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Mathematical Analysis of some Hyperbolic-Parabolic Inner Obstacle Problems

We establish the existence and uniqueness of the solution to some inner obstacle problems for a coupling of a multidimensional quasilinear firstorder hyperbolic equation set in a region Ω h with a quasilinear parabolic one set in the complementary Ωp = Ω\Ω h . We start by providing the definition of a weak solution through an entropy inequality on the whole domain. Since the interface ∂Ωp ∩ ∂Ω h contains the outward characteristics for the first-order operator in Ω h , the uniqueness proof begins by considering first the hyperbolic zone and then the parabolic one. The existence property uses the vanishing viscosity method and to pass to the limit on the hyperbolic zone, we refer to the notion of process solution.

Introduction 1.Mathematical setting

Let Ω be a bounded domain of R n , n ≥ 1, with a smooth boundary Γ and T a finite positive real. This paper is devoted to the mathematical analysis to the unilateral or bilateral inner obstacle problem for the coupling of a quasilinear advection-reaction equation of the form

T h (u) = ∂ t u - n i=1 ∂ xi (K(u)B i ) + g h (t, x, u) = 0,
set in an hyperbolic zone Q h =]0, T [×Ω h with a quasilinear diffusion-advectionreaction equation of the type

T p (u) = ∂ t u - n i=1 ∂ xi (∂ xi φ(u) + K(u)B i ) + g p (t, x, u) = 0,
set in a parabolic area Q p =]0, T [×(Ω\Ω h ), complementary to the former, and for suitable conditions across the interface between the two regions Q p and Q h . A threshold θ being given, the (bilateral) obstacle problem for T h and T p may be formally written through the free boundary formulation: find a measurable and bounded function u on Q ≡]0, T [×Ω such that,

0 ≤ u ≤ θ on Q, (1) 
for i in {h, p}, T i (u) = 0 on

Q i ∩ [0 < u < θ], (2) 
T i (u) ≤ 0 on Q i ∩ [0 < u = θ], T i (u) ≥ 0 on Q i ∩ [0 = u < θ], (3) 
u = 0 on ]0, T [×Γ, u(0, .) = u 0 on Ω, [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF] subject to the transmissions conditions (see Remark 3) along the interface Σ hp = ]0, T [×Γ hp , with Γ hp = Γ h ∩ Γ p and Γ i = ∂Ω i , i ∈ {h, p}:

u |Q h = u |Qp on Σ hp ∩ [B.ν h > 0], (5) ∇φ 
(u).ν p = 0 on Σ hp ∩ [0 < u < θ], (6) 
where B = (B 1 , .., B n ), ν i denoting the outward normal unit vector defined H na.e. on Σ l and for q in [0, n + 1], H q being the q-dimensional Hausdorff measure. Lastly H n-1 (Γ hp ∩ (Γ l \Γ hp )) = 0.

Remark 1. Presentation (1)-( 3) is also valid for the upper unilateral obstacle problem (u ≤ θ) (resp. for the lower unilateral obstacle problem (u ≥ θ)) by formally replacing the lower bound with "-∞" (resp. the upper bound with " + ∞"). Observe that in these situations, for i in {h, p}, T i (u) are non-positive (resp. nonnegative) distributions on Q i .

This problem arises from several simplified physical models like infiltration processes in a stratified subsoil viewed as two layers with different geological characteristics and such that in the second layer we can neglect the effects of diffusivity. Indeed when we are interested in the evolution of any effluent c within the flow of substances moving in the subsoil, the first simplified modelling consists in taking into account but one phase saturating the soil, made of two components without any chemical interactions: water and component c. We assume that the distribution of temperatures T and the pressure field P of the fluid phase are determined, sufficiently smooth functions. Then, we refer to P.Bia and M.Combarnous [START_REF] Bia | Les méthodes thermiques de production des hydrocarbures[END_REF] to transcript the mass conservation law for c and we take into account the existence of some saturation thresholds θ 1,c (T, P ) and θ 2,c (T, P ): beyond those the appearance of a new phase (liquid or solid) for the same number of components changes the thermodynamical nature of the system, which cannot be described through a simplified balance equation. This way, the relations ruling the mass fraction ω c are formally given by:

E(t, x, ω c ) = 0 on [θ 1 < ω c < θ 2 ], E(t, x, ω c ) ≤ 0 on [θ 1 < ω c = θ 2 ], E(t, x, ω c ) ≥ 0 on [θ 1 = ω c < θ 2 ],
where

E(t, x, ω c ) = ρ(T, ω c ) ∂ t ω c - k(x) µ(ω c ) ∇ω c .(∇P -ρ(T, ω c ) g) -Div [A(x)ρ(T, ω c )∇ω c ] (7) 
In [START_REF] Lévi | Obstacle problems for scalar conservation laws[END_REF], k denotes the absolute permeability at the point x, µ being the dynamic viscosity of the fluid phase and ρ(T, ω c ) its density, defined by the composition ω c at temperature T . Lastly, g is the gravity acceleration vector. Furthermore, the molecular diffusion-dispersion effects have been taken into account through the tensor A(x). But depending on the geological nature of the subsoil these effects may be neglected in favor of the effluent's transport ones. In this situation the evolution of ω c is ruled by a first-order quasilinear operator.

Main assumptions on data

For technical reasons (proofs of Theorem 2 and Proposition 3), we assume in this work that the obstacle θ is independent from the time variable. So it will be considered as a measurable function on Ω such that θ |Ωi belongs to W 1,+∞ (Ω i ), i in {h, p}. In addition θ |Ωp is an element of H 2 (Ω p ). Besides θ is compatible with the boundary condition in the sense θ(σ) ≥ 0 for any σ of ∂Ω. We set:

∀x ∈ Ω, C θ (x) = [0, θ(x)] and C ∞ θ = [0, ess sup Ω θ]
for the bilateral obstacle problem while

C θ (x) =] -∞, θ(x)] and C ∞ θ =] -∞, ess sup Ω θ]
for the (upper) unilateral obstacle problem, the reasoning for lower or upper unilateral obstacle problems being similar.

The vector field B is given in W 1,+∞ (Q) n . Especially B i and ∂ xj B i are continuous on the whole Ω with respect to the space variable. Moreover

Σ hp ⊂ {σ ∈ Σ h , B(σ).ν h ≤ 0}. ( 8 
)
The initial data u 0 belongs to L ∞ (Ω) ∩ H 1 0 (Ω). In addition, u 0 is an element of C θ (x) for a.e. x in Ω. Besides, for i in {h, p}, the reaction term g i is in

W 1,+∞ (]0, T [×Ω i × C ∞ θ ) and we set M gi = ess sup (t,x,u)∈]0,T [×Ωi×C ∞ θ |∂ u g i (t, x, u)|.
The transport term K is Lipschitz continuous on C ∞ θ with a constant K K . Besides K is nondecreasing. Thus we may define the nonnegative and nondecreasing time-depending function

M 1 : t ∈ [0, T ] → M 1 (t) = ess sup Ω θ e N t + N 3 N (e N t -1), (9) 
where

N = i∈{h,p} M gi + K K divB L ∞ (Q)
and N 3 = i∈{h,p} ess sup ]0,T [×Ωi g i (t, x, 0) -+ ess sup ]0,T [×Ω (K(0)divB) -. We also introduce the non-positive and non-increasing function

M 2 : t ∈ [0, T ] → M 2 (t) = min(0, ess inf Ω u 0 ) e N t + N 4 N (e N t -1), (10) 
with

N 4 = -i∈{h,p} ess sup ]0,T [×Ωi g i (t, x, 0) + -ess sup ]0,T [×Ω (K(0)divB) + .
From now, to unify the presentation with the bilateral obstacle problem we set for the unilateral obstacle problem:

C ∞ θ = [M 2 (T ), ess sup Ω θ]. Lastly φ is a nondecreasing function of W 1,+∞ (C ∞ θ ), with φ(0) = 0, φ ′ is Lipschitz continuous on C ∞ θ and φ -1 exists and is a continuous function on φ(C ∞ θ ). ( 11 
)
We point out that [START_REF] Peyroutet | Error Estimate for a Splitting Method Applied to Convection-Reaction Equations[END_REF] is especially fulfilled when L({x ∈ C ∞ θ , φ ′ (x) = 0}) = 0, where L refers to the Lebesgue measure on R.

