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Introduction

It is well-known that the orthogonality property of real polynomials (Q n ) n2N with respect to a probability measure provides six categories of polynomials: Hermite, Charlier, Laguerre, Krawchouk, Meixner and Pollaczek. The associated probability measures are also of six types: Gaussian, Poisson, gamma, binomial, negative binomial and hyperbolic cosine, respectively. Independently, the class of these probability measures is the set of real natural exponential families (NEFs) having

Address for correspondence: C.C. Kokonendji. Université de Pau et des Pays de l'Adour. Laboratoire de Mathématiques Appliquées. UMR 5142 CNRS -Département STID. Avenue de l'Université. 64000 Pau, France. Tel. +33 559 407 145; Fax: +33 559 407 140. Email address: celestin.kokonendji@univ-pau.fr quadratic variance functions (see Morris [START_REF] Morris | Natural exponential family with quadratic variance functions[END_REF]), while the set of the orthogonal polynomials has been characterized in four di¤erent ways by several authors. Indeed, Meixner [START_REF] Meixner | Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function[END_REF] has been the …rst one who characterized these orthogonal polynomials using the criterion of exponential generating functions. Then, Shanbhag ([34], [START_REF] Shanbhag | Diagonality of the Bhattacharyya matrix as a characterization[END_REF]) proposed some characterizations based on the diagonality of in…nite Bhattacharyya matrices. Feinsilver [START_REF] Feinsilver | Some classes of orthogonal polynomials associated with martingale[END_REF] built the orthogonal polynomials from successive derivatives of probability density. Finally, Schoutens and Teugels [START_REF] Schoutens | Lévy Processes, polynomials and martingales[END_REF] introduced a connection to stochastic processes with some applications (see, also, Schoutens [START_REF] Schoutens | Lévy-She¤er and IID-She¤er polynomials with applications to stochastic integrals[END_REF] and [START_REF] Schoutens | Stochastic Processes and Orthogonal Polynomials[END_REF]). From the Casalis [START_REF] Casalis | The 2d + 4 simple quadratic natural exponential families on R d[END_REF] description of the multivariate simple quadratic NEFs generalizing the Morris [START_REF] Morris | Natural exponential family with quadratic variance functions[END_REF] class on R d , Pommeret ([24], [START_REF] Pommeret | Multidimensional Bhattacharyya matrices and exponential families[END_REF] and [START_REF] Pommeret | Orthogonality of the She¤er system associated to a Lévy process[END_REF]) has extended all the previous results on orthogonal polynomials in multivariate cases. However, the simple quadratic NEFs are not the only multivariate NEFs which have quadratic variance functions. In the global situation of multivariate quadratic NEFs, Pommeret proposed in its papers a notion of pseudo-orthogonality for completing the above characterizations. Note here that Lancaster [START_REF] Lancaster | Joint probability distributions in the Meixner classes[END_REF] obtained chraracterization of marginal distributions in NEF by the use of bi-orthogonal sequences of polynomials.

In order to continue the characterization of (multivariate) NEFs with respect to their associated polynomials, the classical orthogonality may be extended. In this spirit, Hassairi and Zarai [START_REF] Hassairi | Characterization of the cubic exponential families by orthogonality of polynomials[END_REF] introduced the 2-pseudo-orthogonality for characterizing the real NEFs with cubic variance functions which have been described by Letac and Mora [START_REF] Letac | Natural real exponential families with cubic variance functions[END_REF]. The characterizations of the univariate cubic NEFs are done both in the Meixner [START_REF] Meixner | Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function[END_REF] and Feinsilver [START_REF] Feinsilver | Some classes of orthogonal polynomials associated with martingale[END_REF] ways; see Hassairi and Zarai [START_REF] Hassairi | Bhattacharyya matrices and cubic exponential families[END_REF] for the Shanbhag ([34], [START_REF] Shanbhag | Diagonality of the Bhattacharyya matrix as a characterization[END_REF]) one. Kokonendji ([12] and [START_REF] Kokonendji | On d-orthogonality of the She¤er systems associated to a convolution semigroup[END_REF]) considered a notion of k-pseudo-orthogonality (k 2 f2; 3; g) in order to characterize, in all the four ways (i.e., Meixner [START_REF] Meixner | Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function[END_REF], Feinsilver [START_REF] Feinsilver | Some classes of orthogonal polynomials associated with martingale[END_REF], Shanbhag [START_REF] Shanbhag | Diagonality of the Bhattacharyya matrix as a characterization[END_REF] and Schoutens and Teugels [START_REF] Schoutens | Lévy Processes, polynomials and martingales[END_REF]), the univariate NEFs having real polynomial variance functions of exact degree 2k 1. Let us quote two remarkable subclasses of real NEFs with polynomials variance functions: Hinde-Demétrio's class described recently by Kokonendji et al. [START_REF] Kokonendji | Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Demétrio classes[END_REF] and Tweedie's class (see, e.g., Jørgensen [START_REF] Jørgensen | The Theory of Dipersion Models[END_REF]) also called power variance functions which contain all stable distributions. In higher dimensions (d > 1), for instance, only homogeneous and simple quadratic NEFs of Casalis [START_REF] Casalis | The 2d + 4 simple quadratic natural exponential families on R d[END_REF] and simple cubic NEFs of Hassairi [START_REF] Hassairi | La classi…cation des familles exponentielles naturelles sur R n par l'action du groupe linéaire de R n+1[END_REF] are completely described. Hence, more recently, Hassairi and Zarai [START_REF] Hassairi | Characterization of the simple cubic multivariate exponential families[END_REF] provided the characterization of simple cubic NEFs by transorthogonality property, which is a bit di¤erent to the multivariate extension of 2-pseudo-orthogonality (see De…nition 3.1). This result is simply presented following the only one way of Feinsilver [START_REF] Feinsilver | Some classes of orthogonal polynomials associated with martingale[END_REF]. In the other respects, Kokonendji and Pommeret [START_REF] Kokonendji | Characterization of multivariate exponential families with polynomial variance function, Advances in Mathematics -African Diaspora[END_REF] obtained a characterization of multivariate NEFs with lth degree polynomial variance functions (l 2 f1; 2; 3; g) via another notion of l-orthogonality of some associated polynomials.

