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In this paper we introduce the Hinde-Demétrio (HD) regression models for analyzing overdispersed count data and, mainly, investigate the e¤ect of dispersion parameter. The HD distributions are discrete additive exponential dispersion models (depending on canonical and dispersion parameters) with a third real index parameter p and have been characterized by its unit variance function + p . For p equals to 2; 3; , the corresponding distributions are concentrated on nonnegative integers, overdispersed and zero-in ‡ated with respect to a Poisson distribution having the same mean. The negative binomial (p = 2), strict arcsine (p = 3) and Poisson (p ! 1) distributions are particular count HD families. From generalized linear modelling framework, the e¤ect of dispersion parameter in the HD regression models, among other things, is pointed out through the double mean parametrization: unit and standard means. In the particular additive model, this e¤ect must be negligible within an adequate HD model for …xed integer p. The estimation of the integer p is also examined separately. The results are illustrated and discussed on a horticultural data set.

INTRODUCTION

The regression models for count data are special because the structure of problem to solve and the inference techniques are not yet well developped for general families of discrete exponential dispersion models (EDMs), in particular for the Hinde-Demétrio families. Hence, fully ‡exible methods for analysis of count data are still not readily available (Cameron and Trivedi 1998, for econometric literature). The Poisson regression model provides a standard framework for the analysis of count data. One of the reasons is that Poisson distribution was historically considered as the "normal" distribution for count data. Because of its single parameter (having no dispersion parameter), many scenarios were necessary to construct suitable count distributions using some indexes as measures to detect departures from Poisson distribution. For instance, the most known, so frequent and well-explained of phenomena are overdispersion and zero-in ‡ation [START_REF] Hall | Score Tests for Heterogeneity and Overdispersion in Zero-In ‡ated Poisson and Binomial Regression Models[END_REF][START_REF] Mullahy | Heterogeneity, Excess Zeros, and the Structure of Count Data Models[END_REF]. Of course the opposite phenomena exist but is uncommon [START_REF] Bosch | Generalized Poisson Models Arising From Markov Processes[END_REF][START_REF] Castillo | Overdispersed and Underdispersed Poisson Generalizations[END_REF][START_REF] Kokonendji | Overdispersion and Underdispersion Characterization of Weighted Poisson Distributions[END_REF]. For this work our interest is on the Hinde-Demétrio regression models (HDRMs).

The Hinde-Demétrio distributions have been introduced by Kokonendji et al. (2004) as discrete additive EDMs [START_REF] Jørgensen | The Theory of Dispersion Models[END_REF]Vinogradov 2006, sec. 1-2) and are characterized by unit variance functions of the simple form:

V p ( ) = + p ; p 2 f0g [ [1; 1); (1) 
where > 1 for p = 0 and > 0 for p 1. The index (or "power") parameter p given in (1) is associated to a particular additive EDM, which is a linear exponential family with a dispersion parameter > 0. Recall that EDMs are the prototype response distributions for Generalized Linear Models [START_REF] Mccullagh | Generalized Linear Models[END_REF]Jørgensen 2001). This third parameter p takes place on the support S p of distributions as follows: S 0 = f 1; 0; 1; g = f 1g [ N, S 1 = 2N and S p = pN [ N for p > 1. Consequently, we only need p 2 f2; 3; g for analyzing count data. As particular cases, we have the negative binomial for p = 2 and the strict arcsine for p = 3 [START_REF] Kokonendji | On Strict Arcsine Distribution[END_REF][START_REF] Kokonendji | A Strict Arcsine Regression Model[END_REF]. The limit case (p ! 1) is associated to a Poisson distribution.

Note however that the origin of Hinde-Demétrio family could be an approximation (in terms of unit variance function) to the Poisson-Tweedie family, which is also the set of EDMs generated by Poisson mixture with positive stable mixing distribution [START_REF] Hougaard | Analysis of Overdispersed Count Data by Mixtures of Poisson Variables and Poisson Processes[END_REF]). Short precisely, since positive stable distributions belong to the Tweedie family of EDMs with unit variance function p ; p 2 ( 1; 0] [ [1; 1) (Jørgensen 1997, chap. 4;[START_REF] Dunn | Series Evaluation of Tweedie Exponential Dispersion Model Densities[END_REF], for recent developments) the only reasonable mixtures of Poisson with Tweedie mixing distributions are produced for p 1 and, then, the unit variance functions of the Poisson-Tweedie family are + p expf(2 p) p ( )g for > 0 and negative function p ( ) generally implicit according to p 1 (Kokonendji et al. 2004, Propositions 2 and 6). All Poisson-Tweedie distributions are concentrated on N with explicit density expressions for p 1 (Kokonendji et al. 2004, Proposition 3). Their particular cases are Neyman type A for p = 1 (Johnson et al. 1992, pp. 368-), Pólya-Aeppli for p = 3=2 [START_REF] Vinogradov | On In…nitely Divisible Exponential Dispersion Model Related to Poisson-Exponential Distritbution[END_REF], negative binomial for p = 2 [START_REF] Lawless | Negative Binomial and Mixed Poisson Regression[END_REF] and Poisson-inverse Gaussian for p = 3 [START_REF] Dean | A Mixed Poisson-Inverse Gaussian Regression Model[END_REF]; the limit case (p ! 1) is easily associated to a Poisson distribution like the Hinde-Demétrio family.

