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Transorthogonal polynomials and simple cubic
multivariate distributions

Célestin C. Kokonendji � and Mohamed Zarai
University of Pau and University of Sfax

Abstract

Transorthogonality for a sequence of polynomials on Rd has been recently introduced
in order to characterize the reference probability measures, which are multivariate
distributions of the natural exponential families (NEFs) having a simple cubic vari-
ance function. The present paper pursues this characterization of three various man-
ners through exponential generating functions, transdiagonality of Bhattacharyya
matrices and semigroup-She¤er systems, respectively. The obtained results extend
those well-known of simple quadratic NEFs based on the classical orthogonality of
associated polynomials. The transorthogonality property is then compared to the 2-
pseudo-orthogonality one which globaly characterizes the cubic NEFs. Finally, some
techniques of calculation of these polynomials are presented and then illustrated on
a multivariate normal inverse Gaussian Lévy process.

Key words: Bhattacharyya matrix, exponential generating function, Lévy process,
natural exponential family, normal inverse Gaussian distribution, She¤er
polynomial, variance function, 2-pseudo-orthogonality.

MSC : 60G50, 62E10, 42C05.

1 Introduction

It is well-known that the orthogonality property of real polynomials (Qn)n2N with
respect to a probability measure � provides six categories of polynomials: Hermite,
Charlier, Laguerre, Krawchouk, Meixner and Pollaczek. The associated probabil-
ity measures are also of six types: Gaussian, Poisson, gamma, binomial, negative
binomial and hyperbolic cosine, respectively. Independently, the class of these prob-
ability measures � is the set of real natural exponential families (NEFs) having
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quadratic variance functions (see Morris [22]), while the set of the orthogonal poly-
nomials has been characterized in four di¤erent ways by several authors. Indeed,
Meixner [21] has been the �rst one who characterized these orthogonal polynomials
using the criterion of exponential generating functions. Then, Shanbhag ([34], [35])
proposed some characterizations based on the diagonality of in�nite Bhattacharyya
matrices. Feinsilver [6] built the orthogonal polynomials from successive derivatives
of probability density. Finally, Schoutens and Teugels [33] introduced a connection
to stochastic processes with some applications (see, also, Schoutens [31] and [32]).
From the Casalis [4] description of the multivariate simple quadratic NEFs gener-
alizing the Morris [22] class on Rd, Pommeret ([24], [25] and [26]) has extended all
the previous results on orthogonal polynomials in multivariate cases. However, the
simple quadratic NEFs are not the only multivariate NEFs which have quadratic
variance functions. In the global situation of multivariate quadratic NEFs, Pom-
meret proposed in its papers a notion of pseudo-orthogonality for completing the
above characterizations. Note here that Lancaster [18] obtained chraracterization of
marginal distributions in NEF by the use of bi-orthogonal sequences of polynomials.

In order to continue the characterization of (multivariate) NEFs with respect to their
associated polynomials, the classical orthogonality may be extended. In this spirit,
Hassairi and Zarai [8] introduced the 2-pseudo-orthogonality for characterizing the
real NEFs with cubic variance functions which have been described by Letac and
Mora [20]. The characterizations of the univariate cubic NEFs are done both in the
Meixner [21] and Feinsilver [6] ways; see Hassairi and Zarai [9] for the Shanbhag ([34],
[35]) one. Kokonendji ([12] and [13]) considered a notion of k-pseudo-orthogonality
(k 2 f2; 3; � � � g) in order to characterize, in all the four ways (i.e., Meixner [21],
Feinsilver [6], Shanbhag [35] and Schoutens and Teugels [33]), the univariate NEFs
having real polynomial variance functions of exact degree 2k � 1. Let us quote two
remarkable subclasses of real NEFs with polynomials variance functions: Hinde-
Demétrio�s class described recently by Kokonendji et al. [14] and Tweedie�s class
(see, e.g., Jørgensen [11]) also called power variance functions which contain all
stable distributions. In higher dimensions (d > 1), for instance, only homogeneous
and simple quadratic NEFs of Casalis [4] and simple cubic NEFs of Hassairi [7] are
completely described. Hence, more recently, Hassairi and Zarai [10] provided the
characterization of simple cubic NEFs by transorthogonality property, which is a
bit di¤erent to the multivariate extension of 2-pseudo-orthogonality (see De�nition
3.1). This result is simply presented following the only one way of Feinsilver [6]. In
the other respects, Kokonendji and Pommeret [15] obtained a characterization of
multivariate NEFs with lth degree polynomial variance functions (l 2 f1; 2; 3; � � � g)
via another notion of l-orthogonality of some associated polynomials.

The aim of this paper is to pursue the characterization of simple cubic NEFs by
transorthogonality given in [10] following the three other directions: Meixner [21],
Shanbhag ([34], [35]) and Schoutens and Teugels [33]). We also compare the tran-
sorthogonality to the 2-pseudo-orthogonality which is related to the global cubic
NEFs on Rd. We �nally illustrate some results on a multivariate normal inverse
Gaussian NEF. Let us mention that there exist other extensions of orthogonality in
the literature, like quasi-orthogonality of a certain order and another l-orthogonality
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(e.g., [5]). Hence, this paper can be considered as a review and we organize it as
follows. In Section 2, we recall some relevant materials of simple cubic NEFs on Rd
and their associated polynomials. Section 3 presents the origin of transorthogonality
and compares it to the 2-pseudo-orthogonality. Sections 4, 5 and 6 characterize sim-
ple cubic NEFs by transorthogonality in the sense of Meixner [21], Shanbhag ([34],
[35]) and Schoutens and Teugels [33]), respectively. Section 7 is devoted to illustrate
some results with a multivariate normal inverse Gaussian Lévy process.

2 Simple cubic exponential families

In this section, we �rst recall some basic properties of NEFs and their associated
polynomials. We then conclude by a presentation of the simple cubic NEFs.

Througout the paper, we denote by (e1; � � � ; ed) the canonical basis of Rd. In order to
simplify expressions, it is convenient to use some classical multidimensional notation.