Remark 2. The monotonicity of K and [START_REF] Lévi | The singular limit of a bilateral obstacle problem for a class of degenerate parabolic-hyperbolic operators[END_REF] show that the interface Σ hp is included in the set of outward characteristics for the first-order operator in the hyperbolic domain. So on the transmission zone (5) is useless since data are leaving the hyperbolic domain. This essential property will guide us for the statement of uniqueness by first considering the behavior of a solution on the hyperbolic area and then on the parabolic one.

Notations and functional spaces

In the sequel, σ (resp. σ) is a variable of Σ i (resp. Γ i ), i ∈ {h, hp, p}. This way, σ = (t, σ) for any t of [0, T ].

We need to consider the Hilbert space

V = {v ∈ H 1 (Ω p ), v = 0 a.e. on Γ p \Γ hp }.
used with the norm v V = ∇v L 2 (Ωp) n , equivalent to the classical H 1 (Ω)norm. We denote ., . the pairing between V and V ′ and ., . the pairing between H 1 0 (Ω) and H -1 (Ω). Furthermore, for X and Y two Hilbert spaces, it will be referred to the Hilbert space

W (0, T ; X; Y ) ≡ {v ∈ L 2 (0, T ; X); ∂ t v ∈ L 2 (0, T ; Y )}, equipped with the norm v W (0,T ;X;Y ) = ∂ t v 2 L 2 (0,T ;Y ) + v 2 L 2 (0,T ;X) 1/2 .
In the sequel, X will be mainly taken equal to H 1 0 (Ω) or V and Y to H -1 (Ω) or V ′ respectively.

The function sgn µ denotes the Lipschitzian and bounded approximation of the function sgn given for any positive µ and any nonnegative real x by: sgn µ (x) = min x µ , 1 and sgn µ (-x) = -sgn µ (x).

Lastly, to simplify the writing, we set for i in {h, p}:

G i (u, v) = g i (t, x, u) -div(K(v)B) L i (u, v, w) = -|u -v|∂ t w -|K(u) -K(v)|B.∇w -sgn(u -v)G i (u, v)w,
and with

I Ωi (x) = 1 if x ∈ Ω i , I Ωi (x) = 0 else, L(u, v, w) = L p (u, v, w)I Ωp (x) + L h (u, v, w)I Ω h (x), g(t, x, u) = g p (t, x, u)I Ωp (x) + g h (t, x, u)I Ω h (x), F(u, v, w) = 1 2 {|K(u) -K(v)| -|K(w) -K(v)| + |K(u) -K(w)|},

Statement of Uniqueness

We give the definition of a weak solution to (1)-( 6) by firstly keeping in mind that it has to involve an entropy criterion on Q h and secondly by taking into account the obstacle condition for u. That is why, by considering that (1)-( 6) can be viewed as an obstacle problem for an evolutional quasilinear parabolic equation that strongly degenerates on a fixed subdomain, we refer to related works ( [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF], [START_REF] Lévi | Obstacle problems for scalar conservation laws[END_REF]) to propose a weak formulation through a global entropy inequality on the whole Q, the latter giving rise to a variational inequality on the parabolic domain and to an entropy inequality on the hyperbolic one so as to ensure the uniqueness.

Definition

So it will be said that:

Definition 1. A measurable function u is a weak solution to (1)-(6) if, for a.e. t in ]0, T [, u(t, .) ∈ C θ a.e. in Ω, φ(u) ∈ L 2 (0, T ; V ), ( 12 
) ∀ζ ∈ D(Q), ζ ≥ 0, Q L(u, κ, ζ)dxdt - Qp ∇|φ(u) -φ(κ)|.∇ζdxdt + Qp ∆φ(κ)sgn(u -κ)ζdxdt + Σ hp ∇φ(κ).ν h sgn(φ(u) -φ(κ))ζdH n ≥ 0, ( 13 
)
where κ = kθ, k ∈ [0, 1] for the bilateral obstacle problem and

κ = k + θ, k ∈ [M 2 (T ) -ess supΩ θ, 0] for the unilateral one, ∀ζ ∈ L 1 (Σ h \Σ hp ), ζ ≥ 0, ess lim τ →0 - Σ h \Σ hp F(u(σ + τ ν h ), 0, κ(σ))B(σ).ν h ζdH n ≤ 0, (14) 
ess lim t→0 + Ω |u(t, x) -u 0 (x)|dx = 0. ( 15 
)
Remark 3.

(i) When θ is nonnegative on Q, the formulation for the (upper) unilateral obstacle problem is a special situation of (13) for the bilateral obstacle problem by considering k ≤ 1 only.

(ii) The link between (2),(3),( 6) and (13) can be achieved through two inequalities resulting form (13) and that will be useful in the sequel. In (13), we take κ(x) = θ(x), that means k = 1 in the case of a bilateral obstacle condition and k = 0 in the case of an unilateral one. It comes (with

T = T h I Ω h + T p I Ωp ), Q u∂ t ζdxdt ≤ Qp (∇φ(u) + K(u)B) .∇ζdxdt + Q g(t, x, u)ζdxdt + Σ hp ∇φ(θ).ν h (1 + sgn(φ(u) -φ(θ)))ζdH n - Q (1 + sgn(u -θ))T (θ)ζdxdt. ( 16 
)
In (13), we take κ(x) = 0 for the bilateral obstacle problem and κ(x) = M 2 (T )-ess supΩ θ + θ(x) for the unilateral one (so that uκ ≥ 0 a.e.). One has, 

Q u∂ t ζdxdt ≥ Qp (∇φ(u) + K(u)B) .∇ζdxdt + Q g(t, x, u)ζdxdt + Σ hp ∇φ(κ).ν h (1 -sgn(φ(u) -φ(κ)))ζdH n - Q (1 -sgn(u -κ))T (κ)ζdxdt. ( 17 
)
Let V = (u, -I Ωp ∇φ(u) -K(u)B) in L 2 (Q) n+1 . For any ζ in D(Q i ), i in {h,
V.(∂ t ζ, ∇ζ)dxdt ≤ C ζ L 2 (Qi) .
That means

V |Qi belongs to H div (t,x) (Q i ) = {v ∈ L 2 (Q i ) n+1 , div (t,x) v ∈ L 2 (Q i )}.
We deduce that V |Qi .ν i belongs to H -1/2 00 (Σ hp ), the topological dual of H 1/2 00 (Σ hp ). In addition, we derive from (16) and (17) that a.e. on Q i ,

-div (t,x) V |Qi ≤ g i (t, x, u) -(1 + sgn(u -θ))T i (θ), -div (t,x) V |Qi ≥ g i (t, x, u) -(1 -sgn(u -κ))T i (κ).
We multiply each inequality with ζ in D(Q), ζ ≥ 0 and add up with respect to i. By denoting ⌊., .⌋ the pairing between H 

(Σ hp ) it comes: Q V.(∂ t ζ, ∇ζ)dxdt -⌊V |Q h .ν h + V |Qp .ν p , ζ⌋ ≤ Q (g(t, x, u) -(1 + sgn(u -θ))T (θ))ζdxdt, and Q V.(∂ t ζ, ∇ζ)dxdt -⌊V |Q h .ν h + V |Qp .ν p , ζ⌋ ≥ Q (g(t, x, u) -(1 -sgn(u -κ))T (κ))ζdxdt.
Now what follows is formal. We are interested with the bilateral obstacle problem (the reasoning for the unilateral one being similar) and assume that

[0 < u < θ] is an open subset of Q, H n -measurable. We consider in (16) and (17) that ζ has a compact support in Q i ∩ [0 < u < θ]. Since (1 + sgn(u -θ))ζ = (1 - sgn(u-κ))ζ = 0 a.e. and (1+sgn(φ(u)-φ(θ)))ζ = (1-sgn(φ(u)-φ(κ)))ζ = 0 H n -a.e., we deduce that for i in {h, p}, div (t,x) (V |Qi ) = 0 on Q i ∩ [0 < u < θ],
that is namely (2). Then, for ζ with a compact support in Q ∩ [0 < u < θ], by comparing (16) and (17) with above inequality, we may say

⌊V |Q h .ν h + V |Qp .ν p , ζ⌋ = 0, that is (6) in a certain sense. Furthermore if we take ζ with a support in Q i ∩ [0 < u = θ] and in Q i ∩ [0 = u < θ] -if it has a meaning -we find (3). Besides, for any nonnegative ζ a compact support in Q ∩ [0 < u = θ], ⌊V |Q h .ν h + V |Qp .ν p , ζ⌋ = Σ hp ∇φ(θ).ν h ζdH n ,
and

⌊V |Q h .ν h + V |Qp .ν p , ζ⌋ ≥ Q T (θ)ζdxdt. This way, ∇φ(θ).ν h ≥ T (θ) H n -a.e. on Σ hp ∩ [0 < u = θ]. On Σ hp ∩ [0 = u < θ], since K(0) = φ(0) = 0, for any nonnegative ζ a compact support in Q ∩ [0 = u < θ] ⌊V |Q h .ν h + V |Qp .ν p , ζ⌋ = 0 ≤ Q g(t, x, 0)ζdxdt.