Let us also recall here the meaning of overdispersion and zero-in ‡ation for any count distribution such that its mean is m > 0, its variance is 2 > 0 and its proportion of zeros is p 0 > 0 [START_REF] Puig | Count Data Distributions: Some Characterizations With Applications[END_REF]. In fact, a count distribution is overdispersed or Poisson-overdispersed when its variance 2 is greater than the variance of a Poisson distribution having the same mean m; hence, its overdispersion index can be de…ned as OD = ( 2 m)=m. Similarly, a count distribution is said to be zeroin ‡ated or Poisson-zero-in ‡ated if its proportion of zeros p 0 exceeds the proportion of zeros of a Poisson distribution having the same mean m, that is exp( m). Then the zero-in ‡ation index of this distribution is ZI = 1 + log(p 0 )=m. Both indexes are null for a Poisson distribution and positive for any overdispersed and zero-in ‡ated distribution. Then, both properties are closed under independence of e¤ects [START_REF] Puig | Characterizing Additively Closed Discrete Models by a Property of their Maximum Likelihood Estimators With Application to Generalized Hermite Distributions[END_REF] and are explained by mixed Poisson distributions [START_REF] Feller | On a General Class of Contagious Distributions[END_REF]) such Poisson-Tweedie distributions and by stopped Poisson distributions [START_REF] Douglas | Analysis With Standard Contagious Distributions[END_REF]) such Hinde-Demétrio distributions. Only the negative binomial distribution is common to Poisson-Tweedie and Hinde-Demétrio families as for many families of count distributions (with three parameters) having at least one of those properties [START_REF] Castillo | Overdispersed and Underdispersed Poisson Generalizations[END_REF][START_REF] Kokonendji | Overdispersion and Underdispersion Characterization of Weighted Poisson Distributions[END_REF][START_REF] Walhin | A Mixed Poisson Model With Varying Element Sizes[END_REF].

The aim of this paper is …rst to introduce HDRM for count data, for which we can estimate the index parameter p for the adequate additive EDM, and then to study the e¤ect of dispersion parameter in HDRM when the index parameter p is …xed. The discussion will be essentially on modelling the unit and standard means. Hence, we organise the paper as follows. In Section 2 some main properties on the response distributions are recalled and the HDRMs are de…ned with the generalized linear modelling framework. Section 3 presents a test for choosing p in f2; 3; g[f1g for the adequate additive EDM in the Hinde-Demétrio family. Section 4 brie ‡y discusses the estimation methods which could be used for a given count additive EDM of the Hinde-Demétrio family when the index parameter p is …xed. Section 5 illustrates the methodology using a horticultural data set. Section 6 concludes.

HINDE-DEMÉTRIO REGRESSION MODELS

Properties of Hinde-Demétrio Models

Given p 2 f0g [ [1; 1) as in (1), the probability mass function (pmf) of any Hinde-Demétrio distribution HD p ( ; ) is written in form of the additive EDM as P (y; p; ; ) = A p (y; ) expf y K p ( )g; y 2 S p;

(2)

where 2 p R is the canonical parameter, > 0 is the dispersion (or scaling) parameter, A p (y; ) is the normalizing constant, K p ( ) is the cumulant function checking K 00 p ( ) = V p (K 0 p ( )) = K 0 p ( ) + (K 0 p ( )) p , and the support S p is such that S 0 = f 1g [ N, S 1 = 2N and S p = pN [ N for p > 1. Apart from the four distributions obtained for p 2 f0; 1; 2; 3g, none of the Hinde-Demétrio models has explicit pmf even if the cumulant functions can be expressed as:

K p ( ) = e 2 F 1 1 p 1 ; 1 p 1 ; p p 1 ; e (p 1) ! ; < 0; p > 1; (3) 
where 2 F 1 (a; b; c; z) = 1 + (ab=c)(z=1!) + (a(a + 1)b(b + 1)=c(c + 1))(z 2 =2!) + is the Gaussian hypergeometric function (Johnson et al. 1992, pp. 17-19). When p ! 1 the limit case HD 1 ( ; ) is the Poisson EDM with mean m = K 0 1 ( ) = e as described by Jørgensen (1997, pp. 90-92).