If n = (n1; � � � ; nd) 2 Nd and x = (x1; � � � ; xd) 2 Rd, then jnj =
dP
i=1
ni, n! =

dQ
i=1
(ni!)

and xn =
dQ
i=1
xnii . A polynomial Pn(x) in x 2 Rd with degree n 2 Nd is written as

Pn(x) =
X

q2Nd;jqj�jnj
�qx

q;

where at least one of the real coe¢ cent �q is nonnull when jqj = jnj.

2.1 Natural exponential families (NEFs)

LetM(Rd) denotes the set of �-�nite positive measures � on Rd (not necessarily a
probability and) not concentrated on an a¢ ne subspace of Rd, with the cumulant
transform of � given by

K�(�) = log
Z
Rd
exp(xt�)�(dx) � 1

and such that the interior �(�) of the domain f� 2 Rd;K�(�) < 1g is nonempty.
The NEF generated by � 2 M(Rd), denoted by F = F (�), is the family of proba-
bility measures

P (�;�)(dx) = exp
n
xt� �K�(�)

o
�(dx); � 2 �(�): (2.1)

Any NEF can be reparametrized in terms of the mean m such that

m = m(�) = E�(X) = K 0
�(�) =

Z
Rd
xP (�;�)(dx);

where X is a random vector distributed according to a P (�;�) in F . The mean
domainMF = K

0
�(�(�)) depends only on F , and not on the choice of the generating
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measure � of F ; so we can write F = fP (m;F ) ;m 2MFg. The function

VF (m) = V ar��(m)(X) = K
00
�(��(m)) =

h
�0�(m)

i�1
; m 2MF

is called the variance function of the family F . Here ��(�) denotes the inverse of the
mapping m(�) = K 0

�(�). The pair (VF (�);MF ) characterizes F within the class of all
NEFs. See, for examples, Letac [19] and Kotz et al. [16, Chap. 54] for more details.

Let us also recall two elementary transformations which preserve any type of NEF.
The �rst one is the a¢ nity. Let '(x) = Ax+b where A is in the linear group GL(Rd)
of Rd and b is in Rd. Then, for any NEF F = F (�) on Rd, one has

'(F ) = F ('(�)), M'(F ) = '(MF ) and V'(F )(m) = AVF ('
�1(m))tA: (2.2)

The second one is the positive power of convolution. If � is inM(Rd), let us introduce
the Jørgensen set

� = �(�) = ft > 0;9�t 2M(Rd) : �(�t) = �(�) and K�t(�) = tK�(�)g: (2.3)

Denoting Ft = F (�t) = F (�
�t) = F �t where t is in � and � means the product of

convolution, one has

MFt = tMF and VFt(m) = tVFt

�
m

t

�
: (2.4)

We conclude this subsection by the notion of reductibility. A NEF F on Rd is said
to be reducible if there exist an integer k < d and two NEFs F1 on Rk and F2 on
Rd�k such that F = F1 � F2. In this case, MF = MF1 �MF2 and VF (m1;m2) =
VF1(m1)
 VF2(m2).

2.2 Polynomials associated to a NEF

Let F = fP (m;F ) ;m 2MFg be a NEF on Rd and let � = P (m0; F ) with m0 �xed
in MF . From (2.1), the density f�(�;m) of P (m;F ) with respect to �(dx) is given
by f�(x;m) = exp fxt��(m)�K�(��(m))g with f�(�;m0) equals to 1. The Taylor
expansion in m of the analytic function m 7! f�(x;m) in a neighborhood of m0 is

f�(x;m) = exp
n
xt��(m)�K�(��(m))

o
=
X
n2Nd

(m�m0)
n

n!
Pn(x);

where for all n 2 Nd,

Pn(x) =
@jnj

@mn
f�(x;m)

�����
m=m0

= f (n)� (x;m0)(e1; � � � ; ed) (2.5)

is a polynomial in x of degree jnj. These polynomials expansions (Pn)n2Nd associated
with a NEF belong to the class of She¤er�s [36] polynomials and they are such that,
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for all m 2MF ,

P0(x;m) = 1 and P1(x;m) =
h
�0�(m)(x�m)

i
t(e1; � � � ; ed):

More generally, we have the following proposition showing the derivative of f� in
another basis of Rd (see [24, Lemma 2.2 and Theorem 2.1]).

Proposition 2.1 Let F = F (�) be a NEF on Rd and let (m0; A) be inMF�GL(Rd).
Consider the polynomials (PA;n)n2Nd de�ned by

PA;n(x) = PA;n(x;m0) = f
(n)
� (x;m0)(Ae1; � � � ; Aed); (2.6)

i.e. the jnjth derivative ofm 7! f�(x;m) at the meanm0 of F in the jnj = n1+� � �+nd
directions: Ae1(n1 times), ..., Aed (nd times). Then:
(i) PA;n(x) = f

(n)
A�1(�)(A

�1x;A�1m0)(e1; � � � ; ed);
(ii) there exists an open ball B(m0; r) = fm 2 MF � Rd; jmi � m0ij < r;8i =
1; � � � ; dg of MF � Rd such that, for all (m;x) 2 B(m0; r)� Rd,

f�(x;Am) =
X
n2Nd

(m� A�1m0)
n

n!
PA;n(x);

(iii) PA;n(x) is a polynomial in x of degree jnj and (PA;n)n2Nd forms a basis of the
space of all polynomials on Rd.

Observe that if A = Id is the identity matrix in (2.6) then PId;n = Pn is clearly the
polynomial de�ned by (2.5). In particular situation, one has explicit expressions of
Pn(x) (e.g., [24]) or some recurrence relations of certain terms (e.g., [15]). A general
calculation of the sequence of polynomials Pn(x) = Pn(x;m0) can be done by mean
of the Faà di Bruno formula (e.g., Savits [30]) as follows:

Pn(x) =
X

1���jnj

(n;�)

(n!)
qY
j=1

1

(kj!) [lj!]
kj

 
@jlj j

@mlj

n
xt��(m)�K�(��(m))

o�����
m=m0

!kj
; (2.7)

where q = q(n) =

"
dQ
s=1
(ns + 1)

#
� 1 and


(n; �) =

(
(k1; � � � ; kq; l1; � � � ; lq); (kj; lj) 2 N� Nd : � =

qX
i=1

ki and n =
qX
i=1

kili

)
:

2.3 Simple cubic NEFs

The cubic variance function of a NEF F on Rd can be de�ned as follows:

VF (m) =M3(m;m;m) +M2(m;m) +M1(m) +M0; (2.8)

where M3(m;m;m) (M2(m;m), M1(m) and M0) is a real symmetric (d� d) matrix
of trilinear (bilinear, linear and constant) elements in m 2MF � Rd. The quadratic
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variance function is obviously given with M3 = 0 in (2.8) and the simple quadratic
one is also considered from (2.8) with M3 = 0 and M2(m;m) = �

tmm, � 2 R [4].
The simple cubic NEFs on Rd (denoted byM3(Rd)) have been de�ned in Hassairi
and Zarai ([8], [10]) as the NEFs on Rd obtained from the simple quadratic ones
(denoted byM2(Rd)) by the action of the linear group G = GL(R;Rd) � GL(Rd+1)
on the NEFs of Rd. That is

M3(Rd) = G
h
M2(Rd)

i
: (2.9)

Indeed, for the simplicity, an element g of G is de�ned by its blocks (�; �; 
; �)
in R � Rd� � Rd � L(Rd) where L(Rd) is the space of endomorphisms on Rd and
Rd� � Rd denotes the dual of the linear vector space Rd with dimension d < 1.
Following Hassairi and Zarai�s [10] notations, its respective actions on R � Rd and
R� Rd� are de�ned by

(x0; x) 7! g(x0; x) =
�
x0�+ �

tx; x0
 + �(x)
�

and
(k; �) 7! g(k; �) =

�
k�+ 
t�; k� + ��(�)

�
;

where �� is the adjoint of �. Also, we denote

dg(m) = �+ �
tm and hg(m) = (dg(m))

�1 (
 + �(m):

If O is an open set of Rd and g in G, we write

Og =
n
m 2 Rd; dg(m) > 0 and hg(m) 2 O

o
:

Hassairi [7] has shown that if m is in Rd such that dg(m) 6= 0, then the di¤erential
h0g(m) of hg at m is an isomorphism of Rd.

Let g 2 G and let O be a nonempty open set of Rd such that Og 6= f0g. For
V : O 7! Ls(Rd�;Rd) (Ls(Rd�;Rd) is the space of the symmetric linear maps from Rd�
to Rd), we de�ne TgV : Og 7! Ls(Rd�;Rd) by

(TgV )(m) = (dg(m))
�1
h
h0g(m)

i�1
V (hg(m))

h
h0g(m)

i��1
:

When d = 1 the action of an element g of G on a real NEF F is given by

(TgVF )(m) =
(�+ �m)3

(�� � �
)2VF
 

 + �m

�+ �m

!
:

In particular, if � = 1 and � = 0 then the image F1 of F by the a¢ nity x 7! 
+�(x)
satis�es VF1 = TgVF (2.2). Also if we have � 2 � = �(F ) (2.3), � = 0 = 
 and
�(x) = x, then Tg corresponds to the power transformation with parameter � (2.4).

Let G0 be the subgroup of G whose the elements are such that � = 0 and � > 0.
An element g0 of G0 may be written as a product of a power transformation (2.4)
and an a¢ ne transformation (2.2). All the descriptions of NEFs on Rd are done up
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to a¢ nity (2.2) and power transformation (2.4), that is up to G0-orbits. See Table 1
for d = 1 in (2.9).

Table 1 about here.

More generally, M2(Rd) contains (2d + 4) � G0-orbits that one can interpret the
distributions from the random variables (X1; � � � ; Xd) as follows (see Casalis [4] for
more details). The d + 1 Poisson-Gaussian G0-orbits are such that all Xi are in-
dependent, X1; � � � ; Xk have Poisson distributions and Xk+1; � � � ; Xd are Gaussian
variables with variance 1. The d + 1 negative multinomial-gamma G0-orbits are
such that the vectors (X1; � � � ; Xk) have negative multinomial distribution, the
conditional variable Xk+1j(X1; � � � ; Xk) is gamma distributed with shape parame-

ter
kX
i=1

Xi + 1 and (Xk+2; � � � ; Xd)j(X1; � � � ; Xk) is a Gaussian vector with variance

diag(X1; � � � ; Xk+1). The hyperbolic G0-orbit is such that (X1; � � � ; Xd�1) has a neg-
ative multinomial distribution and Xdj(X1; � � � ; Xd�1) has an hyperbolic cosine dis-
tribution. The last G0-orbit of simple quadratic NEFs is composed by the classical
multinomial vector. Consequently, for all g 2 G and F 2 M2(Rd), (TgVF )(m) is a
polynomial in m of degree less than or equal to 3; i.e.,M3(Rd) � G

h
M2(Rd)

i
. The

converse inclusion of (2.9) is given by Hassairi [7], which thus described the class of
simple cubic NEFsM3(Rd) in (d+ 3)� G-orbits.

3 Transorthogonality

In this section, we present in Theorem 3.2 below the �rst characterization of the
multivariate simple cubic NEFs (in the Feinsilver [6] way) which allowed to intro-
duce the transorthogonality [10]. Then, we compare the transorthogonality to the
2-pseudo-orthogonality which are two extensions of the classical orthogonality of a
sequence of polynomials on Rd. To conclude we give recurrence relations for com-
puting these polynomials.

Let us �rst de�ne the two extensions of orthogonality that we need. Then, the map
x = (x1; � � � ; xd) 7! kxk+ = max

�
�Px�i ;Px+i � de�nes a norm on Rd such that

for n 2 Nd, knk+ = jnj.

De�nition 3.1 A sequence (Qn)n2Nd of polynomials on Rd is said to be transorthog-
onal (2-pseudo-orthogonal) with respect to a probability measure � and denoted ��transorthogonal
(� � 2-pseudo-orthogonal) if, for all n and q in Nd,Z

Rd
Qn(x)Qq(x)�(dx) = 0 when kn� qk+ � inf (jnj; jqj) (jnj � 2jqj).

Transorthogonality and 2-pseudo-orthogonality coincide for d = 1 and it has pro-
vided some characterizations of real cubic NEFs (see [8] and [9]). See Kokonendji
([12] and [13]) for several generalizations on R of the standard orthogonality. For
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multivariate cases (d > 1), the transorthogonality property has been characterized
by Hassairi and Zarai [10] in the following sense. (See Pommeret [24] for the orthog-
onality and the corresponding 1-pseudo-orthogonality).