The aim of this paper is to pursue the characterization of simple cubic NEFs by transorthogonality given in [START_REF] Hassairi | Characterization of the simple cubic multivariate exponential families[END_REF] following the three other directions: Meixner [START_REF] Meixner | Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function[END_REF], Shanbhag ([34], [START_REF] Shanbhag | Diagonality of the Bhattacharyya matrix as a characterization[END_REF]) and Schoutens and Teugels [START_REF] Schoutens | Lévy Processes, polynomials and martingales[END_REF]). We also compare the transorthogonality to the 2-pseudo-orthogonality which is related to the global cubic NEFs on R d . We …nally illustrate some results on a multivariate normal inverse Gaussian NEF. Let us mention that there exist other extensions of orthogonality in the literature, like quasi-orthogonality of a certain order and another l-orthogonality (e.g., [START_REF] Douak | Une caractérisation des polynômes d-orthogonaux classiques[END_REF]). Hence, this paper can be considered as a review and we organize it as follows. In Section 2, we recall some relevant materials of simple cubic NEFs on R d and their associated polynomials. Section 3 presents the origin of transorthogonality and compares it to the 2-pseudo-orthogonality. Sections 4, 5 and 6 characterize simple cubic NEFs by transorthogonality in the sense of Meixner [START_REF] Meixner | Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function[END_REF], Shanbhag ([34], [START_REF] Shanbhag | Diagonality of the Bhattacharyya matrix as a characterization[END_REF]) and Schoutens and Teugels [START_REF] Schoutens | Lévy Processes, polynomials and martingales[END_REF]), respectively. Section 7 is devoted to illustrate some results with a multivariate normal inverse Gaussian Lévy process.

Simple cubic exponential families

In this section, we …rst recall some basic properties of NEFs and their associated polynomials. We then conclude by a presentation of the simple cubic NEFs.

Througout the paper, we denote by (e 1 ;

; e d ) the canonical basis of R d . In order to simplify expressions, it is convenient to use some classical multidimensional notation.

If n = (n 1 ; ; n d ) 2 N d and x = (x 1 ; ; x d ) 2 R d , then jnj = d P i=1 n i , n! = d Q i=1 (n i !) and x n = d Q i=1 x n i i . A polynomial P n (x) in x 2 R d with degree n 2 N d is written as P n (x) = X q2N d ;jqj jnj q x q ;
where at least one of the real coe¢ cent q is nonnull when jqj = jnj.

Natural exponential families (NEFs)

Let M(R d ) denotes the set of -…nite positive measures on R d (not necessarily a probability and) not concentrated on an a¢ ne subspace of R d , with the cumulant transform of given by

K ( ) = log Z R d exp(x t ) (dx) 1
and such that the interior ( ) of the domain

f 2 R d ; K ( ) < 1g is nonempty.
The NEF generated by 2 M(R d ), denoted by F = F ( ), is the family of probability measures

P ( ; )(dx) = exp n x t K ( ) o (dx); 2 ( ): (2.1)
Any NEF can be reparametrized in terms of the mean m such that

m = m( ) = E (X) = K 0 ( ) = Z R d xP ( ; )(dx);
where X is a random vector distributed according to a P ( ; ) in F . The mean domain M F = K 0 ( ( )) depends only on F , and not on the choice of the generating measure of F ; so we can write F = fP (m; F ) ; m 2 M F g. The function 

V F (m) = V ar (m) (X) = K 00 ( (m)) = h 0 (m) i 1 ; m 2 M F is called
'(F ) = F ('( )), M '(F ) = '(M F ) and V '(F ) (m) = AV F (' 1 (m)) t A: (2.
2)

The second one is the positive power of convolution. If is in M(R d ), let us introduce the Jørgensen set

= ( ) = ft > 0; 9 t 2 M(R d ) : ( t ) = ( ) and K t ( ) = tK ( )g: (2.3) Denoting F t = F ( t ) = F ( t ) = F t
where t is in and means the product of convolution, one has

M Ft = tM F and V Ft (m) = tV Ft m t : (2.4) 
We conclude this subsection by the notion of reductibility. A NEF F on R d is said to be reducible if there exist an integer k < d and two NEFs F 1 on R k and F 2 on

R d k such that F = F 1 F 2 . In this case, M F = M F 1 M F 2 and V F (m 1 ; m 2 ) = V F 1 (m 1 ) V F 2 (m 2 ).

Polynomials associated to a NEF

Let F = fP (m; F ) ; m 2 M F g be a NEF on R d and let = P (m 0 ; F ) with m 0 …xed in M F . From (2.1), the density f ( ; m) of P (m; F ) with respect to (dx) is given by f (x; m) = exp fx t (m) K ( (m))g with f ( ; m 0 ) equals to 1. The Taylor expansion in m of the analytic function

m 7 ! f (x; m) in a neighborhood of m 0 is f (x; m) = exp n x t (m) K ( (m)) o = X n2N d (m m 0 ) n n! P n (x);
where for all n 2 N d , 

P n (x) = @ jnj @m n f (x; m) m=m 0 = f (n) (x; m 0 )(
; r) = fm 2 M F R d ; jm i m 0i j < r; 8i = 1; ; dg of M F R d such that, for all (m; x) 2 B(m 0 ; r) R d , f (x; Am) = X n2N d (m A 1 m 0 ) n n! P A;n (x);
(iii) P A;n (x) is a polynomial in x of degree jnj and (P A;n ) n2N d forms a basis of the space of all polynomials on R d .

Observe that if A = I d is the identity matrix in (2.6) then P I d ;n = P n is clearly the polynomial de…ned by (2.5). In particular situation, one has explicit expressions of P n (x) (e.g., [START_REF] Pommeret | Orthogonal polynomials and natural exponential families[END_REF]) or some recurrence relations of certain terms (e.g., [START_REF] Kokonendji | Characterization of multivariate exponential families with polynomial variance function, Advances in Mathematics -African Diaspora[END_REF]). A general calculation of the sequence of polynomials P n (x) = P n (x; m 0 ) can be done by mean of the Faà di Bruno formula (e.g., Savits [START_REF] Savits | Some statistical applications of Faà di Bruno[END_REF]) as follows:

P n (x) = X 1 jnj (n; ) (n!) q Y j=1 1 (k j !) [l j !] k j @ jl j j @m l j n x t (m) K ( (m)) o m=m 0 ! k j ; (2.7) where q = q(n) = " d Q s=1 (n s + 1) # 1 and (n; ) = ( (k 1 ; ; k q ; l 1 ; ; l q ); (k j ; l j ) 2 N N d : = q X i=1 k i and n = q X i=1 k i l i ) : 2.