Study on the hyperbolic zone

We derive from (13) and ( 14) an entropy inequality on the hyperbolic domain that will be the starting point to establish a time-Lipschitzian dependence in L 1 (Ω h ) of a weak solution to (1)-( 6) with respect to the corresponding initial data. To do so we claim a first lemma proved as in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]:

Lemma 1.
Let u be a measurable and bounded function on Q satisfying (13) and (14). Then for any κ as in Definition 1 and any ϕ of

D(]0, T [×R n ), ϕ ≥ 0, - Q h L h (u, κ, ζ)dxdt ≤ -ess lim τ →0 - Σ h \Σ hp |K(u(σ + τ ν h ))|B(σ).ν h ϕ(σ)dH n + Σ h \Σ hp |K(κ)(σ)|B(σ).ν h ϕ(σ)dH n (18) 
In order to use the method of doubling variables, we now need a technical result based on properties of mollifiers and already pointed out in [START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF], [START_REF] Peyroutet | Error Estimate for a Splitting Method Applied to Convection-Reaction Equations[END_REF]. From (18) we argue that for any open subset Σ loc of Σ h and κ as in Definition 1,

ess lim τ →0 - Σ loc |K(u(σ + τ ν h )) -K(κ(σ))|B(σ).ν h β(σ)dH n exists (19) and, ∃γ ∈ L ∞ (Σ loc ) such that ess lim τ →0 - Σ loc K(u(σ + τ ν h ))B(σ).ν h β(σ)dH n = Σ loc γ κ (σ)β(σ)dH n , (20) 
for any β in L 1 (Σ loc ). In the sequel ( 19) and (20) will be used with Σ loc = Σ hp or Σ loc = Σ h \Σ hp . We define the sequence

(W δ ) δ>0 on R n+1 ∀δ > 0, ∀p = (t, x) ∈ R n+1 , W δ (p) = ρ δ (t) n i=1 ρ δ (x i ),
where (ρ δ ) δ>0 is a standard sequence of mollifiers on R. We focus on Σ h \Σ hp the proof developed in [START_REF] Peyroutet | Error Estimate for a Splitting Method Applied to Convection-Reaction Equations[END_REF] on the whole boundary to state:

Lemma 2.
Let u be a measurable and bounded function on Q h such that (19) holds. Then for any continuous function

ϕ on Q h ∪ Σ h lim δ→0 + Q h Σ h \Σ hp |K(u(p))|B(σ).ν h ϕ( σ + p 2 )W δ (σ -p)dH n σ dp = 1 2 ess lim τ →0 - Σ h \Σ hp |K(u(σ + τ ν h ))|B(σ)ν h ϕ(σ)dH n
and,

lim δ→0 + Q h ess lim τ →0 - Σ h \Σ hp |K(u(σ + τ ν h ))|B(σ).ν h ϕ( σ + p 2 )W δ (σ -p)dH n σ dp = 1 2 ess lim τ →0 - Σ h \Σ hp |K(u(σ + τ ν h ))|B(σ).ν h ϕ(σ)dH n .
From Lemma 1 and Lemma 2 we derive: 

Theorem 1.
Ω h |u 1 (t, .) -u 2 (t, .)|dx ≤ e Mg h t Ω h |u 0,1 -u 0,2 |dx.
Proof. We choose in (18) for u 1 written in variables p = (t, x),

κ(x) = u 2 ( t, x) -θ(x) + θ(x),
in the case of an (upper) unilateral constraint while

κ(x) =    u 2 ( t, x) θ(x) θ(x) if θ(x) = 0, 0 else,
for a bilateral obstacle condition, and similarly in (18) for u 2 written in variables p = ( t, x). Furthermore in (18) for u 1 ,

ϕ(p) = ζ( p + p 2 )W δ (p -p),
where δ is positive and large enough, and ζ belongs to

D(]0, T [×R n ), ζ ≥ 0.
Similarly in (18) for u 2 . We integrate over Q h on the p variables for u 1 and on the p variables for u 2 . We add up. Through techniques developed in [START_REF] Lévi | Obstacle problems for scalar conservation laws[END_REF] we pass to the limit with δ on the left-hand side. The right-hand side goes to 0 with δ, thanks to Lemma 2 for u 1 and u 2 . It comes:

-

Q h {|u 1 -u 2 |∂ t ζ -|K(u 1 ) -K(u 2 )|B.∇ζ}dxdt ≤ - Q h sgn(u 1 -u 2 )(g h (t, x, u 1 ) -g h (t, x, u 2 ))ζdxdt.
For ζ ≡ αψ where α belongs to D(]0, T [), α ≥ 0 and ψ to D(R n ), ψ ≥ 0, ψ ≡ 1 on Q h , the Lipschitz condition for g h provides:

-

Q h |u 1 -u 2 |α ′ (t)dxdt ≤ M ′ g h Q h |u 1 -u 2 |α(t)dxdt.
When α is the element of a sequence approximating I [0,t] , t being given outside a set of measure zero, the desired inequality is obtained thanks to the initial condition (15) for u 1 and u 2 and to the Gronwall's Lemma.

Study in the parabolic zone

We consider now the behavior of a weak solution u to ( 1)-( 6) on the parabolic domain. With this view, we characterize u on Q p through a strong variational inequality (in the sense of J.L.Lions in [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]) including the contribution of entering data from the hyperbolic zone. Indeed:

Proposition 1.
Let u be a measurable and bounded function on Q such that ∇φ(u) belongs to L 2 (Q p ) n and satisfying (13). Then ∂ t u belongs to L 2 (0, T ; V ′ ). Furthermore, for any v in L 2 (0, T ; V ) such that for a.e.

t in ]0, T [, φ -1 (v(t, .)) is an element of C θ a.e. on Ω p , T 0 ∂ t u, v -φ(u) dt + Qp (∇φ(u) + K(u)B) .∇(v -φ(u))dxdt + Qp g p (t, x, u)(v -φ(u))dxdt +ess lim τ →0 - Σ hp K(u(σ + τ ν h ))B(σ).ν h (v -φ(u))dH n ≥ 0. ( 21 
)
Proof. Thanks to a density argument ( 16) and (17) still hold for any nonnegative ζ in D(0, T ; H 1 0 (Ω)). Now let ϕ be given in D(0, T ; V ). We consider φ an extension of ϕ to D(0, T ; H 1 0 (Ω)) and we take ζ = φξ ̺ in ( 16) and ( 17), where ξ ̺ belongs to W 1,+∞ (Ω), 0 ≤ ξ ̺ ≤ 1, and fulfills for any positive ̺:

ξ ̺ (x) = 1 if x ∈ Ωp , 0 if x ∈ Ω h , dist(x, Γ hp ) ≥ ̺, ∇ξ ̺ ∞ ≤ C/̺.
To pass to the limit when ̺ goes to 0 + , we claim that due to (19) (see [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]), lim

̺→0 + Q h K(u) φB.∇ξ ̺ dxdt = ess lim τ →0 - Σ hp K(u(σ + τ ν h ))ϕ(σ)B.ν h dH n .
This way, for any ϕ in D(0, T ; V ), ϕ ≥ 0,