For p > 1, any Hinde-Demétrio distribution HD p ( ; ) is a stopped Poisson distribution. Indeed, let U be a discrete random variable taking its values on U ( ) = f1; p; 2p 1; 3p 2; g (4)

and such that its probability generating function (pgf) is

E(z U ) = c(p; q) z 2 F 1 1 p 1 ; 1 p 1 ; p p 1 ; (qz) p 1 ! ; (5) 
where q = q( ) 2 (0; 1) is a reparametrization of given in (2) and c(p; q) a normalizing constant. We denote U HD p (q) = HD p ( ). Let N t be a standard Poisson process on the interval (0; t] (N 0 = 0) with intensity [that is N t P( t)] and supposed to be independent of U . From the pgf of

Y t = Nt X i=1 U i = U 1 + + U Nt ; (6) 
where the U i are independent and identically distributed as U HD p (q( )), one has Y 1 HD p (q; ) = HD p ( ; ) by …xing the time to t = 1 (Kokonendji et al. 2004). From (4-6) one can appreciate di¤erent connection of parameters p, and with respect to auxiliary random variables U and N 1 . For p = 2 we then have a new probabilistic interpretation of the negative binomial distribution HD 2 ( ; ). There the Poisson stopped-sum representation (6) can be also found under the popular name of compound Poisson (Feller 1971;[START_REF] Hinde | Compound Poisson Regression Models[END_REF]), but could be confuse (for example to certain mixed Poisson and to the Tweedie distributions with 1 < p < 2). Another property of Hinde-Demétrio processes ( 6) is that their modi…ed Lévy measures, which describes the probabilistic character of the jumps of Y t , always are the negative binomial distributions (up to a¢ nity) for all p > 1. See Kokonendji and Khoudar (2006) for more details.

For count Hinde-Demétrio HD p ( ; ) distributions, that is p 2 f2; 3; g [ f1g, [START_REF] Kokonendji | A Property of Count Distributions in the Hinde-Demétrio Family[END_REF] have shown the following original property: if we denote r y = y P (y; p; ; )=P (y 1; p; ; ) = r y (p; ; ) for all < 0 and > 0 then

r 1 = r 2 = = r p 1 < r p 6 = r p+1 > r 1 ; 8p 2 f2; 3; g: (7) 
These relations hold for all and . The equality part of ( 7) means that the index parameter p 2 f2; 3; g of any Hinde-Demétrio distribution is the …rst integer for which the recursive ratio r y , y 2 N , is di¤erent from the previous. For the Poisson distribution with mean m > 0, we have r y = m for all y 2 N and, therefore, it is regarded as limit of HD p ( ; ) when p tends to 1; as we can also show from ( 6) with U = 1 almost surely. Hence, the two extremities of count Hinde-Demétrio distributions (corresponding to p = 2 as negative binomial and p ! 1 as Poisson) belong to the so-called Katz family by Johnson et al. (1992, p. 78). The property ( 7) is characteristic of count Hinde-Demétrio distributions and constituted the point of departure for evaluating p 2 f2; 3; g by statistical tests which do not depend on parameters and ; see Section 3 below.

The last serie of properties is classical but most important for de…ning the regression models. The …rst is that any Hinde-Demétrio model is closed under convolution: 

HD p ( ; 1 ) HD p ( ; 2 ) = HD p ( ; 1 + 2 ) for 1 ; 2 > 0.
(Y ) = K 00 p ( ) = V p (K 0 p ( ))
, respectively. Since 7 ! K p ( ) is strictly convex for < 0 and from (1), we …rstly reparametrize the additive HD p ( ; ) by its unit mean = K 0 p ( ) as HD p ( ; ) for which the unit variance function V p ( ) is proportional to the dispersion parameter like a "reproductive"EDM:

= K 0 p ( ) = 1 E p; ; (Y ) and var ; (Y ) = V p ( ) = ( + p ) ; (8) 
where > 0 and = (p; ) > 0 (not depending on ). Secondly, we use the standard mean parametrization HD p (m; ) of the additive HD p ( ; ) as follows:

m = K 0 p ( ) = E p; ; (Y ) and var m (Y ) = V p (m= ) = m + 1 p m p ; (9) 
where > 0 and m = m(p; ; ) > 0. A reason behind the two mean parametrizations ( 8) and ( 9) is essentially due to the pratical use of the variance-to-mean relationship, which must provide the same behaviour in presence of data as is near of 1 for given p. Finally, it is also known that all Hinde-Demétrio family has both overdispersed [e.g., from (1): V p ( ) > > 0] and zero-in ‡ated [e.g., from (6) and [START_REF] Douglas | Analysis With Standard Contagious Distributions[END_REF]] distributions with respect to Poisson distribution. From (2) the characteristic indexes are OD(p; ; ) = [K 0 p ( )] p 1 and ZI(p; ; ) = 1 K p ( )=K 0 p ( ) respectively and, they are positive and do not depend on .