Theorem 3.2 Let F be an irreductible NEF on Rd and let (m0; A) be in MF �
GL(Rd). Then: F is simple cubic with A�1VF (m0)

tA�1 diagonal if and only if the
family of polynomials (PA;n)n2Nd de�ned by (2.6) is P (m0; F )-transorthogonal.

Proof. The basic case A = Id (identity matrix) is proved in [10, Theorem 3.1, pp.
76-89]. The general case follows from Proposition 2.1. �

Remark 3.3 There exists an analog of Theorem 3.2 for cubic NEFs on Rd (2.8)
with respect to the 2-pseudo-orthogonality. Its proof is similar and we omit it.

The following proposition is a criterion to get the transorthogonality of polynomials
on Rd from the 2-pseudo-orthogonality.

Proposition 3.4 Let F be an irreductible NEF on Rd and let (m0; A) be in MF �
GL(Rd). Let (PA;n)n2Nd be the sequence of polynomials de�ned by (2.6). Then the
two following statements are equivalent:
(i) the polynomials (PA;n)n2Nd are P (m0; F )�2-pseudo-orthogonal and (PA;n)n2Nd;jnj2f1;2;3g
are P (m0; F )-transorthogonal;
(ii) the polynomials (PA;n)n2Nd are P (m0; F )-transorthogonal.

Proof. (i) ( (ii) is obvious. For (i) ) (ii), according to Theorem 3.2, it su¢ ces
to show that the NEF F is simple cubic with A�1VF (m0)

tA�1 diagonal. This fact
rises immediately from the thansorthogonality of (PA;n)n2Nd for only jnj 2 f1; 2; 3g
by using the same argument in the proof of Theorem 3.2 (see also [24, Proposition
4.1] for a similarity). �

It seems not easier to point out all expressions of the transorthogonal polynomials
(PA;n)n2Nd for d > 1 via (2.7). However, one can use the following reccurence relations
which are proved in Kokonendji and Pommeret [15, Theorem 3.1 with k = 3].

Proposition 3.5 Let F be a NEF on Rd and let m0 be inMF . Consider the polyno-
mials Pn(x) = Pn(x;m0) de�ned by (2.5). Then the following items are equivalent:
(i) the variance function VF (m) = (Vi;j(m))i;j2f1;��� ;dg, m 2 MF , has the following
3rd order form:

Vij(m) =
X

q2Nd;jqj�3
�ij(q)(m�m0)

q;

for some reals �ij with �ij(0) = Vij(m0);
(i) the polynomials Pn(x) satisfy

xiPn(x) =
dX
j=1

8<:�ij(0)Pn+ej(x) + X
0<jqj�3

n!�ij(q)

(n� q)!Pn+ej�q(x)
9=;+niPn�ei(x)+m0iPn(x);

with the convention n!=(n� q)! = 0 if n� q =2 Nd;
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(i) For all n; q 2 Nd such that jqj = 2 and jnj = 4, we have
Z
Pq(x)Pn(x)P (m0; F )(dx) = 0:

In this case, coe¢ cients �ij coincide in (i) and (ii).

4 Exponential generating function

This section is devoted to our �rst characterization of the transorthogonal polyno-
mials on Rd with respect to its generating function having the exponential property,
like Meixner [21] for the orthogonal real polynomials. We thus show in Corolary
4.3 below that the reference probability measures of the transorthogonality are also
constituted by the simple cubic NEFs on Rd (2.9). Recall that similar results for
other classes of NEFs can be found in [12] and in [24].

De�nition 4.1 A generating function of a sequence of polynomials (Qn)n2Nd on Rd
is said to be exponential if there exist an open ball B(0; r) of Rd and two analytic
functions a : B(0; r) ! Rd and b : B(0; r) ! R such that, for all (z; x) 2 B(0; r)�
Rd, X

n2Nd

zn

n!
Qn(x) = exp

n
xta(z) + b(z)

o
:

Here is the main result of the section for which it is trivial to deduce the univariate
case (d = 1) given in [12, Theorem 2] as a particular situation.

Theorem 4.2 Let F = F (�) be an irreductible NEF on Rd and let m0 be in MF .
Let (Qn)n2Nd be a sequence of P (m0; F ) � 2-pseudo-orthogonal polynomials on Rd
such that Qn is of degree jnj. Then the two following statements are equivalent:
(i) the generating function of (Qn)n2Nd is exponential;
(ii) there exists A in GL(Rd) such that, for all n 2 Nd,

Qn(x) = Q0(x)PA;n(x) = Q0(x)f
(n)
� (x;m0)(Ae1; � � � ; Aed):

In this case, for all z 2 B(0; r), we have P
n2Nd

zn

n!
Qn(x) = exp fxta(z) + b(z)g with

a(z) = ��(Az +m0) and b(z) = �K�(��(a(z))).

Proof. Up to consider eQn = Qn=Q0, we can assume Q0 = 1.
(i) ( (ii) By Part (ii) of Proposition 2.1, there exists an open ball B(0; r) of Rd
such that, for all (z; x) 2 B(0; r) � Rd, fA�1(�)(x; z + A�1m0) =

P
n2Nd

zn

n!
Qn(Ax).

From Part (i) of Proposition 2.1, Qn(Ax) = f
(n)
A�1(�)(x;A

�1m0)(e1; � � � ; ed). Thus, we
successively have
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X
n2Nd

zn

n!
Qn(x)= fA�1(�)(A

�1x; z + A�1m0)

= f�(x;Az +m0)

= exp
n
xt��(Az +m0)�K�(��(Az +m0))

o
:

Consequently, Part (i) follows with a(z) = ��(Az +m0) and b(z) = �K�(��(a(z))).