Qp u∂ t ϕdxdt ≤ Qp (∇φ(u) + K(u)B) .∇ϕdxdt + Qp g p (t, x, u)ϕdxdt + Σ hp ∇φ(θ).ν h (1 + sgn(u -θ))ϕdH n - Qp (1 + sgn(u -θ))T p (θ)ϕdxdt + ess lim τ →0 - Σ hp K(u(σ + τ ν h ))ϕ(σ)B.ν h dH n . ( 22 
)
and

Qp u∂ t ϕdxdt ≥ Qp (∇φ(u) + K(u)B) .∇ϕdxdt + Qp g p (t, x, u)ϕdxdt + Σ hp ∇φ(κ).ν h (1 -sgn(u ǫ -κ))ϕdH n - Qp (1 -sgn(u -κ))T p (κ)ϕdxdt + ess lim τ →0 - Σ hp K(u(σ + τ ν h ))ϕ(σ)B.ν h dH n .. (23) 
We write ϕ = ϕ +ϕ -and use ( 22)-( 23) with ϕ + and ϕ -. Since u is bounded and φ(u) belongs to L 2 (0, T ; V ) we argue that there exists a constant C such as

∀ϕ ∈ D(0, T ; V ), T 0 Ωp u∂ t ϕdxdt ≤ C ϕ L 2 (0,T ;V ) ,
which ensures that ∂ t u belongs to L 2 (0, T ; V ′ ) (see Appendix of [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]). Thus,

∀ϕ ∈ D(0, T ; V ), - T 0 Ωp u∂ t ϕdxdt = T 0 ∂ t u, ϕ dt,
Thus by density, we may rewrite ( 22) and (23) with ϕ in L 2 (0, T ; V ). Then we consider ϕ = (vφ(u)) + and ϕ = (vφ(u)) -respectively, with v as in the statement of Proposition 1 so that, due to the obstacle condition for u, (1 + sgn(uθ))(vφ(u)) + = 0 and respectively (1sgn(uκ))(vφ(u)) -= 0 a.e. on Q p and H n -a.e. on Σ hp . By adding up Inequality (21) follows, that completes the proof of Proposition 1.

The uniqueness theorem

Theorem 1 ensures a uniqueness property on the hyperbolic zone. On the parabolic one, the lack of regularity of the time partial derivative of a weak solution to (1)-( 6) requires a doubling the time variable and uses a suitable time-integration by parts formula. Furthermore, to deal with the convective terms, we assume that

ζ → K • φ -1 is Lipschitz continuous on φ(C ∞ θ ). ( 24 
)
Then we have:

Theorem 2. Under (24) Problem (1)-( 6) admits at most one weak solution.

Proof. On the parabolic zone, it refers to that developed in [START_REF] Lévi | The singular limit of a bilateral obstacle problem for a class of degenerate parabolic-hyperbolic operators[END_REF]. Indeed, let u 1 and u 2 be two weak solutions to (1)-( 6). Thanks to Lemma 1 and Theorem 1, we know that u 1 = u 2 a.e. on Q h . In addition, θ being independent from the time variable on Q p we may choose in (21) for u 1 written in variables (t, x)

v 1 (t, x) = φ(u 1 )(t, x) - µα δ α δ ∞ sgn µ (φ(u 1 )(t, x) -φ(u 2 )( t, x)),
and in (21) for u 2 written in variables ( t, x)

v 2 ( t, x) = φ(u 2 )( t, x) + µα δ α δ ∞ sgn µ (φ(u 1 )(t, x) -φ(u 2 )( t, x).
For any positive δ, α δ (t, t) = γ t+ t 2

ρ δ t- t 2
, where γ is an element of D(]0, T [), γ ≥ 0, and δ is small enough for α δ to belong to D(]0, T [×]0, T [).

To simplify the writing we add a "tilde" superscript to any function in the t variable; q stands for (t, x) while q stands for ( t, x). By adding up (and denoting w µ,δ (u 1 , ũ2 ) = sgn µ (φ(u 1 )φ(ũ 2 ))α δ ), it comes:

]0,T [×Qp ∂ t u 1 -∂ tu 2 , w µ,δ (u 1 , ũ2 ) dtd t + ]0,T [×Qp ∇{φ(u 1 ) -φ(ũ 2 )}.∇w µ,δ (u 1 , ũ2 )dqd t ≤ - ]0,T [×Qp {K(u 1 ) -K(ũ 2 )}B.∇w µ,δ (u 1 , ũ2 )dqd t + ]0,T [×Qp K(ũ 2 )(B -B).∇w µ,δ (u 1 , ũ2 )dqd t - ]0,T [×Qp {g p (q, u 1 ) -g p (q, ũ2 )}w µ,δ (u 1 , ũ2 )dqd t - T 0 ess lim τ →0 - Σ hp K(u 1 (σ + τ ν h ))B.ν h w µ,δ (u 1 , ũ2 )dH n σ d t + T 0 ess lim τ →0 - Σ hp K(u 2 (σ + τ ν h )) B.ν h w µ,δ (u 1 , ũ2 )dH n σ dt,
To deal with the first term in the left-hand side, we use a time-integration by parts formula in the same spirit as in ( [START_REF] Gagneux | Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière[END_REF], the Mignot-Bamberger Lemma).

For the second integral in the right-hand side, a Green formula is used since (24) ensures that K(ũ 2 ) = (K • φ -1 )(φ(ũ 2 )) belongs to L 2 (0, T ; H 1 (Ω p )). For the boundary integrals we argue that due to the uniqueness property on the hyperbolic zone, u 2 (σ + τ ν h ) = u 1 (σ + τ ν h ) for a.e. (σ, τ ). This way, as a consequence of (20),

T 0 ess lim τ →0 - Σ hp K(u 2 (σ + τ ν h )) B.ν h w µ,δ (u 1 , ũ2 )dH n σ dt = T 0 ess lim τ →0 - Σ hp K(u 1 (σ + τ ν h )) B.ν h w µ,δ (u 1 , ũ2 )dH n σ dt = T 0 Σ hp γ(σ)w µ,δ (u 1 , ũ2 )dH n σ dt,
where γ belongs to L ∞ (Σ hp ). It follows that

- ]0,T [×Qp   u1 ũ2 sgn µ (φ(r) -φ(ũ 2 ))dr   ∂ t α δ dqd t - ]0,T [×Qp   u1 ũ2 sgn µ (φ(u 1 ) -φ(r))dr   ∂ tα δ dqd t ≤ B L ∞ (Qp) ]0,T [×Qp |K(u 1 ) -K(ũ 2 )||∇w µ,δ (u 1 , ũ2 )| n dqd t + ]0,T [×Qp div(K(ũ 2 )(B -B))w µ,δ (u 1 , ũ2 )dqd t - ]0,T [×Σ hp K(ũ 2 )(B -B).ν h w µ,δ (u 1 , ũ2 )dqd t - ]0,T [×Qp {g(q, u 1 ) -g(q, ũ2 )}w µ,δ (u 1 , ũ2 )dqd t - T 0 Σ hp γ(σ)w µ,δ (u 1 , ũ2 )dH n σ d t + T 0 Σ hp γ(σ)w µ,δ (u 1 , ũ2 )dH n σ dt.
We take the limit with respect to µ. For the first integral in the right-hand side we refer to (24) and use the Sacks Lemma; so that it goes to 0. Thus one has:

- ]0,1[×Qp |u 1 -ũ2 |(∂ t α δ + ∂ tα δ )dqd t ≤ ]0,T [×Qp |div(K(ũ 2 )(B -B))|α δ dqd t + ]0,T [×Σ hp |K(ũ 2 )(B -B).ν h |α δ dqd t + M gp ]0,T [×Qp |u 1 -ũ2 |α δ dqd t + T 0 T 0 Γ hp |γ(t, s) -γ( t, s)|α δ dsdtd t,
We come back to the definition of α δ to express its partial derivatives with respect to t and t. This way we may pass to the limit with δ through the classical argument of the Lebesgue points for an integrable function on ]0, T [: all the terms in the right-hand side tend to 0 (B being smooth) except the first integral in the third line. The end is classical: it uses a piecewise linear approximation of I ]0,t[ , t given outside of a set of measure zero. Thanks to (15) and to the Gronwall's Lemma we complete the proof of Theorem 2.