Simple cubic NEFs

The cubic variance function of a NEF F on R d can be de…ned as follows: 

V F (m) = M 3 (m; m; m) + M 2 (m; m) + M 1 (m) + M 0 ; (2.
G = GL(R; R d ) GL(R d+1 ) on the NEFs of R d . That is M 3 (R d ) = G h M 2 (R d ) i : (2.9)
Indeed, for the simplicity, an element g of G is de…ned by its blocks ( ; ; ;

) in R R d R d L(R d ) where L(R d )
is the space of endomorphisms on R d and R d R d denotes the dual of the linear vector space R d with dimension d < 1. Following Hassairi and Zarai's [START_REF] Hassairi | Characterization of the simple cubic multivariate exponential families[END_REF] notations, its respective actions on R R d and R R d are de…ned by

(x 0 ; x) 7 ! g(x 0 ; x) = x 0 + t x; x 0 + (x) and (k; ) 7 ! g(k; ) = k + t ; k + ( ) ;
where is the adjoint of . Also, we denote

d g (m) = + t m and h g (m) = (d g (m)) 1 ( + (m): If O is an open set of R d and g in G, we write O g = n m 2 R d ; d g (m) > 0 and h g (m) 2 O o : Hassairi [7] has shown that if m is in R d such that d g (m) 6 = 0, then the di¤erential h 0 g (m) of h g at m is an isomorphism of R d . Let g 2 G and let O be a nonempty open set of R d such that O g 6 = f0g. For V : O 7 ! L s (R d ; R d ) (L s (R d ; R d ) is the space of the symmetric linear maps from R d to R d ), we de…ne T g V : O g 7 ! L s (R d ; R d ) by (T g V )(m) = (d g (m)) 1 h h 0 g (m) i 1 V (h g (m)) h h 0 g (m)
i 1

:

When d = 1 the action of an element g of G on a real NEF F is given by

(T g V F )(m) = ( + m) 3 ( ) 2 V F + m + m ! :
In particular, if = 1 and = 0 then the image F 1 of F by the a¢ nity

x 7 ! + (x) satis…es V F 1 = T g V F (2.2). Also if we have 2 = (F ) (2.
3), = 0 = and (x) = x, then T g corresponds to the power transformation with parameter (2.4).

Let G 0 be the subgroup of G whose the elements are such that = 0 and > 0. An element g 0 of G 0 may be written as a product of a power transformation (2.4) and an a¢ ne transformation (2.2). All the descriptions of NEFs on R d are done up to a¢ nity (2.2) and power transformation (2.4), that is up to G 0 -orbits. See Table 1 for d = 1 in (2.9). Table 1 about here.

More generally, M 2 (R d ) contains (2d + 4) G 0 -orbits that one can interpret the distributions from the random variables (X 1 ;

; X d ) as follows (see Casalis [START_REF] Casalis | The 2d + 4 simple quadratic natural exponential families on R d[END_REF] for more details). The d + 1 Poisson-Gaussian G 0 -orbits are such that all X i are independent, X 1 ;

; X k have Poisson distributions and X k+1 ; ; X d are Gaussian variables with variance 1. The d + 1 negative multinomial-gamma G 0 -orbits are such that the vectors (X 1 ;

; X k ) have negative multinomial distribution, the conditional variable X k+1 j(X 1 ;

; X k ) is gamma distributed with shape parame-

ter k X i=1 X i + 1 and (X k+2 ; ; X d )j(X 1 ; ; X k ) is a Gaussian vector with variance diag(X 1 ; ; X k+1 ). The hyperbolic G 0 -orbit is such that (X 1 ; ; X d 1 )
has a negative multinomial distribution and X d j(X 1 ;

; X d 1 ) has an hyperbolic cosine distribution. The last G 0 -orbit of simple quadratic NEFs is composed by the classical multinomial vector. Consequently, for all g 2 G and

F 2 M 2 (R d ), (T g V F )(m) is a polynomial in m of degree less than or equal to 3; i.e., M 3 (R d ) G h M 2 (R d ) i
. The converse inclusion of (2.9) is given by Hassairi [START_REF] Hassairi | La classi…cation des familles exponentielles naturelles sur R n par l'action du groupe linéaire de R n+1[END_REF], which thus described the class of simple cubic NEFs M 3 (R d ) in (d + 3) G-orbits.

Transorthogonality

In this section, we present in Theorem 3.2 below the …rst characterization of the multivariate simple cubic NEFs (in the Feinsilver [START_REF] Feinsilver | Some classes of orthogonal polynomials associated with martingale[END_REF] way) which allowed to introduce the transorthogonality [START_REF] Hassairi | Characterization of the simple cubic multivariate exponential families[END_REF]. Then, we compare the transorthogonality to the 2-pseudo-orthogonality which are two extensions of the classical orthogonality of a sequence of polynomials on R d . To conclude we give recurrence relations for computing these polynomials.

Let us …rst de…ne the two extensions of orthogonality that we need. Then, the map

x = (x 1 ; ; x d ) 7 ! kxk + = max P x i ; P x + i de…nes a norm on R d such that for n 2 N d , knk + = jnj. De…nition 3.1 A sequence (Q n ) n2N d of polynomials on R d is
said to be transorthogonal (2-pseudo-orthogonal) with respect to a probability measure and denoted transorthogonal ( 2-pseudo-orthogonal) if, for all n and q in N d ,

Z R d Q n (x)Q q (x) (dx) = 0 when kn qk + inf (jnj; jqj) (jnj 2jqj).
Transorthogonality and 2-pseudo-orthogonality coincide for d = 1 and it has provided some characterizations of real cubic NEFs (see [START_REF] Hassairi | Characterization of the cubic exponential families by orthogonality of polynomials[END_REF] and [START_REF] Hassairi | Bhattacharyya matrices and cubic exponential families[END_REF]). See Kokonendji ([12] and [START_REF] Kokonendji | On d-orthogonality of the She¤er systems associated to a convolution semigroup[END_REF]) for several generalizations on R of the standard orthogonality. For multivariate cases (d > 1), the transorthogonality property has been characterized by Hassairi and Zarai [START_REF] Hassairi | Characterization of the simple cubic multivariate exponential families[END_REF] in the following sense. (See Pommeret [START_REF] Pommeret | Orthogonal polynomials and natural exponential families[END_REF] for the orthogonality and the corresponding 1-pseudo-orthogonality).

Theorem 3.2 Let F be an irreductible NEF on R d and let (m 0 ; A) be in Proof. (i) ( (ii) is obvious. For (i) ) (ii), according to Theorem 3.2, it su¢ ces to show that the NEF F is simple cubic with A 1 V F (m 0 ) t A 1 diagonal. This fact rises immediately from the thansorthogonality of (P A;n ) n2N d for only jnj 2 f1; 2; 3g by using the same argument in the proof of Theorem 3.2 (see also [START_REF] Pommeret | Orthogonal polynomials and natural exponential families[END_REF]Proposition 4.1] for a similarity).

M F GL(R d ). Then: F is simple cubic with A 1 V F (m 0 ) t A 1 diagonal
It seems not easier to point out all expressions of the transorthogonal polynomials (i) the variance function V F (m) = (V i;j (m)) i;j2f1; ;dg , m 2 M F , has the following 3rd order form:

(P A;n ) n2N d for d > 1 via (2.
V ij (m) = X q2N d ;jqj 3 ij (q)(m m 0 ) q ;
for some reals ij with ij (0) = V ij (m 0 ); (i) the polynomials P n (x) satisfy

x i P n (x) = d X j=1 8 < : ij (0)P n+e j (x) + X 0<jqj 3 n! ij (q) (n q)! P n+e j q (x) 9 = 
;

+n i P n e i (x)+m 0i P n (x);
with the convention n!=(n q)! = 0 if n q = 2 N d ;

(i) For all n; q 2 N d such that jqj = 2 and jnj = 4, we have Z P q (x)P n (x)P (m 0 ; F )(dx) = 0:

In this case, coe¢ cients ij coincide in (i) and (ii).