(i)) (ii) Let � = P (m0; F ). From the �� 2-pseudo-orthogonality of (Qn)n2Nd , we
get

Z 0@X
n2Nd

zn

n!
Qn(x)

1A �(dx)= Z
0@X
n2Nd

zn

n!
Qn(x)

1AQ0(x)�(dx)
=
Z
Q20(x)�(dx)

= 1:

On the other hand, the exponential generating function associated to (Qn)n2Nd (Part
(i)) allows to write

Z 0@X
n2Nd

zn

n!
Qn(x)

1A �(dx)= Z expnxta(z) + b(z)o �(dx)
= exp fK�(a(z)) + b(z)g :

Hence,
b(z) = �K�(��(a(z))): (4.1)

Letting Q(x) = t(Qe1(x); � � � ; Qed(x)) and proceeding similarly, we obtain that for
all i 2 f1; � � � ; dg

Z 0@X
n2Nd

zn

n!
Qn(x)Qei(x)

1A �(dx)= X
knk+�inf(jnj;0)

�Z
Qn(x)Q(x)�(dx)

�
zn

n!

=
�Z

Q2ei(x)�(dx)
�
zi (4.2)

=
�Z

Q(x)tQ(x)�(dx)
�
z:

The polynomial vector Q(x) is of degree 1 in x; therefore, there exists B 2 GL(Rd)
and c 2 Rd such that

Q(x) = Bx+ c: (4.3)

In fact, we have c =
R
Q(x)Q0(x)�(dx)�Bm0 = �Bm0 and

Z
Q(x)tQ(x)�(dx)=

Z
B(x�m0)

t(x�m0)
tB�(dx)

=BVF (m0)
tB: (4.4)
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Furthermore, it follows from (4.1), (4.2) and (4.3) that

�Z
Q(x)tQ(x)�(dx)

�
z=

Z
exp

n
xta(z) + b(z)

o
Q(x)�(dx)

=B
Z
(x�m0) exp

n
xta(z)�K�(��(a(z)))

o
�(dx)

=B
h
K 0
�(a(z))�m0

i
;

and we deduce that (4.4) can be written as

BVF (m0)
tBz = B

h
K 0
�(a(z))�m0

i
:

Therefore, K 0
�(a(z)) = VF (m0)

tBz +m0, that is a(z) = ��(VF (m0)
tBz +m0) and,

�nally, we obtain

X
n2Nd

zn

n!
Qn(x) = f�(x; VF (m0)

tBz +m0):

Thus, setting A = VF (m0)
tB, we have Qn(x) = f (n)� (x;m0)(Ae1; � � � ; Aed). �

Corollary 4.3 Let F be an irreductible NEF on Rd and letm0 be inMF . Then: there
exists a family of P (m0; F )-transorthogonal polynomials on Rd with an exponential
generating function if and only if F is simple cubic.

Proof. It follows from Theorem 4.2, Theorem 3.2 and Proposition 3.4. �

5 Multidimensional Bhattacharyya matrices

In this section, we introduce a notion of transdiagonality for a multidimensional
Bhattacharyya matrix in order to give another characterization of the transorthog-
onal polynomials, which are related to the simple cubic NEFs on Rd (2.9). This is a
new mutidimensional extension of the Shanbhag ([34], [35]) characterization for the
real orthogonal polynomials, which are connected to the quadratic NEFs [22]. See
[9], [12, Section 4] and [25] for other extensions of Shanbhag�s results.

Let F = F (�) = fP (�;�); � 2 �(�)g be a NEF on Rd generated by � (2.1). Any C1
di¤eomorphism h from an open set I of Rd into �(�) provides a new parametrization
of F :

F = fP (h(z);�); z 2 Ig;
where the density of P (h(z);�) with respect to �(dx) is given by

g�(x; z) = expfxth(z)�K�(h(z))g = f�(x;K 0
�(h(z))): (5.1)

Then, for all n 2 Nd and A 2 GL(Rd), the function on Rd � I

SA;n(x; z) =
1

g�(x; z)
g(n)� (x; z)(Ae1; � � � ; Aed) (5.2)
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is a polynomial in x of degree jnj and independent of the choice of the generator �
of F .

For all (z; A) 2 I �GL(Rd), we then call (multidimensional) Bhattacharyya matrix
the in�nite matrix BA(z) = (BA;n;m(z))n;m2Nd where

BA;n;m(z) =
Z
SA;n(x; z)SA;m(x; z)P (h(z);�)(dx): (5.3)

For all (k; l) 2 N2, we denote the submatrices of BA(z) by

Bk;lA (z) = (BA;n;m(z))n;m2Nd;jnj=k;jmj=l : (5.4)

De�nition 5.1 A d-dimensional in�nite matrix B = (Bn;m)n;m2Nd is said to be
transdiagonal (2-pseudodiagonal) if, for all (n;m) 2 Nd�Nd such that kn�mk+ �
sup(jnj; jmj) (jnj � 2jmj), Bn;m = 0.

Remark 5.2 The Bhattacharyya matrix BA(z) = (BA;n;m(z))n;m2Nd is transdiago-
nal (2-pseudodiagonal) if and only if the polynomials (SA;n(x; z))n2Nd are P (h(z);�)-
transorthogonal (P (h(z);�)� 2-pseudo-orthogonal).

First, we show the result for 2-pseudodiagonality. To simplify, we assume A = Id
(identity matrix) in (5.2), (5.3) and (5.4) and we thus denote Sn(x; z) = SId;n(x; z)
and B(z) = BId(z).

Theorem 5.3 Let F = F (�) be an irreductible NEF on Rd. If h : I ! �(�) is a C1
parametrization of F such that h0(z) is invertible for all z 2 I and B(z) = BId(z) is
the Bhattacharyya matrix de�ned by (5.3), then the following items are equivalent:
(i) for all z 2 I, B(z) is 2-pseudodiagonal;
(ii) there exists z 2 I such that B(z) is 2-pseudodiagonal;
(iii) for all z 2 I, B1;2(z) = 0 and B2;4(z) = 0;
(iv) F is cubic and there exists (U; v) 2 GL(Rd)� Rd such that h(z) = ��(Uz + v);
i.e., Uz + v is the mean of P (h(z);�).

Proof. (i)) (ii) and (i)) (iii) are trivial.

(ii)) (iv) Suppose that there exists z0 2 I such that B(z0) is 2-pseudodiagonal. De-
noting � = P (h(z0);�), the polynomial (Sn(x; z0))n2Nd are �� 2-pseudo-orthogonal.
On the other hand, taking eh(z) = h(z)� h(z0), we can write

X
n2Nd

(z � z0)n
n!