Hinde-Demétrio Regression Models (HDRMs)

Let Y be a single count response variable and let x be an associated vector of covariates with a vector of unknown regression coe¢ cients. The …rst HDRM for Y on x is de…ned from (8) as Y HD p ( ; ), where = (x; ) is a positivevalued function related to x and to by a link function [START_REF] Mccullagh | Generalized Linear Models[END_REF]Jørgensen 2001), > 0 and p 2 f2; 3; g. For convenience we can write Y HD p ( (x; ); ) to denote this HDRM for which the dispersion parameter is not connected to the covariates x via the unit mean = (x; ) but through the variance var(Y ) = ( + p ) of Y . From (1) and Kokonendji et al. (2004, formula (16)), its canonical link function is given, for all p 2 f2; 3; g, as:

= exp(x T )[1 expf(p 1)x T g] 1=(p 1) : (10) 
In practice we can use the common log-linear link function of count data = exp(x T ), which does not depend on p and is also obtained from (10) when p ! 1.

Similarly we de…ne the second HDRM for Y on x as Y HD p (m; ) such that is, theoretically, connected both to the standard mean m = m(x; ) and to the variance var(Y ) = m + 1 p m p of Y . In [START_REF] Kokonendji | A Strict Arcsine Regression Model[END_REF], this model Y HD p (m(x; ); ) is used for p 2 f2; 3g with the usual log-linear link function log(m) = x T and the maximum likehood method.

For this work we do not consider the dispersion parameter modelling = (z; ), where z is a second vector of covariates (not necessarily independent of the …rst x and through to a¤ect the dispersion) and is the corresponding vector of unknown regression coe¢ cients. That would lead to a kind of Double Generalized Linear Model. See, for example, [START_REF] Smyth | Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling[END_REF] for a Tweedie regression model. Also, it is not envisaged to modelling the index parameter as p = p(w; ). Finally, a HDRM can be de…ned in di¤erent ways according to the modelling parameters as above and also to the parametrizations, namely HD p ( ; ) from ( 8), HD p (m; ) from (9), HD p ( ; ) from (2) and HD p (q; ) from ( 6). Of course these de…nition could be extended to the others, likely Generalized Linear Mixed Model (Hinde and Demétrio 1998, chap. 6, and references therein) or Double Hierarchical Generalized Linear Models by Lee and Nelder (2006) for more ideas.

CHOICE OF THE RESPONSE EDM IN HDRMs

Consider a HDRM with unknown index parameter p 2 f2; 3; g [ f1g. Without loss of generality, let Y = (Y 1 ;

; Y n ) be a vector of random sample of count response with Y i HD p ( i (x; ); ), i = 1;

; n. To evaluate the adequate p 2 f2; 3; g for this HDRM, we …rst adapt the statistical test procedure developed by [START_REF] Kokonendji | A Property of Count Distributions in the Hinde-Demétrio Family[END_REF] with no covariates and then, if it is necessary, we use a criterion of model selection [START_REF] Akaike | Information Theory and an Extension of the Maximum Likelihood Principle[END_REF][START_REF] Schwarz | Estimating the Dimension of a Model[END_REF][START_REF] Linhart | Model Selection[END_REF][START_REF] Pan | Akaike's Information Criterion in Generalized Estimating Equations[END_REF] to determine the appropriated value of p.

More precisely, from (7) we investigate the p(p 1)=2 testing problems Following [START_REF] Kokonendji | A Property of Count Distributions in the Hinde-Demétrio Family[END_REF], we consider the test stastistics of ( 11)

H ij 0p : r i = r j versus H ij 1p : r i < r j (1 i < j p); (11 
T ij = i F i F j 1 j F i 1 F j = T ij (Y) (1 i < j p) (12) 
such that their asymptotic normalities are obtained by the classical frequency substitution method [START_REF] Bickel | Mathematical Statistics[END_REF] as:

Proposition 1 Suppose p 0 ; p 1 ; ; p k are (population) proportions with p l = Pr(Y = l); l = 0; 1;

; k 1, p k = Pr(Y k), and k p 2 f2; 3; g. Then the statistics 12) are asymptotically normal:

T ij = T ij (Y) de…ned in (
p n(T ij r i =r j )= ij ! N (0; 1) as n ! 1 (1 i < j p);
where )= log( ) and from (9) as p 2 ( ) = log(( 2 m)= )= log(m= ), respectively. For …xed = 1 we have = m and, then,

2 ij := var(T ij ) = 2 ij (p 0 ; p 1 ; ; p k ) is given by 2 ij = 8 > < > : (r i =r i+1 ) 2 (1=p i 1 + 4=p i + 1=p i+1 ) for j = i + 1 (r i =r j ) 2 (1=p i 1 + 1=p i + 1=p j 1 + 1=p j ) for j > i + 1: (13) Remark 2 (i) A consistent estimator of 2 ij is usually provided by b 2 ij = 2 ij (F 0 ; F 1 ; ; F k ) with F k = 1 n n P i=1 1 fY i kg . (ii) When b p is large (or b p k),
p 1 (1) = p 2 (1) = log( 2 m) log(m) = p: (14) 
Thus we obtain a real estimate p which lies between two integers p 1 = bp c and p 2 = p 1 + 1, where bac denotes the integer part of a 2 R. As presented above, i.e. after applying the twice corresponding HDRM with p 1 and p 2 , we must use here an indicator of model selection to decide "the"adequate p between them. Kokonendji et al. (2004) used this idea without covariates and, then, one could also use the criterion of the adequation chi-squared test of Pearson to select p 2 f2; 3; g. However, an estimator by moment methods ( 14) is generally known to be ine¢ cient, but sometimes more useful as correct indicator of the parameter p when the …rst p from ( 14) belongs to [2; 1).