3 The Existence Property

The obstacle problem to the second order

We propose to approximate the weak solution to (1)-( 6) through a sequence of solutions to viscous problems deduced from ( 1)-( 6) by adding a diffusion term only in the hyperbolic area. This is in accordance with the proposed physical modelling of two layers in the subsoil with different geological characteristics. So for any positive ǫ, we introduce

T ǫ,h (u) = ∂ t u - n i=1 ∂ xi (ǫ∂ xi φ(u) + K(u)B i ) + g h (t, x, u),
and we consider the free boundary problem: find a measurable and bounded function u ǫ on Q such that formally (for the bilateral obstacle problem),

0 ≤ u ǫ ≤ θ on Q, ( 25 
) T p (u ǫ ) = 0 on Q p ∩ [0 < u ǫ < θ], T ǫ,h (u ǫ ) = 0 on Q h ∩ [0 < u ǫ < θ], (26) T ǫ,h (u ǫ ) ≤ 0 on Q h ∩ [0 < u ǫ = θ], T ǫ,h (u ǫ ) ≥ 0 on Q h ∩ [0 = u ǫ < θ], (27) T p (u ǫ ) ≤ 0 on Q p ∩ [0 < u ǫ = θ], T p (u ǫ ) ≥ 0 on Q p ∩ [0 = u ǫ < θ], (28) u ǫ = 0 on Σ, u ǫ (0, .) = u 0 on Ω, (29) 
and to have a well-posed problem, we express the transmission conditions across the interface (that will be discussed in Remark 6)

-ǫ∇φ(u ǫ ).ν h = ∇φ(u ǫ ).ν p on Σ hp ∩ [0 < u ǫ < θ], (30) 
u ǫ|Q h = u ǫ|Qp on Σ hp . ( 31 
)
Our aim is to prove first that (25)-(31) has a unique weak solution and secondly to establish some estimates proper to study the behavior of the sequence (u ǫ ) ǫ>0 when ǫ goes to 0 + . We obtain an existence result to (25)-(31) by using the artificial viscosity method -to regularize φ -and by relaxing the obstacle condition.

That is why we start by introducing a Lipschitz bounded extension K ⋆ and g ⋆ i , for i in {h, p}, of K and g i outside C ∞ θ through (for a generic function f ):

f ⋆ (z) = f (z) if z ∈ C ∞ θ , f (l C ∞ θ ) if z ≤ l C ∞ θ , f (ess supΩ θ) if z ≥ ess supΩ θ, where l C ∞ θ = min C ∞
θ depending on the unilateral or bilateral case. For φ we choose an increasing Lipschitz extension φ ⋆ outside C ∞ θ , so that due to ( 11), (φ ⋆ ) -1 exists and is a continuous function on φ ⋆ (C ∞ θ ). Then, for any positive parameter η, we set φ ⋆ η = φ ⋆ + ηI R and β(x, u) = (-u -+ (uθ(x)) + ) for a bilateral constraint (while for a unilateral obstacle condition β is reduced to β(x, u) = (uθ(x)) + )) and λ ǫ,η , a C 1 ( Ω)-class approximation of λ ǫ = I Ωp (x) + ǫI Ω h such that

∃N > 0, ∀ǫ > 0, ∀η > 0, 0 < λ ǫ,η ≤ N a.e. in Ω, ∇λ ǫ,η ∞ ≤ C(ǫ) η
and when η goes to 0 + , λ ǫ,η → λ ǫ a.e. on Ω.

This way (see e.g. [6])

Theorem 3. There exists a unique solution

u ǫ,η ∈ W (0, T ; H 1 0 (Ω) ∩ H 2 (Ω); L 2 (Ω)) ∩ L ∞ (Q)
to the nondegenerate-penalized problem:

∂ t u ǫ,η -div(λ ǫ,η (x)∇φ ⋆ η (u ǫ,η ) + K ⋆ (u ǫ,η )B) + g ⋆ (t, x, u ǫ,η ) = - 1 η β(x, u ǫ,η ) a.e. on Q, ( 32 
)
u ǫ,η (0, .) = u 0 a.e. in Ω. ( 33 
)
Now we state some a priori estimates for (u ǫ,η ) η>0 that are sufficient to study its limit when η goes to 0 + . Indeed (with Q s =]0, s[×Ω, s in ]0, T ]): Proposition 2. There exists a constant C independent from ǫ and η such that:

∀t ∈ [0, T ], M 2 (t) ≤ u ǫ,η (t, .) ≤ M 1 (t) a.e. in Ω, ( 34 
) β(x, u ǫ,η ) L 1 (Q) ≤ Cη, ( 35 
)
λ 1/2 ǫ,η ∇ φ ⋆ η (u ǫ,η ) L 2 (Q) n ≤ C, ( 36 
) ∀s ∈]0, T ], ǫ ∂ t φ ⋆ η (u ǫ,η ) 2 L 2 (Qs) + ǫ 2 λ 1/2 ǫ,η ∇φ ⋆ η (u ǫ,η )(s, .) 2 L 2 (Ω) n ≤ C, ( 37 
)
where M 1 and M 2 are defined in (9) and (10) and φ

⋆ η (x) = x 0 (φ ⋆ ) ′ η (τ )dτ .
Proof. For (34) we use a cut-off method in L 1 by considering the L 2 (Q s )-scalar product between (32) and sgn + µ (u ǫ,η -M 1 (t)) for the majoration by M 1 , and -sgn - µ (u ǫ,η -M 2 (t)) for the minoration by M 2 . It is also a cut-off method in L 1 that provides (35). From the energy equality fulfilled by u ǫ,η we derive (36). To conclude we take the L 2 (Q s )-scalar product between (32) and ǫ∂ t φ ⋆ η (u ǫ,η ). Concerning the penalized term,

ǫ η ]0,s[×Ω (u ǫ,η -θ) + ∂ t φ ⋆ η (u ǫ,η ) = ǫ η ]0,s[×Ω (u ǫ,η -θ) + (φ ⋆ η ) ′ ((u ǫ,η -θ) + + θ)∂ t (u ǫ,η -θ) + dxdt = ǫ η ]0,s[×Ω ∂ t    (uǫ,η-θ) + 0 τ (φ ⋆ η ) ′ (τ + θ)dτ    dxdt = ǫ η Ω    (uǫ,η(s,.)-θ) + 0 τ (φ ⋆ η ) ′ (τ + θ)dτ    dx ≥ 0.
The same reasoning and the same sign condition hold for -(u ǫ,η ) -. We bound the convective and reactive terms by using (34),(36) and the Young inequality (see [START_REF] Lévi | The singular limit of a bilateral obstacle problem for a class of degenerate parabolic-hyperbolic operators[END_REF]). Thanks to the density of D(0, T ;

H 1 0 (Ω)∩H 2 (Ω)) into W (0, T ; H 1 0 (Ω)∩ H 2 (Ω); L 2 (Ω))
, the diffusive term is integrated by parts and then with respect to t. So that the constant C in (36) depends on φ(u 0 ) H 1 0 (Ω) and u 0 H 1 0 (Ω) . The parameter ǫ being fixed, (φ ⋆ η (u ǫ,η )) η>0 remains at least in a bounded set of H 1 (Q). As a result, the compactness embedding of the latter space into L 2 (Q) and the continuity of (φ ⋆ ) -1 provide the existence of a measurable function u ǫ and a subsequence -still denoted (u ǫ,η ) η>0 -such that when η goes to 0 + , (u ǫ,η ) η>0 goes to u ǫ in L q (Q), 1 ≤ q < +∞ and (φ ⋆ η (u ǫ,η )) η>0 goes to φ(u ǫ ) weakly in H 1 (Q) and strongly in C 0 ([0, T ]; L 2 (Ω)). This leads to: 

φ(u ǫ ) ∈ W (0, T, H 1 0 (Ω), L 2 (Ω)), ( 39 
) u ǫ (0, .) = u 0 a.e. in Ω, ( 40 
)
and for any v in W (0, T ;

H 1 0 (Ω), L 2 (Ω)), v(T, .) = u ǫ (T, .) a.e. in Ω, such that for any t in [0, T ], φ -1 (v(t, .)) ∈ C θ a.e. on Ω, Q ∂ t v(v -φ(u ǫ ))dxdt + Q λ ǫ (x)∇φ(u ǫ ).∇(v -φ(u ǫ ))dxdt + Q K(u ǫ )B.∇(v -φ(u ǫ ))dxdt + Q g(t, x, u ǫ )(v -φ(u ǫ ))dxdt - Q (u ǫ -v)∂ t (v -φ(u ǫ ))dxdt + Ω (u 0 -v(0, .))(φ(u 0 ) -v(0, .))dx ≥ 0. ( 41 
)
Remark 4. In (38),( 40),(41) the trace of u ǫ with respect to the time variable has to be understood, for any t in [0, T ], in the sense u ǫ (t, .) = φ -1 (φ(u ǫ )(t, .)).