Exponential generating function

This section is devoted to our …rst characterization of the transorthogonal polynomials on R d with respect to its generating function having the exponential property, like Meixner [START_REF] Meixner | Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function[END_REF] for the orthogonal real polynomials. We thus show in Corolary 4.3 below that the reference probability measures of the transorthogonality are also constituted by the simple cubic NEFs on R d (2.9). Recall that similar results for other classes of NEFs can be found in [START_REF] Kokonendji | Characterizations of some polynomial variance functions by dpseudo-orthogonality[END_REF] and in [START_REF] Pommeret | Orthogonal polynomials and natural exponential families[END_REF]. 

(z; x) 2 B(0; r) R d , X n2N d z n n! Q n (x) = exp n x t a(z) + b(z) o :
Here is the main result of the section for which it is trivial to deduce the univariate case (d = 1) given in [12, Theorem 2] as a particular situation.

Theorem 4.2 Let F = F ( ) be an irreductible NEF on R d and let m 0 be in M F . Let (Q n ) n2N d be a sequence of P (m 0 ; F ) 2-pseudo-orthogonal polynomials on R d such that Q n is of degree jnj. Then the two following statements are equivalent: (i) the generating function of

(Q n ) n2N d is exponential; (ii) there exists A in GL(R d ) such that, for all n 2 N d , Q n (x) = Q 0 (x)P A;n (x) = Q 0 (x)f (n) (x; m 0 )(Ae 1 ; ; Ae d ):
In this case, for all z 2 B(0; r), we have 

P n2N d z n n! Q n (x) = exp fx t a(z) + b(z)g with a(z) = (Az + m 0 ) and b(z) = K ( (a(z))). Proof. Up to consider e Q n = Q n =Q 0 , we can assume Q 0 = 1. (i) ( ( 
; r) R d , f A 1 ( ) (x; z + A 1 m 0 ) = P n2N d z n n! Q n (Ax). From Part (i) of Proposition 2.1, Q n (Ax) = f (n) A 1 ( ) (x; A 1 m 0 )(e 1 ;
; e d ). Thus, we successively have

X n2N d z n n! Q n (x) = f A 1 ( ) (A 1 x; z + A 1 m 0 ) = f (x; Az + m 0 ) = exp n x t (Az + m 0 ) K ( (Az + m 0 )) o :
Consequently, Part (i) follows with a(z) = (Az + m 0 ) and b(z) = K ( (a(z))).

(i) ) (ii) Let = P (m 0 ; F ). From the 2-pseudo-orthogonality of (Q n ) n2N d , we get Z 0 @ X n2N d z n n! Q n (x) 1 A (dx) = Z 0 @ X n2N d z n n! Q n (x) 1 A Q 0 (x) (dx) = Z Q 2 0 (x) (dx) = 1:
On the other hand, the exponential generating function associated to

(Q n ) n2N d (Part (i)) allows to write Z 0 @ X n2N d z n n! Q n (x) 1 A (dx) = Z exp n x t a(z) + b(z) o (dx) = exp fK (a(z)) + b(z)g : Hence, b(z) = K ( (a(z))): (4.1) Letting Q(x) = t (Q e 1 (

x);

; Q e d (x)) and proceeding similarly, we obtain that for all i 2 f1;

; dg

Z 0 @ X n2N d z n n! Q n (x)Q e i (x) 1 A (dx) = X knk + inf(jnj;0) Z Q n (x)Q(x) (dx) z n n! = Z Q 2 e i (x) (dx) z i (4.2) = Z Q(x) t Q(x) (dx) z:
The polynomial vector Q(x) is of degree 1 in x; therefore, there exists

B 2 GL(R d ) and c 2 R d such that Q(x) = Bx + c: (4.3) In fact, we have c = R Q(x)Q 0 (x) (dx) Bm 0 = Bm 0 and Z Q(x) t Q(x) (dx) = Z B(x m 0 ) t (x m 0 ) t B (dx) = BV F (m 0 ) t B: (4.4)
Furthermore, it follows from (4.1), (4.2) and ( 4.

3) that Z Q(x) t Q(x) (dx) z = Z exp n x t a(z) + b(z) o Q(x) (dx) = B Z (x m 0 ) exp n x t a(z) K ( (a(z))) o (dx) = B h K 0 (a(z)) m 0 i ;
and we deduce that (4.4) can be written as

BV F (m 0 ) t Bz = B h K 0 (a(z)) m 0 i : Therefore, K 0 (a(z)) = V F (m 0 ) t Bz + m 0 , that is a(z) = (V F (m 0 ) t Bz + m 0 )
and, …nally, we obtain

X n2N d z n n! Q n (x) = f (x; V F (m 0 ) t Bz + m 0 ): Thus, setting A = V F (m 0 ) t B, we have Q n (x) = f (n) (x; m 0 )(Ae 1 ; ; Ae d ).
Corollary 4.3 Let F be an irreductible NEF on R d and let m 0 be in M F . Then: there exists a family of P (m 0 ; F )-transorthogonal polynomials on R d with an exponential generating function if and only if F is simple cubic.

Proof. It follows from Theorem 4.2, Theorem 3.2 and Proposition 3.4.

Multidimensional Bhattacharyya matrices

In this section, we introduce a notion of transdiagonality for a multidimensional Bhattacharyya matrix in order to give another characterization of the transorthogonal polynomials, which are related to the simple cubic NEFs on R d (2.9). This is a new mutidimensional extension of the Shanbhag ([34], [START_REF] Shanbhag | Diagonality of the Bhattacharyya matrix as a characterization[END_REF]) characterization for the real orthogonal polynomials, which are connected to the quadratic NEFs [START_REF] Morris | Natural exponential family with quadratic variance functions[END_REF]. See [START_REF] Hassairi | Bhattacharyya matrices and cubic exponential families[END_REF], [12, Section 4] and [START_REF] Pommeret | Multidimensional Bhattacharyya matrices and exponential families[END_REF] for other extensions of Shanbhag's results.