BACKGROUND FOR ESTIMATING IN HDRMs

Now we consider a HDRM such that the index parameter p 2 f2; 3; g is …xed or estimated following the previous section. According to the value of p one can use various approaches, namely maximum likelihood, (extended) quasi-likelihood, pseudolikelihood and moment methods. See, for example, Hinde and Demétrio (1998, chap.

3) for a summary. For both models ( 8) and ( 9), and in view of application in the next section, we here present the basic materials of likelihood and deviance which are the unit pmf P (y; p; ; ) from ( 2) and the unit deviance function

D p (y; ) := 2 Z y y t V p (t) dt = 2 Z y y t t + t p dt; (15) 
respectively [START_REF] Jørgensen | The Theory of Dispersion Models[END_REF]. In fact, if the considered HDRM is from (8), then the pmf of Y HD p ( ; ) is P ( y; p; ; ) and its deviance function is 1 D p (y; ). Also, if the HDRM is de…ned from (9) like Y HD p (m; ), then its pmf is given by P (y; p; m 1 ; ) and its deviance function is 1 D p (y; m 1 ). It is worth noting for correct use of the models in terms of the dispersion parameter . Letting = K 0 p ( ) and, then, B p ( ) = exp( ). From (2-3) the unit pmf P (y; p; ; ) := P (y; p; log B p ( ); ) can be expressed, for all y 2 N and p 2 f2; 3; g, as:

P (y; p; ; ) = A p (y; ) [B p ( )] y exp ( B p ( ) 2 F 1 1 p 1 ; 1 p 1 ; p p 1 ; [B p ( )] p 1 !) ; (16) 
where A p (y; ) remains as in (2) and, from Kokonendji et al. (2004, formula (16)),

B p ( ) = 1 + p 1 1=(p 1) : (17) 
For instance, that gives explicitly (Johnson et al. 1992, p. 18) the negative binomial case with p = 2 as P (y; 2; ; ) = (y + ) y! ( ) 1 +

! y 1 1 + ! ; y 2 N;
and the strict arcsine case with p = 3 as

P (y; 3; ; ) = A 3 (y; ) y! p 1 + 2 ! y exp ( arcsin p 1 + 2 ) ; y 2 N;
where A 3 (y; ) is given in [START_REF] Letac | Natural Real Exponential Families With Cubic Variance Functions[END_REF] by

A 3 (y; ) = 8 > > < > > : z 1 Q k=0 ( 2 + 4k 2 ) if y = 2z; and A 3 (0; ) = 1 z 1 Q k=0 [ 2 + (2k + 1) 2 ] if y = 2z + 1; and A 3 (1; ) = :
Concerning to the unit deviance function ( 15) which can be written as

D p (y; ) = 2 " y log B p (y) B p ( ) ! + Z y dt 1 + t p 1 # (18) = 2 " y log B p (y) B p ( ) ! + ( p 1 ; 1; 1=(p 1)) y ( y p 1 ; 1; 1=(p 1)) p 1 # ;
where (a; s; b) = P k 0 a k =(k + b) s is the Lerch function [START_REF] Erdélyi | Higher Transcendental Functions[END_REF], we obtain from ( 17) the two only simple cases:

D p (y; ) = 8 > < > : 2 [y log fy(1 + )[ (1 + y)] 1 g + log f(1 + )=(1 + y)g] for p = 2 2 h y log n (y p 1 + 2 )=( p 1 + y 2 ) o + arctan arctan y i for p = 3:
A computer algebra program (e.g. Maple) can provide long expressions of D p (y; ) for p = 4; 5; 6. Both expressions ( 16) and ( 18) show the need of good approximation technics when we use a count HDRM with p 2 f4; 5; g and quasi-and likelihood methods. See, for instance, [START_REF] Dossou-Gbété | An MM-Algorithm for a Class of Overdispersed Regression Models[END_REF].