Sn(x; z0)= exp
n
xt [h(z)� h(z0)]�K�(h(z)) +K�(h(z0))

o
=exp

n
xteh(z)�K�(eh(z))o ;

which means that the polynomials (Sn(x; z0))n2Nd have an exponential generating
function. According to the characterization of the 2-pseudo-orthogonal polynomials
with exponential generating function given in Theorem 4.2, we deduce that there
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exists U 2 GL(Rd) such that

Sn(x; z0) = PU;n(x;m0) = f
(n)
� (x; z0)(Ue1; � � � ; Ued)

with m0 = K
0
�(0) = K

0
�(h(z0)).

Hence, since eh(z + z0) = ��(Uz + m0) = ��(Uz + m0) � ��(m0), we have h(z) =
��(Uz+m0�Uz0) = ��(Uz+v) with v = m0�Uz0 = K 0

�(h(z0))�Uz0. Furthermore,
the fact that (PU;n))n2Nd are also � � 2-pseudo-orthogonal implies that F is cubic.

(iv)) (i) Let z0 be in I and let � = P (h(z0);�) and m0 = Uz0 + v. From (5.1) we
have

f�(x; Uz + v) =
f�(x; Uz + v)

f�(x;m0)
=
g�(x; z)

g�(x; z0)
;

from which we deduce

Sn(x; z0) = f
(n)
� (x; Uz0 + v)(Ue1; � � � ; Ued) = PU;n(x;m0):

Since F is cubic, the polynomials (Sn(x; z0))n2Nd are � � 2-pseudo-orthogonal, i.e.,
B(z0) is 2-pseudodiagonal. The implication is thus proved because z0 is arbitrary.

(iii)) (iv) Writing the polynomials (Sn(x; z))n2Nd as

Sn(x; z) =
X

q2Nd;jqj�jnj
cq(z)x

q

with cq(z) 2 R, we have
Z
Sn(x; z)Sp(x; z)P (h(z);�)(dx) =

X
q2Nd;jqj�jnj

cq(z)
@jpj

@zp

Z
xqP (h(z);�)(dx)

for all (n; p) 2 Nd�Nd (see, e.g., [25, Lemma 3.2]). Denoting h(z) = t(h1(z); � � � ; hd(z))
and hxii = hxeii =

R
xiP (h(z);�)(dx), we then obtain for all p 2 Nd

Z
Sei(x; z)Sp(x; z)P (h(z);�)(dx)=

dX
k=1

@

@zi
hk(z)

@jpj

@zp
hxki

=

 
h0(z)

@jpj

@zp
hxi

!
i

:

In particular, for jpj = 2, B1;2(z) = 0 implies that:

h0(z)
@2

@zp
hxi = 0:

Since h0(z) is invertible, hxi =
R
xP (h(z);�)(dx) is a polynomial in z of degree 1

and therefore there exist a matrix U and a vector v such that

hxi = K 0
�(h(z)) = Uz + v:
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This implies that:
h(z) = ��(Uz + v);

where, by derivation, U = th(z)K 00
�(h(z)) belongs to GL(Rd).

Similarly, B2;4(z) = 0 implies for all p 2 Nd such that jpj = 4:

Z
Sei+ej(x; z)Sp(x; z)P (h(z);�)(dx)=

dX
k;l=1

@

@zi
hk(z)

@

@zj
hl(z)

@4

@zp
hxkxli

=

 
th0(z)

@4

@zp
hxkxlih0(z)

!
i;j

=0;

i.e., th0(z) @
4

@zp
hxkxlih0(z) = 0. Then hxtxi = (hxkxli)k;l=1;��� ;d is a polynomial matrix

in z of degree � 3. Since

hxtxi = VF (K 0
�(h(z))) + hxithxi;

it follows that there exists an open subset of MF on which VF (m) is of degree � 3.
Therefore, F is cubic. �

Now, we come to the result concerning the transdiagonality characterization of the
Bhattacharyya matrices. For this, we consider A 2 GL(Rd) in (5.3), not necessarily
the identity matrix.

Theorem 5.4 Under the hypothesis of Theorem 5.3 and let (A; z0) be in GL(Rd)�I,
the three following statements are equivalent:
(i) BA(z0) is transdiagonal;
(ii) for all z 2 I, B1;2A (z) = 0 and B2;4A (z) = 0 and B1;1A (z0) and B

2;3
A (z0) are

transdiagonal;
(iii) F is simple cubic and there exists (U; v) 2 GL(Rd)�Rd such that, for all z 2 I,
h(z) = ��(Uz + v) and (UA)�1VF (Uz0 + v)t(AU)�1 is diagonal.

Proof. (iii)) (i) It rises from Theorem 3.2 and Remark 5.2.

(i)) (ii) It is easily obtained from Theorem 5.3.

(ii) ) (iii) We have B1;2A (z) = B2;4A = 0, then from Theorem 5.3 F is cubic and
there exists (U; v) 2 GL(Rd)� Rd such that

h(z) = ��(Uz + v): (5.5)

For z0 2 I, let � = P (h(z0);�). Then, it is easy to see that the polynomials
(SA;n(x; z0))n2Nd are � � 2-pseudo-orthogonal and have an exponential generating
function as

X
n2Nd

(z � A�1z0)n
n!

SA;n(x; z0) = exp
n
xteh(Az)�K�(eh(Az))o ;
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with eh(z) = h(z)�h(z0). From Theorem 4.2, there exists eA 2 GL(Rd) such that for
all n 2 Nd

SA;n(x; z0) = f
(n)
� (x;m0)( eAe1; � � � ; eAed);

where m0 = K
0
�(h(z0)) = Uz0+ v and

eh(A(z+ z0)) = ��( eAz+m0) = ��( eAz+m0)�
��(m0). Thus,

h(z) = ��( eAA�1(z � z0)�m0): (5.6)

SinceB1;1A (z0) andB
2;3
A (z0) are transdiagonal, the polynomials (SA;n(x; z0))n2Nd;jnj2f1;2;3g

are �-transorthogonal. Hence, by Proposition 3.4 the polynomials (SA;n(x; z0))n2Nd
are �-transorthogonal and by Theorem 3.2 F is simple cubic with eA�1VF (Uz0 +
v)t eA�1 diagonal. Finally, by (5.5) and (5.6) we have eA = UA and the diagonality of
(UA)�1VF (Uz0 + v)

t(UA)�1 holds. �

6 Semigroup-She¤er systems

This section characterizes the transorthogonality through the She¤er [36] polynomi-
als associated to a convolution semigroup of probability measures or NEFs, usually
induced by a stochastic process with stationary and independent increments. In this
way, one can refer to [13], [26], [31] and [33] for orthogonality and their other real
extensions.