Let F = F ( ) = fP ( ; ); 2 ( )g be a NEF on R d generated by (2.1). Any C 1 di¤eomorphism h from an open set I of R d into ( ) provides a new parametrization of F : F = fP (h(z); ); z 2 Ig; where the density of P (h(z); ) with respect to (dx) is given by g (x; z) = expfx t h(z) K (h(z))g = f (x; K 0 (h(z))):

(5.1)

Then, for all n 2 N d and A 2 GL(R d ), the function on (iii) for all z 2 I, B 1;2 (z) = 0 and B 2;4 (z) = 0;

R d I S A;n (x; z) = 1 g (x; z) g (n) (x; z)(
(iv) F is cubic and there exists

(U; v) 2 GL(R d ) R d such that h(z) = (U z + v);
i.e., U z + v is the mean of P (h(z); ).

Proof. (i) ) (ii) and (i) ) (iii) are trivial.

(ii) ) (iv) Suppose that there exists z 0 2 I such that B(z 0 ) is 2-pseudodiagonal. Denoting = P (h(z 0 ); ), the polynomial (S n (x; z 0 )) n2N d are 2-pseudo-orthogonal. On the other hand, taking e h(z) = h(z) h(z 0 ), we can write

X n2N d (z z 0 ) n n! S n (x; z 0 ) = exp n x t [h(z) h(z 0 )] K (h(z)) + K (h(z 0 )) o = exp n x te h(z) K ( e h(z)) o ;
which means that the polynomials (S n (x; z 0 )) n2N d have an exponential generating function. According to the characterization of the 2-pseudo-orthogonal polynomials with exponential generating function given in Theorem 4.2, we deduce that there

exists U 2 GL(R d ) such that S n (x; z 0 ) = P U;n (x; m 0 ) = f (n) (x; z 0 )(U e 1 ; ; U e d ) with m 0 = K 0 (0) = K 0 (h(z 0 )).
Hence, since e h(z

+ z 0 ) = (U z + m 0 ) = (U z + m 0 ) (m 0 ), we have h(z) = (U z +m 0 U z 0 ) = (U z +v) with v = m 0 U z 0 = K 0 (h(z 0 )) U z 0 .
Furthermore, the fact that (P U;n )) n2N d are also 2-pseudo-orthogonal implies that F is cubic.

(iv) ) (i) Let z 0 be in I and let = P (h(z 0 ); ) and m 0 = U z 0 + v. From (5.1) we have

f (x; U z + v) = f (x; U z + v) f (x; m 0 ) = g (x; z) g (x; z 0 ) ;
from which we deduce

S n (x; z 0 ) = f (n) (x; U z 0 + v)(U e 1 ;
; U e d ) = P U;n (x; m 0 ):

Since F is cubic, the polynomials (S n (x; z 0 )) n2N d are 2-pseudo-orthogonal, i.e., B(z 0 ) is 2-pseudodiagonal. The implication is thus proved because z 0 is arbitrary.

(iii) ) (iv) Writing the polynomials (S n (x; z)) n2N d as S n (x; z) = X q2N d ;jqj jnj c q (z)x q with c q (z) 2 R, we have Z S n (x; z)S p (x; z)P (h(z); )(dx) = X q2N d ;jqj jnj c q (z) @ jpj @z p Z x q P (h(z); )(dx) for all (n; p) 2 N d N d (see, e.g., [25, Lemma 3.2]). Denoting h(z) = t (h 1 (z); ; h d (z)) and hx i i = hx e i i = R x i P (h(z); )(dx), we then obtain for all p 2 N d Z S e i (x; z)S p (x; z)P (h(z); )(dx) = d X k=1 @ @z i h k (z) @ jpj @z p hx k i = h 0 (z) @ jpj @z p hxi ! i :
In particular, for jpj = 2, B 1;2 (z) = 0 implies that:

h 0 (z) @ 2 @z p hxi = 0: Since h 0 (z) is invertible, hxi = R xP (h(z); )(dx)
is a polynomial in z of degree 1 and therefore there exist a matrix U and a vector v such that

hxi = K 0 (h(z)) = U z + v:
This implies that:

h(z) = (U z + v);
where, by derivation, U = t h(z)K 00 (h(z)) belongs to GL(R d ).

Similarly, B 2;4 (z) = 0 implies for all p 2 N d such that jpj = 4:

Z S e i +e j (x; z)S p (x; z)P (h(z); )(dx) = d X k;l=1 @ @z i h k (z) @ @z j h l (z) @ 4 @z p hx k x l i = t h 0 (z) @ 4 @z p hx k x l ih 0 (z) ! i;j = 0;
i.e., t h 0 (z) @ 4 @z p hx k x l ih 0 (z) = 0. Then hx t xi = (hx k x l i) k;l=1; ;d is a polynomial matrix in z of degree 3. Since

hx t xi = V F (K 0 (h(z))) + hxi t hxi;
it follows that there exists an open subset of M F on which V F (m) is of degree 3. Therefore, F is cubic. Now, we come to the result concerning the transdiagonality characterization of the Bhattacharyya matrices. For this, we consider A 2 GL(R d ) in (5.3), not necessarily the identity matrix.

Theorem 5.4 Under the hypothesis of Theorem 5.3 and let (A; z 0 ) be in GL(R d ) I, the three following statements are equivalent: (i) B A (z 0 ) is transdiagonal; (ii) for all z 2 I, B 1;2 A (z) = 0 and B 2;4 A (z) = 0 and B 1;1 A (z 0 ) and B 2;3 A (z 0 ) are transdiagonal; (iii) F is simple cubic and there exists

(U; v) 2 GL(R d ) R d such that, for all z 2 I, h(z) = (U z + v) and (U A) 1 V F (U z 0 + v) t (AU ) 1 is diagonal.
Proof. (iii) ) (i) It rises from Theorem 3.2 and Remark 5.2.

(i) ) (ii) It is easily obtained from Theorem 5.3. (ii) ) (iii) We have B 1;2 A (z) = B 2;4 A = 0, then from Theorem 5.3 F is cubic and there exists (U; v) 2 GL(R d ) R d such that h(z) = (U z + v): (5.5) 
For z 0 2 I, let = P (h(z 0 ); ). Then, it is easy to see that the polynomials (S A;n (x; z 0 )) n2N d are 2-pseudo-orthogonal and have an exponential generating function as

X n2N d (z A 1 z 0 ) n n! S A;n (x; z 0 ) = exp n x te h(Az) K ( e h(Az)) o ; with e h(z) = h(z) h(z 0 ). From Theorem 4.2, there exists e A 2 GL(R d ) such that for all n 2 N d S A;n (x; z 0 ) = f (n) (x; m 0 )( e Ae 1 ; ; e Ae d );
where

m 0 = K 0 (h(z 0 )) = U z 0 + v and e h(A(z + z 0 )) = ( e Az + m 0 ) = ( e Az + m 0 ) (m 0 ). Thus, h(z) = ( e AA 1 (z z 0 ) m 0 ): (5.6) 
Since B 1;1 A (z 0 ) and B 2;3 A (z 0 ) are transdiagonal, the polynomials (S A;n (x; z 0 )) n2N d ;jnj2f1;2;3g are -transorthogonal. Hence, by Proposition 3.4 the polynomials (S A;n (x; z 0 )) n2N d are -transorthogonal and by Theorem 3.2 F is simple cubic with e A 1 V F (U z 0 + v) t e A 1 diagonal. Finally, by (5.5) and (5.6) we have e A = U A and the diagonality of

(U A) 1 V F (U z 0 + v) t (U A) 1 holds.