ILLUSTRATIVE EXAMPLE

Data Set

We consider the data used by Ridout et al. (1998, tables 1 and 2); see also Ridout et al. (2001, table 2). However, we examine them on a di¤erent way for studing the behaviour of HDRM when the index parameter p belongs to f2; 3g [ f1g, which are extremities of its domain. Table 1 gives the number of roots produced by 270 micropropagaged shoots of the columnar apple cultivar Trajan and some related statistics. During the rooting period, all shoots were maintained under identical conditions, but the shoots themselves had been produced under an 8-or 16-hour photoperiod in culture systems. For each of two photoperiods, it was used one of four di¤erent concentrations of the cytokinin BAP in the culture medium. There were 140 shoots produced under the 8-hour photoperiod, which are weakly overdipersed, as also shown in Figs. 1 and2, and quasi-none zero-in ‡ated. However, the other 130 shoots produced under the 16-hour photoperiod are really overdispersed (see, e.g., Figs. 3 and4) with an important excess of zeros. [START_REF] Ridout | Models for Count Data With Many Zeros[END_REF] analyzed these phenomena by …tting various models to these data as a whole, based on the Poisson and negative binomial distributions and their so-called zero-in ‡ated contreparts. They had concluded on the di¤erent e¤ect of these two photoperiods.

Table 1 about here Figures 1, 2, 3 and4 about here 

Methodology and Results

Here we use two HDRMs separately for each one of the two photoperiods 8 and 16 for pointing out the e¤ect of dispersion parameter through the double mean parametrization ( 8) and ( 9). All computations are done using the R software (R Development Core Team 2005; [START_REF] Kuhnert | An Introduction to R: Software for Statistical Modelling & Computing[END_REF][START_REF] Venables | Modern Applied Statistics With S[END_REF]. The corresponding p-value(t 12 ) in Table 1 suggest that we have b p = 2 for the two HDRMs [see Remark 2 (iii)]. However, the corresponding values of p allow to consider mainly two models (in the extended HDRM) between, …rst, p = 2 and p = 1 for the 8-hour photoperiod, and second, p = 2 and p = 3 for the 16-hour photoperiod, respectively. For all models HD p ( (x; ); ) and HD p (m(x; ); ), we consider the common log-linear link function

= exp(x T ) = m with x T = 0 + 1 x + 2 x 2 + 3 x 3 ;
and only the variances change following (8) and (9). Hence, for …xed p 2 f2; 3; g, the adequate model would produce b near of 1. Note that, following Jørgensen (1997, pp. 90-92), the Poisson HDRM is HD 1 (m) = HD 1 ( ; 1) = HD 1 (m; 1), without dispersion parameter .

For …xed p 2 f2; 3g [ f1g, full maximum likelihood estimation can be used because the corresponding HDRMs present a complete and explicit (unit) pmf for the response variable. For a future use and since the unit variance function (1) has a simple form, we here describe the quasi-likelihood and related methods (Hinde and Demétrio 1998, chap. 3). Hence, for quasi-likelihood method, only deviance criterion for comparing the performance of models must be computed and we could use a modi…ed Akaike's Information Criterion (AIC) which would provide the same behaviour [START_REF] Pan | Akaike's Information Criterion in Generalized Estimating Equations[END_REF][START_REF] Lee | Extended-REML Estimators[END_REF].

The principle of the quasi-likelihood method for a model (8) with variance of the form var(Y i ) = V p ( i ) is to estimate the regression parameters by maximizing the quasi-likelihood

Q p = 1 2 n X i=1 D p (y i ; i ) ;
where D p is the unit deviance function ( 15) and ( 18). The regression parameter estimates b are the same to those for the respective non-dispersed model (here Poisson) and the (over)dispersion parameter is estimated by equating the Pearson X 2 statistic to the residual degrees of freedom n r:

b = 1 n r n X i=1 (y i b i ) 2 b i :
The estimation of and is asymptotically independent.

Concerning to the model ( 9) or (8) which can be described with a variance of the form var(Y i ) = i ( ; m i ; p)V (m i ), where both the scale parameter i and the variance function V (:) may depend upon additional parameters. One suggests estimating the unknown parameters in the mean ( ) and in the variance model ( ) by maximizing the extended quasi-likelihood (EQL) function

Q + p = 1 2 n X i=1 ( D(y i ; m i ) i + log [2 i V (y i )] ) ;
where D(y; m) := 2 R m y (y t)dt=V (t) is a kind of unit deviance function. Using EQL for the HDRMs ( 8) and ( 9), like negative binomial (p = 2) and stirct arcsine (p = 3) variance functions, we have the following variance decompositions for (8):

i = (1 + p 1 i ) and V ( i ) = i ; for (9): i = 1 + m p 1 i = p 1 and V (m i ) = m i :
The regression parameter estimates b are here identical to those for the respective non-dispersed model (here Poisson with i = 1) and are obtained by estimating equations for a weighted Poisson model with weights 1= i . We can obtain an estimate for by …tting a gamma model using the Poisson deviance components as y-variable, an identity link and taking the linear model to have, for (8), a linear regression model without intercept with 1+ p 1 i as explanatory variable, and, for (9), a …xed intercept (o¤set) of 1 and m p 1 i as explanatory variables. An approximate standard error is obtained for by setting the scale to 2, corresponding to modelling 2 1 .