Proof. Obstacle Condition (38) follows from ( 35) while (40) comes from (33) and from the strong convergence of (φ ⋆ η (u ǫ,η )) η>0 toward φ(u ǫ ) in C 0 ([0, T ]; L 2 (Ω)). To obtain (41) we take the L 2 (Q)-scalar product between (32) and vφ ⋆ η (u ǫ,η ). To study the penalized term, we write:

- 1 η Q (u ǫ,η -θ) + (v -φ ⋆ η (u ǫ,η ))dxdt = - 1 η Q (u ǫ,η -θ) + (v -φ ⋆ (u ǫ,η ))dxdt + Q (u ǫ,η -θ) + u ǫ,η dxdt,
where in the right-hand side the first term is nonnegative and the second one goes to 0 (due to (35)). The same reasoning is still true for the negative part in β(x, .).

For the evolution term, we artificially introduce the quantity ∂ t φ(v)(φ(v)φ ⋆ (u ǫ,η )). Then we integrate by parts in time and use the definition of v. This allows us to take the η-limit. Just note that in the diffusive term we take in fact the " lim inf " and the weak convergence of gradients in L 2 (Q). Now, we observe that Proposition 3. If u 1 and u 2 are two weak solutions to (38)-(41) for initial data u 0,1 and u 0,2 respectively, then (with

M g = M g h + M gp ), for a.e. t in ]0, T [, Ω |u 1 (t, x) -u 2 (t, x)|dx ≤ Ω |u 0,1 -u 0,2 |dx e Mgt .
Proof. We develop the same reasoning (on the whole Q) as in Theorem 2 (on Q p ) by doubling the time variable and using the same test-functions (remind that θ is independent from the time variable on the whole Q). Observe that there are no here boundary integrals. Besides, to deal with the evolution terms, we perform first an integration by parts with respect to the time variable by considering that α δ has a compact support in ]0, T [×]0, T [. Then we refer to the integration formula proved in [START_REF] Lévi | The singular limit of a bilateral obstacle problem for a class of degenerate parabolic-hyperbolic operators[END_REF] through some convexity inequalities: Lemma 3. Let u be a measurable and bounded function (by a constant M ) on Q and f a function defined on Ω × [-M, M ] such that for any x in Ω, λ → f (x, λ) is nondecreasing and continuous and for all λ in [-M, M ], x → f (x, λ) is measurable and bounded on Ω and ∂ t f (., u) belongs to L 1 (Q). Then, for any

α of C 1 ([0, T ]), α ≥ 0, such that α(T ) = α(0) = 0, Q u∂ t (f (x, u)α)dxdt = Q   u v f (x, r)dr   ∂ t αdxdt,
for any measurable function v bounded by M on Ω.

This way,

]0,T [×Q

u 1 ∂ t (sgn µ (φ(u 1 ) -φ(ũ 2 ))α δ )dqd t - ]0,T [×Q ũ2 ∂ t(sgn µ (φ(u 1 ) -φ(ũ 2 ))α δ )dqd t = ]0,T [×Q   u1 ũ2 sgn µ (φ(r) -φ(ũ 2 ))dr   ∂ t α δ dqd t - ]0,T [×Q   ũ2 u1 sgn µ (φ(u 1 ) -φ(r))dr   ∂ tα δ dqd t
The conclusion follows.

The viscous limit

As a consequence of the uniqueness property stated in Proposition 3, we make sure that the whole sequence (u ǫ,η ) η>0 converges toward u ǫ when η goes to 0 + . Thus, by considering the a priori estimates of Proposition 2 for (u ǫ,η ) η>0 , we may derive some estimates for (u ǫ ) ǫ>0 . Indeed Proposition 4.

(u ǫ ) ǫ>0 is a bounded sequence in L ∞ (Q), (42) 
and there exists a constant C independent from ǫ such that

ǫ 1/2 ∇ φ(u ǫ ) L 2 (Q h ) n + ∇ φ(u ǫ ) L 2 (Qp) n ≤ C. (43) 
Relations ( 42) and ( 43) are not sufficient to study the behavior of the sequence (u ǫ ) ǫ>0 when ǫ goes to 0 + : we also need an estimate of ∂ t u ǫ in a suitable space. To this purpose, we prove that u ǫ fulfills an entropy inequality on Q that also be used as a starting point to establish (13) for the corresponding ǫ-limit.

We pass to the limit with µ through the Lebesgue dominated convergence Theorem and the Sacks Lemma to deal with the first term in the third line (remind that (24) holds). It follows:

- Q L(u ǫ , κ, ζ)dxdt - Ω |u 0 -κ|ζ(0, .)dx + Q λ ǫ ∇|φ(u ǫ ) -φ(κ)|.∇ζdxdt - Q λ ǫ ∆φ(κ)sgn(u ǫ -κ)ζdxdt + Σ hp (ǫ -1)∇φ(κ).ν h sgn(φ(u ǫ ) -φ(κ))ζdH n ≤ 0. ( 47 
)
Now the arguments are similar to those developed in Proposition 1 to prove that ∂ t u is in L 2 (0, T ; V ′ ). In (47) we consider that ζ is a nonnegative element of D(Q) and so, thanks to a density argument, we may choose ζ in D(0, T ; H 1 0 (Ω)), ζ ≥ 0. Thus for k = 1 in the case of a bilateral obstacle and k = 0 in the case of a unilateral one (so that κ(x) = θ(x)), one has (with

T ǫ = T ǫ,h I Ω h + T p I Ωp ): Q u ǫ ∂ t ζdxdt ≤ Q λ ǫ ∇φ(u ǫ ).∇ζdxdt + Q K(u ǫ )B.∇ζdxdt + Q g(t, x, u ǫ )ζdxdt -(ǫ -1) Σ hp ∇φ(θ).ν h (1 + sgn(φ(u ǫ ) -φ(θ)))ζdH n - Q (1 + sgn(u ǫ -θ))T ǫ (θ)ζdxdt,
and for κ(x) = 0 in the case of a bilateral constraint and κ(x) = M 2 (T )ess supΩ θ + θ(x) for an unilateral one (thus u ǫκ ≥ 0 a.e.) it comes: L 2 (Γ hp )), we prove the existence of a constant C (independent from ǫ) such as:

Q u ǫ ∂ t ζdxdt ≥ Q λ ǫ ∇φ(u ǫ ).∇ζdxdt + Q K(x, u ǫ )B.∇ζdxdt + Q g(t, x, u ǫ )ζdxdt -(ǫ -1) Σ hp ∇φ(κ).ν h (1 -sgn(φ(u ǫ ) -φ(κ)))ζdH n - Q (1 -sgn(u ǫ -κ))T ǫ (κ)ζdxdt.
∀ζ ∈ D(0, T ; H 1 0 (Ω)), Q u ǫ ∂ t ζdxdt ≤ C ζ L 2 (0,T ;H 1 0 (Ω)) .
Thus ∂ t u ǫ belongs to L 2 (0, T ; H -1 (Ω)) and for any ζ of D(0, T ; H 1 0 (Ω)),

- Q u ǫ ∂ t ζdxdt = T 0 ∂ t u ǫ , ζ dt.
Estimate (45) follows that completes the proof of Proposition 5.