Semigroup-She¤er systems

This section characterizes the transorthogonality through the She¤er [START_REF] She¤er | Concerning Appell sets and associated linear functional equations[END_REF] polynomials associated to a convolution semigroup of probability measures or NEFs, usually induced by a stochastic process with stationary and independent increments. In this way, one can refer to [START_REF] Kokonendji | On d-orthogonality of the She¤er systems associated to a convolution semigroup[END_REF], [START_REF] Pommeret | Orthogonality of the She¤er system associated to a Lévy process[END_REF], [START_REF] Schoutens | Lévy-She¤er and IID-She¤er polynomials with applications to stochastic integrals[END_REF] and [START_REF] Schoutens | Lévy Processes, polynomials and martingales[END_REF] is a She¤er system [START_REF] She¤er | Concerning Appell sets and associated linear functional equations[END_REF]. In the context of NEFs and following Schoutens and Teugels [START_REF] Schoutens | Lévy Processes, polynomials and martingales[END_REF], we can introduce an additional time parameter t 2 [0; 1) into the above She¤er systems as follows: De…nition 6.1 Let F = F ( ) be a NEF on R d and let = ft 0; 9 t = t : K t = tK g be the completed Jørgensen set of F ( ) with 0 as de…ned in (2.3). For all (A; m 1 ) 2 GL(R d ) M F , the polynomials (Q tA;n;t (x; t)) n2N d ;t2 such that Note that, for t = 0 in the closed additive semigroup = (F ( )) of [0; 1) with N [0; 1), it is convenient to put 0 = 0 the Dirac mass at 0. For …xed t = 1, we have Q A;n;1 (x; 1) = P A;n (x; m 1 ) = f (n) (x; m 1 )(Ae 1 ;

; Ae d ) as given in (2.6) with = 1 . For all t 2 , we can associate the random vector X t with distribution t = (P (m 1 ; F )) t . In particular, under in…nite divisibility of F (i.e., = [0; 1)), (X t ) t 0 is a Lévy process (i.e., stationary process with independent increments; see [START_REF] Bertoin | Lévy Processes[END_REF] and [START_REF] Sato | Lévy Processes and In…nitely Divisible Distributions[END_REF] for more details). Thus, the polynomials (Q tA;n;t (x; t)) n2N d ;t 0 are known to be Lévy-She¤er systems (e.g., [START_REF] Pommeret | Orthogonality of the She¤er system associated to a Lévy process[END_REF]). It follows, by the martingale property of

f t (X t ; m) = exp n t (m) t X t tK ( t (m))
o (e.g., [START_REF] Küchler | Exponential Families of Stochastics Processes[END_REF]), that we have the following martingale equality ( [START_REF] Schoutens | Stochastic Processes and Orthogonal Polynomials[END_REF]) as a basic application of this study:

E [Q A;n;t (X t ; t)jX s ] = Q A;n;s (X s ; s); 0 s < t; n 2 N d ; A 2 GL(R d ): (6.1)
Since all univariate cubic NEFs are in…nitely divisible [START_REF] Letac | Natural real exponential families with cubic variance functions[END_REF], it is tantalizing to say that the multivariate (simple) cubic NEFs are also in…nitely divisible. For instance, this is an open problem. Let us mention that we have an analog application as (6.1) when = N. This corresponds to IID-She¤er systems (e.g., [START_REF] Kokonendji | On d-orthogonality of the She¤er systems associated to a convolution semigroup[END_REF], [START_REF] Schoutens | Lévy-She¤er and IID-She¤er polynomials with applications to stochastic integrals[END_REF] and [START_REF] Schoutens | Stochastic Processes and Orthogonal Polynomials[END_REF]). Now, we can show the result of characterization only with respect to the transorthogonality. The 2-pseudo-orthogonality case is almost similar and we omit it. 

= F is simple cubic with A 1 V F (m 1 ) t A 1 diagonal.
Conversely, from (2.4), if F = F 1 is simple cubic then F t = F t is simple cubic too for all t 2 . Thus, it su¢ ces to show that the polynomials P A;n = Q A;n;1 are 1 -transorthogonal, which are also obtained by Theorem 3.2.

An illustration

The most famous example of simple cubic NEFs (2.9) is the multivariate normal inverse Gaussian (MNIG) family. The MNIG distribution is a variance-mean mixture of a multivariate Gaussian with a univariate inverse Gaussian distribution. It can be considered as a distribution of the position of multivariate Brownian motion at a certain stopping time. See [START_REF] Barndor¤-Nielsen | Normal inverse Gaussian distribution and stochastic volatility modeling[END_REF], [START_REF] Barndor¤-Nielsen | Processes of normal inverse Gaussian type[END_REF] and [START_REF] Ølgård | EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution[END_REF] for more details and some interesting applications.

For instance, …x t > 0: Consider the generating measure t on R d de…ned by

t (dx) = tx (d+2)=2 1 (2 ) d=2 exp ( 1 2x 1 t 2 + d X i=2 x 2 i !) 1 x 1 >0 dx 1 dx d :
It is easy to see that, for all t > 0, the NEF F t = F ( t ) generated by the probability t is composed by the distributions of the random variables (X 1 ; ; X d ), where X 1 is univariate inverse Gaussian distributed and (X 2 ;

; X d )jX 1 are d 1 real independent Gaussian variables with variance X 1 . Also, we have

( t ) = ( 2 R d ; 2 1 + d X i=2 2 i < 0 ) and K t ( ) = t 2 1 d X i=2 2 i ! 1=2
:

Thus, M Ft = (0; 1) R d 1 , t (m) = 2m 2 1 " t 2 + d X i=2 m 2 i # ; m 1 1 m 2 ; ; m 1 1 m d ! and V Ft (m) = m t e 1 h t 2 t mm + I d t e 1 e 1 i = m 1 h t 2 m i m j + ij 1i 1j i i;j2f1; ;dg (7.1) 
where ij = 1 for i = j and 0 for i 6 = j. It follows that F = F 1 is a simple cubic NEF on R d , namely the MNIG G-orbit and it is from the G 0 -orbit of Gaussian (2.9). Its Jørgensen set (2.3) is = (0; 1); i.e., F is in…nitely divisible. Thus, the MNIG family is associated to a Lévy process; see also [START_REF] Rydberg | The normal inverse Gaussian Lévy process: simulation and approximation[END_REF].