Let us �rst de�ne the semigroup-She¤er systems of NEFs on Rd. If there exist
an open ball B(0; r) of Rd and two analytic functions a : B(0; r) ! Rd and b :
B(0; r) ! R such that a(0) = 0, a0(0) 6= 0 and b(0) 6= 0, then the polynomials
sequence (Qn(x))n2Nd de�ned by the generating function

X
n2Nd

mn

n!
Qn(x) = exp

n
xta(m)

o
b(m); 8m 2 B(0; r);

is a She¤er system [36]. In the context of NEFs and following Schoutens and Teugels
[33], we can introduce an additional time parameter t 2 � � [0;1) into the above
She¤er systems as follows:

De�nition 6.1 Let F = F (�) be a NEF on Rd and let � = ft � 0;9�t = ��t :
K�t = tK�g be the completed Jørgensen set of F (�) with 0 as de�ned in (2.3). For
all (A;m1) 2 GL(Rd)�MF , the polynomials (QtA;n;t(x; t))n2Nd;t2� such that

X
n2Nd

mn

n!
QtA;n;t(x; t) = exp

n
xt��(Am+m1)�K�(��(Am+m1))

o
; 8m 2 B(tm1; r);

are called semigroup-She¤er systems associated to F .

Note that, for t = 0 in the closed additive semigroup � = �(F (�)) of [0;1) with
N � � � [0;1), it is convenient to put �0 = �0 the Dirac mass at 0. For �xed
t = 1, we have QA;n;1(x; 1) = PA;n(x;m1) = f (n)� (x;m1)(Ae1; � � � ; Aed) as given in
(2.6) with � = �1.
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For all t 2 �, we can associate the random vector Xt with distribution �t =
(P (m1; F ))

�t. In particular, under in�nite divisibility of F (i.e., � = [0;1)), (Xt)t�0
is a Lévy process (i.e., stationary process with independent increments; see [3] and
[29] for more details). Thus, the polynomials (QtA;n;t(x; t))n2Nd;t�0 are known to be
Lévy-She¤er systems (e.g., [26]). It follows, by the martingale property of

f�t(Xt;m) = exp
n
��t(m)

tXt � tK�(��t(m))
o

(e.g., [17]), that we have the following martingale equality ([32]) as a basic applica-
tion of this study:

E [QA;n;t(Xt; t)jXs] = QA;n;s(Xs; s); 0 � s < t; n 2 Nd; A 2 GL(Rd): (6.1)

Since all univariate cubic NEFs are in�nitely divisible [20], it is tantalizing to say
that the multivariate (simple) cubic NEFs are also in�nitely divisible. For instance,
this is an open problem. Let us mention that we have an analog application as (6.1)
when � = N. This corresponds to IID-She¤er systems (e.g., [13], [31] and [32]).

Now, we can show the result of characterization only with respect to the transorthog-
onality. The 2-pseudo-orthogonality case is almost similar and we omit it.

Theorem 6.2 Let F be an irreductible NEF on Rd and let � = �F be the completed
Jørgensen set of F . For all (A;m1) 2 GL(Rd)�MF , consider the semigroup-She¤er
systems (QtA;n;t(x; t))n2Nd;t2�. Then: the transorthogonality of the semigroup-She¤er
systems occurs if and only if F is simple cubic with A�1VF (m1)

tA�1 diagonal.

Proof. Let �t = (P (m1; F ))
�t = P (mt; Ft) with mt = tm1. Assume that the polyno-

mials QtA;n;t(x; t) are �t-transorthogonal for all t 2 � = �nf0g. Then, in particular,
the polynomials PA;n = QA;n;1 are �1-transorthogonal. By Theorem 3.2, we deduce
that F1 = F is simple cubic with A�1VF (m1)

tA�1 diagonal.

Conversely, from (2.4), if F = F1 is simple cubic then Ft = F �t is simple cubic
too for all t 2 �. Thus, it su¢ ces to show that the polynomials PA;n = QA;n;1 are
�1-transorthogonal, which are also obtained by Theorem 3.2. �

7 An illustration

The most famous example of simple cubic NEFs (2.9) is the multivariate normal in-
verse Gaussian (MNIG) family. The MNIG distribution is a variance-mean mixture
of a multivariate Gaussian with a univariate inverse Gaussian distribution. It can
be considered as a distribution of the position of multivariate Brownian motion at
a certain stopping time. See [1], [2] and [23] for more details and some interesting
applications.
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For instance, �x t > 0: Consider the generating measure �t on Rd de�ned by

�t(dx) =
tx
�(d+2)=2
1

(2�)d=2
exp

(
� 1

2x1

 
t2 +

dX
i=2

x2i

!)
1x1>0dx1 � � � dxd:

It is easy to see that, for all t > 0, the NEF Ft = F (�t) generated by the probability
�t is composed by the distributions of the random variables (X1; � � � ; Xd), where
X1 is univariate inverse Gaussian distributed and (X2; � � � ; Xd)jX1 are d � 1 real
independent Gaussian variables with variance X1. Also, we have

�(�t) =

(
� 2 Rd; 2�1 +

dX
i=2

�2i < 0

)
and K�t(�) = �t

 
�2�1 �

dX
i=2

�2i

!1=2
:

Thus, MFt = (0;1)�Rd�1, ��t(m) =
 
�2m�2

1

"
t2 +

dX
i=2

m2
i

#
;m�1

1 m2; � � � ;m�1
1 md

!
and

VFt(m)=m
te1
h
t�2 tmm+ Id � te1e1

i
=
�
m1

h
t�2mimj + �ij � �1i�1j

i�
i;j2f1;��� ;dg

(7.1)

where �ij = 1 for i = j and 0 for i 6= j. It follows that F = F1 is a simple cubic
NEF on Rd, namely the MNIG G-orbit and it is from the G0-orbit of Gaussian (2.9).
Its Jørgensen set (2.3) is � = (0;1); i.e., F is in�nitely divisible. Thus, the MNIG
family is associated to a Lévy process; see also [28].