Remark 5. By referring to [START_REF] Lévi | The singular limit of a bilateral obstacle problem for a class of degenerate parabolic-hyperbolic operators[END_REF], we may assert that as soon as ∂ t u ǫ belongs to L 2 (0, T ; H -1 (Ω)) we can perform a time-integration by parts in (41) so that the weak solution to (25)-(29) fulfills the "strong" variational inequality for any measurable function v, v in C θ a.e. on Ω with φ(v) in H 1 0 (Ω):

∂ t u ǫ , φ(v) -φ(u ǫ ) + Ω (λ ǫ ∇φ(u ǫ ) + K(u ǫ )B).∇(φ(v) -φ(u ǫ ))dx + Ω g(t, x, u ǫ )(φ(v) -φ(u ǫ ))dx ≥ 0 for a.e. t in ]0, T [.
Remark 6. By reasoning as in Remark 3 and denoting V ǫ = (u ǫ , -λ ǫ ∇φ(u ǫ ) -K(u ǫ )B) we make sure that V ǫ|Qi belongs to H div (t,x) (Q i ) and a.e. on Q i ,

-div (t,x) V ǫ|Qi ≤ g i (t, x, u ǫ ) -(1 + sgn(u ǫ -θ))T i (θ), -div (t,x) V ǫ|Qi ≥ g i (t, x, u ǫ ) -(1 -sgn(u ǫ -κ))T i (κ). So that if [0 < u ǫ < θ] is an open subset of Q, H n -measurable, we argue that div (t,x) (V ǫ,|Qi ) = 0 on Q i ∩ [0 < u ǫ < θ],
that is (26) and for any nonnegative

ζ with a support in Q ∩ [0 < u ǫ < θ] ⌊V ǫ|Q h .ν h + V ǫ|Qp .ν p , ζ⌋ = 0,
that corresponds to (30). Observe that (31) holds since φ(u ǫ ) belongs to

H 1 (Q). Eventually ∇φ(θ).ν h ≥ T ǫ (θ) H n -a.e. on Σ hp ∩ [0 < u ǫ = θ].
To study the behavior of the sequence (u ǫ ) ǫ>0 and characterize the corresponding limit we need and additional assumption on φ:

φ -1 is Hölder continuous on φ(C ∞ θ ) with an exponent τ in ]0, 1[. ( 48 
)
In this framework, Proposition 6. If (48) holds, there exists a measurable function u in L ∞ (Q), with for a.e. t in ]0, T [, u(t, .) ∈ C θ a.e. on Ω, φ(u) in L 2 (0, T ; V ) and such that up to a subsequence when ǫ goes to 0 + ,

u ǫ → u in L ∞ (Q) weak -⋆, and in L q (Q p ), 1 ≤ q < +∞, ∇φ(u ǫ ) ⇀ ∇φ(u) weakly in L 2 (Q p ) n , ǫ∇φ(u ǫ ) → 0 + strongly in L 2 (Q h ) n .
Proof. The strong convergence in L q (Q p ) for (u ǫ ) ǫ>0 refers to the arguments put forward in [START_REF] Gagneux | Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière[END_REF], chapter 2. From (45) the sequence (∂ t u ǫ ) ǫ>0 remains fixed in a bounded subset of L 2 (0, T ; H -1 (Ω p )) and due to (43), the sequence (φ(u ǫ )) ǫ>0 is bounded in L 2 (0, T ; V ) uniformly with respect to ǫ. Using that

∀s ∈]0, 1[, L 2 (0, T ; V ) ֒→ L 2 (0, T ; H 1 (Ω p )) ֒→ L 2 (0, T ; W s,2 (Ω p )),
we argue that u ǫ ≡ φ -1 (φ(u ǫ )) is bounded in L 2/τ (0, T ; W τ s,2/τ (Ω p )). The compactness embedding of W τ s,2/τ (Ω p ) into L 2/τ (Ω p ) and the J.L.Lions compactness Theorem ([9], p. 57) ensure that W ≡ {v ∈ L 2/τ (0, T ;

W τ s,2/τ (Ω p )); ∂ t v ∈ L 2 (0, T ; H -1 (Ω p ))} is compactly embedded in L 2/τ (0, T ; L 2/τ (Ω p )).
The previous convergence properties for (u ǫ ) ǫ>0 are sufficient To characterize the function u. On the hyperbolic zone we take advantage of (42) and of: Claim 1. (see [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF]) -If O be an open bounded subset of R q (q ≥ 1) and (u n ) n>0 a sequence of measurable functions on O such that,

∃M > 0, ∀n > 0, u n L ∞ (O) ≤ M,
there exist a subsequence (u ϕ(n) ) n>0 and a measurable π in L ∞ (]0, 1[×O) such that for all continuous and bounded functions f on O×] -M, M [,

∀ξ ∈ L 1 (O), lim n→+∞ O f (x, u ϕ(n) )ξdx = ]0,1[×O f (x, π(α, w))dαξdx.
Such a result has first been applied to the approximation through the artificial viscosity method of the Cauchy problem in R p for conservation laws, as one can establish a uniform L ∞ -control of approximate solutions. It has also been applied to the numerical analysis of transport equations since "Finite-Volume" schemes only give an L ∞ -estimate uniformly with respect to the mesh length of the numerical solution (see [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF]). Here the approximating sequence is the sequence of solutions to viscous problems (25)-(29) and we state:

Theorem 5. If (K • φ -1 ) ′ is continuous on φ(C ∞ θ ), (49) 
then (1)-( 6) has a weak solution that is the limit in L q (Q), 1 ≤ q < +∞ of the whole sequence of solutions to viscous Problems (25)-(31) when ǫ goes to 0 + .

Proof. We consider the function u highlighted in Proposition 6. Since (u ǫ|Ω h ) ǫ>0 is uniformly bounded, there exist a subsequence -still labelled (u ǫ|Ω h ) ǫ>0 -and a measurable and bounded function π -called a process -on ]0, 1[×Q h such that for any continuous bounded function

ψ on Q h × C ∞ θ and for any ξ of L 1 (Q h ) lim ǫ→0 + Q h ψ(t, x, u ǫ )ξdxdt = ]0,1[×Q h ψ(t, x, π(α, t, x))ξdαdxdt. (50) 
We first establish that on Q h , the process π is reduced to u |Ω h and secondly we prove that u is a weak solution to (1)-( 6) for initial data u 0 . To do so, we come back to (46) in order to take the ǫ-limit and then the µ-limit separately on the parabolic zone and on the hyperbolic one. Thanks to the convergence properties of (u ǫ ) ǫ>0 toward u there are no difficulties to pass to these limits in the integrals over Q p . Especially for the convective term we refer to the Sacks Lemma. For the boundary integrals we use the fact that (sgn µ (φ(u ǫ )φ(κ))ζ) ǫ>0 is a bounded sequence of L 2 (0, T ; V ) that weakly converges toward sgn µ (φ(u)φ(κ))ζ in L 2 (0, T ; V ) up to a subsequence. Then we refer to the continuity and to the linearity of the trace operator from V into L 2 (Γ hp ). On the hyperbolic zone, we take the ǫ-limit thanks to (50) since all the nonlinearities are continuous with respect to u ǫ . However the flux term

I ǫ,µ = Q h K(u ǫ )sgn ′ µ (φ(u ǫ ) -φ(κ))∇(φ(u ǫ ) -φ(κ)).Bζdxdt
has to be carefully studied since we only have weak convergences for (u ǫ ) ǫ>0 and for (∇φ(u ǫ )) ǫ>0 . That is why we introduce

H µ (v, w) = v w (K • φ -1 )(τ )sgn ′ µ (τ -w)dτ.
So that after an integration by parts with respect to τ ,

I ǫ,µ = Q h ∇(H µ (φ(u ǫ ), φ(κ))).Bζdxdt - Q h    φ(uǫ) φ(κ) (K • φ -1 ) ′ (τ )sgn ′ µ (τ -φ(κ))dτ    ∇φ(κ).Bζdxdt.
Thanks to the Green formula,

I ǫ,µ = - Q h H µ (φ(u ǫ ), φ(κ))(ζdivB + ∇ζ.B)dxdt + Σ hp H µ (φ(u ǫ ), φ(κ))B.ν h ζdH n - Q h    φ(uǫ) φ(κ) (K • φ -1 ) ′ (τ )sgn ′ µ (τ -φ(κ))dτ    ∇φ(κ).Bζdxdt.
Since φ(u ǫ ) is an element of L 2 (0, T ; H 1 (Ω)), for a.e. t of ]0, T [, (φ(u ǫ ) |Ω h ) |Γ hp = (φ(u ǫ ) |Ωp ) |Γ hp . We take now the ǫ-limit through (50). For the boundary integral, we argue as previously by considering that (H µ (φ(u ǫ ), φ(κ))ζ) ǫ>0 is a bounded sequence in L 2 (0, T ; V ). It comes lim ǫ→0 + I ǫ,µ = I µ where

I µ = - Q h ×]0,1[
H µ (φ(π), φ(κ))(ζdivB + ∇ζ.B)dαdxdt

+ Σ hp H µ (φ(u), φ(κ))B.ν h ζdH n - Q h ×]0,1[    φ(π) φ(κ) (K • φ -1 ) ′ (τ )sgn ′ µ (τ -φ(κ))dτ  
 ∇φ(κ).Bζdαdxdt.