Let (Q n;t (x; t)) n2N d ;t 0 be the associated Lévy-She¤er systems of F as in De…nition 6.1 with A = I d (identity matrix). The general expression of polynomials Q n;t (x; t) can be explicitly obtained by the corresponding Faà di Bruno formula (2.7) with

g x;t (m) = x t t (m) K t ( t (m)) = x 1 2m 2 1 t 2 + d X i=2 m 2 i ! + 1 m 1 d X i=2 m i x i + t 3 m 2 1
to be derivated at any m 0 2 M F ; see Savits [START_REF] Savits | Some statistical applications of Faà di Bruno[END_REF] for some other illustrative examples. For example, in order to calculate Q e i ;t (x; t) and Q e i +e j ;t (x; t) we …rst need @ jlj @m l g x;t (m) ; n = e i +e j with i 6 = j then (e i +e j ; 1) = f(0; 0; 1; e i ; e j ; e i +e j )g and (e i +e j ; 2) = f(1; 1; 0; e i ; e j ; e i + e j )g, therefore Q e i +e j ;t (x; t) = )# if i = 1; j 6 = 1; n = 2e i then (2e i ; 1) = f(0; 1; e i ; 2e i )g and (2e i ; 2) = f(2; 0; e i ; 2e i )g, therefore Otherwise, by Proposition 3.5, the corresponding recurrence relations of (Q n;t (x; t)) n2N d ;t 0 is deduce from (7.1). Indeed, taking m 0 = (1; 0; ; 0) in M F , the variance function V Ft (m) = (V i;j (m)) i;j2f1; ;dg given by (7.1) is such that

m=m 0 = 8 > > > > > > > > > > > < > > > > > > > > > > > : ( 1) l 1 2m l 1 +2 01 l 1 ! " t 2 + d X s=2 m 0s ! (1 + l 1 ) x 1 + 2m 01 d X s=2 m 0s x s # if l = l 1 e 1 ( 1) l 1 m l 1 +2 01 l 1 ! (m 01 x j + 2x 1 m 0j ) if l = l 1 e 1 +
Q 2e i ;t (x; t) = 1i
V ij (m) = X q2N d ;jqj 3 ij (q; t)(m m 0 ) q = 8 > > > > > > > > < > > > > > > > > :
t 2 [(m 1 1) 3 + 3(m 1 1) 2 + 3(m 1 1) + 1] for i = 1 = j t 2 [(m 1 1) 2 m j + 2(m 1 1)m j + m j ] for i = 1 6 = j t 2 [(m 1 1) 2 m i + 2(m 1 1)m i + m i ] for i 6 = 1 = j t 2 [(m 1 1)m i m j + m i m j + ij (m 1 1)] + ij for i 6 = 1 6 = j with ij (q; t) = ; 0) in M F , the Lévy-She¤er polynomials Q n;t (x; t) satisfy x i Q n;t (x; t) = d X j=1 8 < : ij (0; t)Q n+e j ;t (x; t) + X 0<jqj 3 n! ij (q; t) (n q)! Q n+e j q;t (x; t) x i x j if 1 6 = i 6 = j 6 = 1

(1 + t 2 x 1 ) x j if i = 1 6 = j

4t 4 x 2 1 + 3t 2 x 1 if i = j = 1 x 2 i + 2x 1 if i = j 6 = 1:
Table 1 The twelve G 0 -orbits of the real cubic NEFs ( [START_REF] Letac | Natural real exponential families with cubic variance functions[END_REF], [START_REF] Morris | Natural exponential family with quadratic variance functions[END_REF]) distributed in four G-orbits by Hassairi [START_REF] Hassairi | La classi…cation des familles exponentielles naturelles sur R n par l'action du groupe linéaire de R n+1[END_REF].

G-orbit Quadratic [START_REF] Morris | Natural exponential family with quadratic variance functions[END_REF] Cubic [START_REF] Letac | Natural real exponential families with cubic variance functions[END_REF] 1st Gaussian Inverse Gaussian 

  8) where M 3 (m; m; m) (M 2 (m; m), M 1 (m) and M 0 ) is a real symmetric (d d) matrix of trilinear (bilinear, linear and constant) elements in m 2 M F R d . The quadratic variance function is obviously given with M 3 = 0 in (2.8) and the simple quadratic one is also considered from (2.8) with M 3 = 0 and M 2 (m; m) = t mm, 2 R [4]. The simple cubic NEFs on R d (denoted by M 3 (R d )) have been de…ned in Hassairi and Zarai ([8], [10]) as the NEFs on R d obtained from the simple quadratic ones (denoted by M 2 (R d )) by the action of the linear group

Proposition 3 . 5

 35 [START_REF] Hassairi | La classi…cation des familles exponentielles naturelles sur R n par l'action du groupe linéaire de R n+1[END_REF]). However, one can use the following reccurence relations which are proved in Kokonendji and Pommeret [15, Theorem 3.1 with k = 3]. Let F be a NEF on R d and let m 0 be in M F . Consider the polynomials P n (x) = P n (x; m 0 ) de…ned by(2.5). Then the following items are equivalent:

De…nition 4 . 1 A

 41 generating function of a sequence of polynomials (Q n ) n2N d on R d is said to be exponential if there exist an open ball B(0; r) of R d and two analytic functions a : B(0; r) ! R d and b : B(0; r) ! R such that, for all

  ii) By Part (ii) of Proposition 2.1, there exists an open ball B(0; r) of R d such that, for all (z; x) 2 B(0

First, we show the result for 2 -Theorem 5 . 3

 253 pseudodiagonality. To simplify, we assume A = I d (identity matrix) in (5.2), (5.3) and (5.4) and we thus denote S n (x; z) = S I d ;n (x; z) and B(z) = B I d (z). Let F = F ( ) be an irreductible NEF on R d . If h : I ! ( ) is a C 1 parametrization of F such that h 0 (z) is invertible for all z 2 I and B(z) = B I d (z) is the Bhattacharyya matrix de…ned by (5.3), then the following items are equivalent: (i) for all z 2 I, B(z) is 2-pseudodiagonal; (ii) there exists z 2 I such that B(z) is 2-pseudodiagonal;

  for orthogonality and their other real extensions. Let us …rst de…ne the semigroup-She¤er systems of NEFs on R d . If there exist an open ball B(0; r) of R d and two analytic functions a : B(0; r) ! R d and b : B(0; r) ! R such that a(0) = 0, a 0 (0) 6 = 0 and b(0) 6 = 0, then the polynomials sequence (Q n (x)) n2N d de…ned by the generating function X

  tA;n;t (x; t) = exp n x t (Am + m 1 ) K ( (Am + m 1 )) o ; 8m 2 B(tm 1 ; r); are called semigroup-She¤er systems associated to F .

