesh it belongs to, and an efficient search algorithm is
necessary to determine it. Indeed, if N denotes the number of
elements in our mesh, the search algorithm will be used for
each degree of freedom in the mesh, that is, OsNd times per
time step. We propose an algorithm which allows to keep the
overall cost of a time step in OsN ln Nd, and consists for a
given mesh in sorting its elements in a localization tree of
depth ln N, which allows a Osln Nd localization for each
degree of freedom.

Step 2 is then a classical elliptic equation to solve, a
multifrontal LU-type factorization is used.

Step 3 is straightforward, but as shown in Sec. IV, it does
not yield an element of Q, and thus in general the Eq. sA6bd
has no solution if xh

n=Gh
n. Thus Step 4 performs an orthogo-

nal projection of Gh
n onto Q. If the Babuška–Brezzi inf-sup

condition holds, this is enough to ensure that Eq. sA6bd ad-
mits solutions. Moreover, this projection preserves the error
because Gh

n can be shown a good approximation of xs· , tnd
which is an element of Q.

In Step 5 remains a Stokes-like problem, with the differ-
ence that the right hand side of Eq. sA6bd is not zero. We use
an augmented Lagrangian technique with a Uzawa iterative
algorithm for problem sA6d as done in Ref. 26.

In Ref. 16 we prove that this scheme yields optimal error
bounds iu−uhiV+ iF−FhiVøCsh2+Dtd and that for any «

ù0, for a sufficiently fine mesh and time step we have −«

øFh
nsxdø1+« for any xPV and tn

P f0,Tg. We also ex-
plain the difficulty of alternatives to the projection step 4.
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