To pass to the limit with µ, we come back to the definition of sign ′ µ and we use the fact that since K • φ -1 is continuous on φ(C ∞ θ ), (H µ (v, w)) µ>0 converges toward sgn(vw)K(w) a.e. on Q h ×]0, 1[ and dH n -a.e. on Σ hp . In the same way, due to (49), Therefore, by following F.Otto's ideas in [START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF], but here in the context of a process solution, we may be sure that,

ess lim t→0 + ]0,1[×Ω h |π(α, t, x) -Λ(x)|dαdx ≤ Ω h |u 0 -Λ(x)|dx, (52) 
where Λ(x) = k(x)θ(x), k(.) being a measurable function on Ω h , 0 ≤ k ≤ 1 a.e. in Ω h for the bilateral obstacle problem and Λ(x) = k(x) + θ(x), M 2 (T ) -for any ζ of L 1 (Σ h \Σ hp ), ζ ≥ 0. Boundary condition (14) for π follows by observing that (Q l ) l∈N * converges uniformly toward F(z, 0, κ) as l goes to +∞. So π fulfills ( 14),( 15) and (18) with similar integrations fields. This way, by reasoning as in Theorem 1, if π 1 (α, ., .) and π 2 (β, ., .) are two process solutions for initial data u 0,1 and u 0,2 , then for a.e. When u 0,1 = u 0,2 on Ω h , there exists a measurable function u h on Q h such that a.e. on Q h , u h = π 1 (α, .) = π 2 (β, .) for a.e. α and β in ]0, 1[. Besides the uniqueness property warrants that the whole sequence (u ǫ ) ǫ>0 strongly converges to u h in L q (Q h ), 1 ≤ q < +∞. Thus u h = u |Ω h a.e. on Q h and u satisfies (12)-(14). To complete the proof of Theorem 5 we only need to ensure that u fulfills (15). Owing to (52) we just have to concentrate on Ω p . We consider ( 

Theorem 4 .

 4 Problem (25)-(31) has at least a weak solution u ǫ such that∀t ∈]0, T [, u ǫ (t, .) ∈ C θ a.e. in Ω,(38)

For

  any ζ in D(0, T, H 1 0 (Ω)), we write ζ = ζ +ζ -and use the two previous inequalities with ζ + and ζ -. Thanks to estimates of Proposition 4, and to the continuity of the trace operator from V into L 2 (Γ hp ) (so from H 1 0 (Ω) into

  φ -1 ) ′ (τ )sgn ′ µ (τw)dτ µ>0 converges toward sgn(vw)(K • φ -1 ) ′ (w) a.e. on Q h ×]0, 1[. From the Lebesgue dominated convergence Theorem, it follows that lim µ→0 + I µ = I where I = -Q h ×]0,1[ sgn(πκ)(K(κ)B.∇ζ + ζdiv(K(κ)B))dαdxdt + Σ hp sgn(φ(u)φ(κ))K(κ)B.ν h ζdH n , since φ is strictly increasing. Eventually, -Qp L p (u, κ, ζ)dxdt -Q h ×]0,1[ L h (π, κ, ζ)dαdxdt -Ω |u 0 -κ|ζ(0, .)dx + Qp ∇|φ(u)φ(κ)|.∇ζdxdt -Qp ∆φ(κ)sgn(uκ)ζdxdt -Σ hp ∇φ(κ).ν h sgn(φ(u)φ(κ))ζdH n ≤ 0. (51) For ζ in D(] -∞, T ] × Ω h ), we deduce that -Q h ×]0,1[ L h (π, κ, ζ)dαdxdt ≤ Ω h|u 0 -κ|ζ(0, .)dx.

  t in ]0, T [, ]0,1[×Ω h |π 1 (α, t, x)π 2 (β, t, x)|dαdβdxdt ≤ Ω h |u 0,1u 0,2 |dx e Mg h t .

  51) for ζ(t, x) = ψ(t)ζ(x) with ψ in D(] -∞, T [), ψ ≥ 0, and ζ in D(Ω p ), ζ ≥ 0:Ωp |u -k|ζdx + f (t)    ψ ′ (t)dt ≤ Ωp |u 0 -k|ζψ(0)dx, with f (t) = Ωp ( (u(τ, x)) -K(κ)|B.∇ζ + g p (τ, x, u(τ, x))sgn(u(τ, x)k)ζ -|φ(u(τ, x))φ(κ)|∆ζ]dτ )dx.So the time-depending function t → Ωp |u -κ|ζdx + f (t) is identified a.e. with a non-increasing and bounded function, so it has an essential limit when t goes to 0 + , t in ]0, T [\O, where L(O) = 0. As f goes to 0 with t, it comesess lim t→0 + Ωp |u -κ|ζdx ≤ Ωp |u 0 -κ|ζdx,for any function ζ of D(Ω p ), ζ ≥ 0. As a consequence, thanks to F.Otto's reasoning in[START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF] we may announce (with Λ as in (52)):ess lim t→0 + Ωp |u(t, x) -Λ(x)|dx ≤ Ωp |u 0 -Λ(x)|dxand we argue as for (52), which concludes the proof of Theorem 5.

  p}, we take ζ + and ζ -as test-functions in (16) and (17). By writing that ζ = ζ +ζ -, we deduce the existence of a constant C such that

	Qi

Proposition 5. Assume that

Then there exists a constant C, independent from ǫ such that,

Proof. We set κ(x) = kθ(x), k ∈ [0, 1], for a bilateral constraint or κ(x) = k + θ(x), M 2 (T )ess supΩ θ ≤ k ≤ 0 for a unilateral obstacle condition. We consider the L 2 (Q)-scalar product between (32) and w ǫ,η µ

We observe first that the penalized term is nonnegative. The other integrals are performed through the following transformations: For the evolution term, with

For the diffusion term,

We develop the partial derivatives in the first term in the right-hand side and we use the fact that sgn µ (.) is nondecreasing. To take the limit with η, we remind that due to (34) and (37), (w µ (u ǫ,η , κ)) η>0 is a bounded sequence of

uniformly with respect to η and so, thanks to the convergence properties of (u ǫ,η ) η>0 toward u ǫ , converges toward w ǫ µ ≡ sgn µ (φ(u ǫ )φ(κ))ζ strongly in L q (Q), 1 ≤ q < +∞, weakly in H 1 (Q). Then, the η-limit being taken, we use the Green formula in the second of the diffusion term by sharing the integration field into Q h (where λ ǫ = ǫ) and Q p (where λ ǫ = 1). It comes:

ess supΩ θ ≤ k ≤ 0 a.e. in Ω h for the unilateral one. Initial Condition (15) on Ω h for π is obtained by choosing:

in the case of the bilateral constraint and Λ(x) = u 0 (x)θ(x), for the unilateral one. Now to establish (14) for π, we take advantage of the approximation properties of u through (u ǫ ) ǫ>0 and of u ǫ through (u ǫ,η ) η>0 to come back to (32)-( 33) and consider the L 2 (Q)-scalar product between (32) and

and

is the family of boundary entropy-entropy flux pair introduced by F.Otto [START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF]. We emphasize that

)) so that calculations may be performed as if we were in a single domain. Especially the Green formula does not give rise to integrals along the interface. By arguing that 0 ≤ ∂ 1 H l (u ǫ,η , κ)β(x, u ǫ,η ) a.e. on Q h , it comes:

the convexity of the function ξ → H l (ξ, .) being taken into account and

On account of the convergences properties of (u ǫ,η ) η>0 toward u ǫ , we take the η-limit. Then, as previously, we take the ǫ-limit thanks to (50). It follows that:

At this point, we adapt F.Otto's works providing that:

Q l (π(α, σ + τ ν), κ)B(σ).ν h ζdαdH n ≤ 0,