Table 2 about here Table 3 about here

The results presented in Table 2 and Table 3 were obtained by EQL method, which quickly converged. They are very interesting and suitable. Indeed, the regression coe¢ cient estimates b j (8) and b j (16) are identical for the …ve proposed models with respect to the photoperiods 8 and 16, and only standard errors change (Table 3). The reason comes from the residual deviances and, therefore, the dispersion parameter b in Table 2. In fact, with respect to each photoperiod and except the Poisson model HD 1 (m) which has poor …tting, we must compare the deviances or AIC within [i.e. HD 2 ( (x; ); ) to HD 2 (m(x; ); ), and HD 3 ( (x; ); ) to HD 3 (m(x; ); )] and also between [i.e. HD 2 ( (x; ); ) to HD 3 ( (x; ); ), and HD 2 (m(x; ); ) to HD 3 (m(x; ); )] the models, respectively. Hence we can observe di¤erent e¤ects or estmated values of near 1 or not for the models (McCullagh and Nelder 1989, p. 400). Note in passing that, for the photoperiod 8, all regression coe¢ cient estimates b j (8) are signi…cant but, for the photoperiod 16, only the intercept coe¢ cient b 0 (16) is signi…cant for the di¤erent models.

For the photoperiod 16, the e¤ect (or value near of 1) of dispersion parameter is insigni…cant within the negative binomial (p = 2) models, compared to the strict arcsine (p = 3) models. This suggests that the negative binomial model can be "the" best model among the HDRMs for this data set. As for the photoperiod 8, the e¤ect of dispersion parameter is sizeable both within and between the negative binomial (p = 2) and strict arcsine (p = 3) models. Hence, also from the end of Remark 2 (iii), the regression analysis of this photoperiod 8 could be improved by other models which do not belong to the HDRMs [START_REF] Ridout | Models for Count Data With Many Zeros[END_REF][START_REF] Ridout | A Score Test for Testing a Zero-In ‡ated Poisson Regression Model Against Zero-In ‡ated Negative Binomial Alternatives[END_REF][START_REF] Walhin | A Mixed Poisson Model With Varying Element Sizes[END_REF][START_REF] Kokonendji | Overdispersion and Underdispersion Characterization of Weighted Poisson Distributions[END_REF], for a future use of weighted Poisson models taking into account both over-and underdispersion situations).

CONCLUDING REMARKS

HDRMs cover a new broad family of the overdispersed count data regression models and, among other models, provide an alternative to the mixtures of Poisson models [START_REF] Hougaard | Analysis of Overdispersed Count Data by Mixtures of Poisson Variables and Poisson Processes[END_REF][START_REF] Walhin | A Mixed Poisson Model With Varying Element Sizes[END_REF]. They can be applied in various domains like agriculture, …nance, epidemiology and ecology. For any index parameter p …xed in f2; 3; g [ f1g, the EQL method is numerically e¢ cient for estimating parameters in the HDRMs. The EQL could be generalized when p is unknown. For instance, the maximum likelihood and quasi-likelihood methods can be used for p 2 f2; 3g [ f1g. In this paper we have presented a statistical evaluation of the index parameter p 2 f2; 3; g [ f1g, which is arbitrarily chosen in similar classes of models (e.g. [START_REF] Walhin | A Mixed Poisson Model With Varying Element Sizes[END_REF][START_REF] Dunn | Series Evaluation of Tweedie Exponential Dispersion Model Densities[END_REF], for the Tweedie models). Note that another way than the moment method (14) to evaluate the index parameter p would be to …nd the p to minimize a distance between the empirical distribution and the Hinde-Demétrio distribution.

For given p 2 f2; 3; g and from the mean parametrizations (8) and ( 9), the e¤ect of dispersion parameter > 0 according to the unit and standard means modelling is more important within and between the models when the HDRMs are not appropriated to the (overdispersed) data set. Conversely, if the dispersion parameter e¤ect is negligible within a reasonable HDRM for a given p 2 f2; 3; g, that is near of 1, then this model is the best one. The same log-linear link function used in this application for both the unit and standard mean parametrizations, clearly, allows the within and between comparison of the models. In many count data regressions using an additive EDM for the response distribution, we must have the same behaviour as in HDRMs. The standard mean parametrization (9) is generally and commonly used in lieu of the unit mean parametrization (8), which theoretically appears appropriate to many situations and present some pratical advantages. grateful to FAPESP, CNPq, CCInt/USP and LMA/CNRS for funding that visit.