6 = i 6 = j 6 = 1 1 m 3 01(

 6613 x i + 2x 1 m 0i ) (m 01 x j + 2x 1 m 0j ) if 1 m 01 x j + 2x 1 m 0j ) "

  x i + 2m 0i x 1 )

8 >

 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > :

jqj = 3 ;

 3 jqj = 2 and i 6 = 1 6 = j; jqj = 1 and i = j 6 = 1; jqj = 1 and i = 1 6 = j; jqj = 1 and i 6 = 1 = j; 2t 2 if jqj = 2 and i = 1 6 = j; jqj = 2 and i 6 = 1 = j; 3t 2 if jqj = 2 and i = 1 = j; jqj = 1 and i = 1 = j; t 2 + d 1 if jqj = 0; 0 otherwise: Therefore, at m 0 = (1; 0;

1

 1 + m)(1 + 1+a a m) 4th Hyperbolic Large arcsine (a > 0) Strict arcsine 1 + m 2 m(1 + 2m + 1+a 2 a 2 m 2 ) m(1 + m 2 )

  the variance function of the family F . Here ( ) denotes the inverse of the mapping m( ) = K 0 ( ). The pair (V F ( ); M F ) characterizes F within the class of all NEFs. See, for examples, Letac [19] and Kotz et al. [16, Chap. 54] for more details. Ax+b where A is in the linear group GL(R d ) of R d and b is in R d . Then, for any NEF F = F ( ) on R d , one has

	Let us also recall two elementary transformations which preserve any type of NEF.
	The …rst one is the a¢ nity. Let '(x) =

  More generally, we have the following proposition showing the derivative of f in another basis of R d (see [24, Lemma 2.2 and Theorem 2.1]).

	for all m 2 M F , P 0 (x; m) = 1 and P 1 (x; m) =	h	0 (m)(x m) i	t (e 1 ;	; e d ):
	Proposition 2.1 Let F = F ( ) be a NEF on R d and let (m 0 ; A) be in M F GL(R d ).
	Consider the polynomials (P A;n ) n2N d de…ned by		
	P A;n (x) = P A;n (x; m 0 ) = f (n) (x; m 0 )(Ae 1 ;	; Ae d );	(2.6)
	i.e. the jnjth derivative of m 7 ! f (x; m) at the mean m 0 of F in the jnj = n 1 + +n d directions: Ae 1 (n 1 times), ..., Ae d (n d times). Then:
	(i) P A;n (x) = f A 1 ( ) (A 1 x; A 1 m 0 )(e 1 ; (n)	; e d );		
	(ii) there exists an open ball B(m 0				
			e 1 ;	; e d )	(2.5)
	is a polynomial in x of degree jnj. These polynomials expansions (P n ) n2N d associated with a NEF belong to the class of She¤er's [36] polynomials and they are such that,

  if and only if the family of polynomials (P A;n ) n2N d de…ned by (2.6) is P (m 0 ; F )-transorthogonal. Proof. The basic case A = I d (identity matrix) is proved in [10, Theorem 3.1, pp. 76-89]. The general case follows from Proposition 2.1. There exists an analog of Theorem 3.2 for cubic NEFs on R d (2.8) with respect to the 2-pseudo-orthogonality. Its proof is similar and we omit it.The following proposition is a criterion to get the transorthogonality of polynomials on R d from the 2-pseudo-orthogonality.

	Remark 3.3

Proposition 3.4 

Let F be an irreductible NEF on R d and let (m 0 ; A) be in M F GL(R d ). Let (P A;n ) n2N d be the sequence of polynomials de…ned by

(2.6)

. Then the two following statements are equivalent: (i) the polynomials (P A;n ) n2N d are P (m 0 ; F ) 2-pseudo-orthogonal and (P A;n ) n2N d ;jnj2f1;2;3g are P (m 0 ; F )-transorthogonal; (ii) the polynomials (P A;n ) n2N d are P (m 0 ; F )-transorthogonal.

  of degree jnj and independent of the choice of the generator of F . For all (z; A) 2 I GL(R d ), we then call (multidimensional) Bhattacharyya matrix the in…nite matrix B A (z) = (B A;n;m (z)) n;m2N d where De…nition 5.1 A d-dimensional in…nite matrix B = (B n;m ) n;m2N d is said to be transdiagonal (2-pseudodiagonal) if, for all (n; m) 2 N d N d such that kn mk + sup(jnj; jmj) (jnj 2jmj), B n;m = 0.

	Z		
	B A;n;m (z) =	S A;n (x; z)S A;m (x; z)P (h(z); )(dx):	(5.3)
	For all (k; l) 2 N 2 , we denote the submatrices of B A (z) by	
	B k;l A (z) = (B A;n;m (z)) n;m2N d ;jnj=k;jmj=l :	(5.4)

Ae 1 ; ; Ae d ) (5.2) is a polynomial in x Remark 5.2 The Bhattacharyya matrix B A (z) = (B A;n;m (z)) n;m2N d is transdiagonal (2-pseudodiagonal) if and only if the polynomials (S A;n (x; z)) n2N d are P (h(z); )transorthogonal (P (h(z); ) 2-pseudo-orthogonal).

  Theorem 6.2 Let F be an irreductible NEF on R d and let = F be the completed Jørgensen set of F . For all (A; m 1 ) 2 GL(R

d ) M F , consider the semigroup-She¤er systems (Q tA;n;t (x; t)) n2N d ;t2 . Then: the transorthogonality of the semigroup-She¤er systems occurs if and only if F is simple cubic with A 1 V F (m 1 ) t A 1 diagonal.

Proof. Let t = (P (m 1 ; F )) t = P (m t ; F t ) with m t = tm 1 . Assume that the polynomials Q tA;n;t (x; t) are t -transorthogonal for all t 2 = nf0g. Then, in particular, the polynomials P A;n = Q A;n;1 are 1 -transorthogonal. By Theorem 3.2, we deduce that F 1

  Then, the Faà di Bruno formula (2.7) provides: n = e i then (e i ; 1) = f(1; e i )g andQ e i ;t (x; t) = (1 1i ) x i + 2x 1

	m 0i m 01	1i	"	t 2 +	s=2 d X	m 0s	!	x 1 + m 01	s=2 d X	m 0s x s	#

e j ; j 6 = 1

2( 1) l 1 m l 1 +2 01 l 1 !x 1

if l = l 1 e 1 + 2e j ; j 6 = 1:

  + n i Q n e i ;t (x; t) + m 0i Q n;t (x; t); for all n 2 N d and t 0 with the following initial conditions: Q 0;t (x; t) = 1, Q e i ;t (x; t) =

				9 =
				;
		8 > <	t 2 x 1 if i = 1
		> :	x i	if i 6 = 1
	and	8 > > > > > > > > <	
	Q e i +e j ;t (x; t) =	> > > > > > > > :	
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