Let (Qn;t(x; t))n2Nd;t�0 be the associated Lévy-She¤er systems of F as in De�nition
6.1 with A = Id (identity matrix). The general expression of polynomials Qn;t(x; t)
can be explicitly obtained by the corresponding Faà di Bruno formula (2.7) with

gx;t(m) = x
t��t(m)�K�t(��t(m)) = �

x1
2m2

1

 
t2 +

dX
i=2

m2
i

!
+
1

m1

dX
i=2

mixi +
t3

m2
1

to be derivated at anym0 2MF ; see Savits [30] for some other illustrative examples.
For example, in order to calculate Qei;t(x; t) and Qei+ej ;t(x; t) we �rst need

@jlj

@ml
gx;t(m)

�����
m=m0

=

8>>>>>>>>>>><>>>>>>>>>>>:

(�1)l1
2m

l1+2
01

l1!�" 
t2 +

dX
s=2

m0s

!
(1 + l1)x1 + 2m01

dX
s=2

m0sxs

# if l = l1e1
(�1)l1
m
l1+2
01

l1! (m01xj + 2x1m0j) if l = l1e1 + ej; j 6= 1
2(�1)l1
m
l1+2
01

l1!x1 if l = l1e1 + 2ej; j 6= 1:

Then, the Faà di Bruno formula (2.7) provides:
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� n = ei then 
(ei; 1) = f(1; ei)g and

Qei;t(x; t) = (1� �1i)
�
xi + 2x1

m0i

m01

�
� �1i

" 
t2 +

dX
s=2

m0s

!
x1 +m01

dX
s=2

m0sxs

#
;

� n = ei+ej with i 6= j then 
(ei+ej; 1) = f(0; 0; 1; ei; ej; ei+ej)g and 
(ei+ej; 2) =
f(1; 1; 0; ei; ej; ei + ej)g, therefore

Qei+ej ;t(x; t) =

8>>>>>><>>>>>>:

1
m4
01
(m01xi + 2x1m0i) (m01xj + 2x1m0j) if 1 6= i 6= j 6= 1

�1
m3
01
(m01xj + 2x1m0j)�"

1 + 1
m4
01

( 
t2 +

dX
s=2

m0s

!
x1 + 2m01

dX
s=2

m0sxs

)#
if i = 1; j 6= 1;

� n = 2ei then 
(2ei; 1) = f(0; 1; ei; 2ei)g and 
(2ei; 2) = f(2; 0; ei; 2ei)g, therefore

Q2ei;t(x; t)=
�1i
m6
01

"
2

 
t2 +

dX
s=2

m0s

!
x1 + 2m01

dX
s=2

m0sxs

#2

+
�1i
m4
01

"
3

 
t2 +

dX
s=2

m0s

!
x1 + 2m01

dX
s=2

m0sxs

#

+(1� �1i)
"
1

m4
01

(m01xi + 2m0ix1)
2 +

2

m2
01

x1

#
:

Otherwise, by Proposition 3.5, the corresponding recurrence relations of (Qn;t(x; t))n2Nd;t�0
is deduce from (7.1). Indeed, taking m0 = (1; 0; � � � ; 0) in MF , the variance function
VFt(m) = (Vi;j(m))i;j2f1;��� ;dg given by (7.1) is such that

Vij(m)=
X

q2Nd;jqj�3
�ij(q; t)(m�m0)

q

=

8>>>>>>>><>>>>>>>>:

t�2 [(m1 � 1)3 + 3(m1 � 1)2 + 3(m1 � 1) + 1] for i = 1 = j

t�2 [(m1 � 1)2mj + 2(m1 � 1)mj +mj] for i = 1 6= j

t�2 [(m1 � 1)2mi + 2(m1 � 1)mi +mi] for i 6= 1 = j

t�2 [(m1 � 1)mimj +mimj + �ij(m1 � 1)] + �ij for i 6= 1 6= j

with

�ij(q; t) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

t�2 if

8><>: jqj = 3; jqj = 2 and i 6= 1 6= j; jqj = 1 and i = j 6= 1;jqj = 1 and i = 1 6= j; jqj = 1 and i 6= 1 = j;

2t�2 if jqj = 2 and i = 1 6= j; jqj = 2 and i 6= 1 = j;

3t�2 if jqj = 2 and i = 1 = j; jqj = 1 and i = 1 = j;

t�2 + d� 1 if jqj = 0;

0 otherwise:
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Therefore, at m0 = (1; 0; � � � ; 0) in MF , the Lévy-She¤er polynomials Qn;t(x; t)
satisfy

xiQn;t(x; t)=
dX
j=1

8<:�ij(0; t)Qn+ej ;t(x; t) + X
0<jqj�3

n!�ij(q; t)

(n� q)! Qn+ej�q;t(x; t)
9=;

+ niQn�ei;t(x; t) +m0iQn;t(x; t);

for all n 2 Nd and t � 0 with the following initial conditions: Q0;t(x; t) = 1,

Qei;t(x; t) =

8><>:�t
2x1 if i = 1

xi if i 6= 1

and

Qei+ej ;t(x; t) =

8>>>>>>>><>>>>>>>>:

xixj if 1 6= i 6= j 6= 1

� (1 + t2x1)xj if i = 1 6= j

4t4x21 + 3t
2x1 if i = j = 1

x2i + 2x1 if i = j 6= 1:
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Table 1
The twelve G0-orbits of the real cubic NEFs ([20], [22]) distributed in four G-orbits by
Hassairi [7].

G-orbit Quadratic [22] Cubic [20]

1st Gaussian Inverse Gaussian

1 m3

2nd Poisson Gamma Abel Ressel-Kendall

m m2 m(1 +m)2 m2(1 +m)

3rd Binomial Negative binomial Takács (a > 0)

m(1�m) m(1 +m) m(1 +m)(1 + 1+a
a m)

4th Hyperbolic Large arcsine (a > 0) Strict arcsine

1 +m2 m(1 + 2m+ 1+a2

a2
m2) m(1 +m2)
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