Table 1 Frequency distributions of the number of roots produced by 270 shoots of the apple cultivar Trajan, classi…ed by experimental conditions (photoperiod and BAP concentration) under which the shoots were reared; shown are the numbers of shoots that produced 0; 1;

; 12 roots; counts that exceeded 12 are shown individually (Redout et al., 1998(Redout et al., , 2001)). Some 

1

  ) which are tested individually at signi…cance level 2 (0; 1). Starting with p = 2, we stop at the …rst p 2 f2; 3; g, denoted by b p = b p(Y; ), for which one of alternative hypothesis H ip 1p (i = 1; ; p 1) is accepted, i.e., the corresponding individual p-value b ip is smaller than . Thus, if we hesitate between two values (b p 1 and b p 2 = b p 1 + 1) of p according to the choice of the level , we can use an indicator of model selection (e.g., log-likelihood or deviance criterion) to choose between them. This last part depends on the methods used to estimate and in the HDRM Y i HD p ( i (x; ); ); see the next section. So, in this section we only present the theory necessary to the determination of b p based on (11). See[START_REF] Kokonendji | A Property of Count Distributions in the Hinde-Demétrio Family[END_REF] for details on simulation studies and applications without covariates, where the criterion of model selection is the adequation chisquared test of Pearson.Let Y = (Y 1 ;; Y n ) be a vector of random sample of count response. Denote, for all y 2 N, F y = 1 fY i =yg = F y (Y) the random sample relative frequency.

  statistics are also calculated with OD = (b 2 b m)= b m, ZI = 1 + log(f 0 )= b m, p = log(b 2 b m)= log( b

Fig. 2 .

 2 Fig. 1. Half-normal plot for photoperiod 8 with Poisson simulated envelope.

Fig. 4 .

 4 Fig. 3. Half-normal plot for photoperiod 16 with Poisson simulated envelope.

  we can decide that Y HD 1 ( ; ), which is the Poisson distribution of mean m = . (iii) The frequent situation b p = 2 means two things: p really equals to 2 (e.g. Y i HD 2 ( i (x; ); ) as negative binomial model) or not (i.e. Y i follows a Poisson model or another model which is not a HDRM); thus, the test p = 2 has general interest for count data.

	Another way to estimate p 2 f2; 3; g is to use the moment methods. Indeed, if Y HD p ( ; ) or Y HD p (m; ) with 2 = var(Y ) then we easily get p from (8) as p 1 ( ) = log( 2 =

  m) from (14) and p-value(t 12 ) from (12).Table2Results of AIC, deviance and dipersion parameter with its standard error (se) for …tting various HDRMs [(8) and (9)] to the data from Table1.

		Model			Photoperiod	AIC	df Deviance		b (se)
		HD 1 (m)		8		729:31 136	206:88		
		HD 2 ( ; )		8		485:40 136	140:00	0:189(0:023)
		HD 2 (m; )	8		503:99 136	143:34 15:491(5:890)
	Photoperiod HD 3 ( ; )	8	8 8	8	8 471:64 136	16 140:00	16 0:032(0:004) 16	16
	Bap ( M) HD 3 (m; ) 2:2	4:4 8	8:8 17:6 514:95 136	2:2 147:44 10:851(8:579) 4:4 8:8 17:6
	No. of roots 0 HD 1 (m) HD 2 ( ; )	0	0 16 16	0	Total 8 2 843:60 126 2 187:43 126	15 606:16 130:00	16 1:206(0:150) 12	19	Total 16 62
	1	3 HD 2 (m; )	0 16	0	0 187:40 126 3	0 129:96	2 0:782(0:124) 3	2	7
	2	HD 3 ( ; )	2	3 16	1	0 187:79 126 6	2 130:00	1 0:513(0:064) 2	2	7
	3	3 HD 3 (m; )	0 16	2	2 188:41 126 7	2 130:51	1 1:495(0:474) 1	4	8
	4			6	1	4	2	13	1	2	2	3	8
	5			3	0	4	5	12	2	1	2	1	6
	6			2	3	4	5	14	1	2	3	4	10
	7			2	7	4	4	17	0	0	1	3	4
	8			3	3	7	8	21	1	1	0	0	2
	9			1	5	5	3	14	3	0	2	2	7
	10			2	3	4	4	13	1	3	0	0	4
	11			1	4	1	4	10	1	0	1	0	2
	12			0	0	2	0	2	1	1	1	0	3
	> 12		13; 17	13 14; 14	14	6			
	No. of shoots	30	30	40	40	140	30	30	30	40	130
	Mean: b m		5:8	7:8	7:5	7:2	7:1	3:3	2:7	3:1	2:5	2:9
	Variance: b 2	14:1	7:6	8:5	8:8	9:8	16:6 14:8 13:5	8:5	12:8
	OD		1:42	0:03	0:13 0:22	0:39	4:06 4:40 3:31 2:47	3:46
	ZI						1:10	1:10	1:82 2:03 1:80 2:18	2:44
	p		1:2		0 0:24	0:52	2:17 2:51 2:07 1:96	2:18
	p-value(t 12 )						8e-8		3e-3 6e-4 9e-5	0

Table 3

 3 Results of standard errors of regression coe¢ cient estimates b j (8) and b j (16) for the Table2according to the photoperiods 8 and 16.
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