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Abstract

In this paper we introduce the Hinde-Demétrio (HD) regression models for ana-
lyzing overdispersed count data and, mainly, investigate the e¤ect of dispersion
parameter. The HD distributions are discrete additive exponential dispersion mod-
els (depending on canonical and dispersion parameters) with a third real index
parameter p and have been characterized by its unit variance function �+ �p. For
p equals to 2; 3; � � � , the corresponding distributions are concentrated on nonnega-
tive integers, overdispersed and zero-in�ated with respect to a Poisson distribution
having the same mean. The negative binomial (p = 2), strict arcsine (p = 3) and
Poisson (p ! 1) distributions are particular count HD families. From generalized
linear modelling framework, the e¤ect of dispersion parameter in the HD regression
models, among other things, is pointed out through the double mean parametriza-
tion: unit and standard means. In the particular additive model, this e¤ect must be
negligible within an adequate HD model for �xed integer p. The estimation of the
integer p is also examined separately. The results are illustrated and discussed on a
horticultural data set.
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1 INTRODUCTION

The regression models for count data are special because the structure of problem to
solve and the inference techniques are not yet well developped for general families of
discrete exponential dispersion models (EDMs), in particular for the Hinde-Demétrio
families. Hence, fully �exible methods for analysis of count data are still not readily
available (Cameron and Trivedi 1998, for econometric literature). The Poisson re-
gression model provides a standard framework for the analysis of count data. One of
the reasons is that Poisson distribution was historically considered as the �normal�
distribution for count data. Because of its single parameter (having no dispersion
parameter), many scenarios were necessary to construct suitable count distributions
using some indexes as measures to detect departures from Poisson distribution. For
instance, the most known, so frequent and well-explained of phenomena are overdis-
persion and zero-in�ation (Hall and Berenhaut 2002; Mullahy 1997). Of course the
opposite phenomena exist but is uncommon (Bosch and Ryan 1998; Castillo and
Pérez-Casany 2005; Kokonendji and Mizère 2005). For this work our interest is on
the Hinde-Demétrio regression models (HDRMs).

The Hinde-Demétrio distributions have been introduced by Kokonendji et al. (2004)
as discrete additive EDMs (Jørgensen 1997; Vinogradov 2006, sec. 1-2) and are
characterized by unit variance functions of the simple form:

Vp(�) = �+ �
p; p 2 f0g [ [1;1); (1)

where � > �1 for p = 0 and � > 0 for p � 1. The index (or �power�) parameter p
given in (1) is associated to a particular additive EDM, which is a linear exponen-
tial family with a dispersion parameter � > 0. Recall that EDMs are the prototype
response distributions for Generalized Linear Models (McCullagh and Nelder 1989;
Jørgensen 2001). This third parameter p takes place on the support Sp of distri-
butions as follows: S0 = f�1; 0; 1; � � � g = f�1g [ N, S1 = 2N and Sp = pN [ N
for p > 1. Consequently, we only need p 2 f2; 3; � � � g for analyzing count data. As
particular cases, we have the negative binomial for p = 2 and the strict arcsine for
p = 3 (Kokonendji and Khoudar 2004; Kokonendji and Marque 2005). The limit
case (p!1) is associated to a Poisson distribution.

Note however that the origin of Hinde-Demétrio family could be an approximation
(in terms of unit variance function) to the Poisson-Tweedie family, which is also the
set of EDMs generated by Poisson mixture with positive stable mixing distribution
(Hougaard et al. 1997). Short precisely, since positive stable distributions belong to
the Tweedie family of EDMs with unit variance function �p; p 2 (�1; 0] [ [1;1)
(Jørgensen 1997, chap. 4; Dunn and Smyth 2005, for recent developments) the only
reasonable mixtures of Poisson with Tweedie mixing distributions are produced for
p � 1 and, then, the unit variance functions of the Poisson-Tweedie family are
� + �p expf(2 � p)�p(�)g for � > 0 and negative function �p(�) generally implicit
according to p � 1 (Kokonendji et al. 2004, Propositions 2 and 6). All Poisson-
Tweedie distributions are concentrated on N with explicit density expressions for p �
1 (Kokonendji et al. 2004, Proposition 3). Their particular cases are Neyman type
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A for p = 1 (Johnson et al. 1992, pp. 368-), Pólya-Aeppli for p = 3=2 (Vinogradov
2006), negative binomial for p = 2 (Lawless 1987) and Poisson-inverse Gaussian for
p = 3 (Dean et al. 1989); the limit case (p ! 1) is easily associated to a Poisson
distribution like the Hinde-Demétrio family.

Let us also recall here the meaning of overdispersion and zero-in�ation for any count
distribution such that its mean is m > 0, its variance is �2 > 0 and its proportion
of zeros is p0 > 0 (Puig and Valero 2006). In fact, a count distribution is overdis-
persed or Poisson-overdispersed when its variance �2 is greater than the variance of
a Poisson distribution having the same mean m; hence, its overdispersion index can
be de�ned as OD = (�2 �m)=m. Similarly, a count distribution is said to be zero-
in�ated or Poisson-zero-in�ated if its proportion of zeros p0 exceeds the proportion
of zeros of a Poisson distribution having the same mean m, that is exp(�m). Then
the zero-in�ation index of this distribution is ZI = 1+ log(p0)=m. Both indexes are
null for a Poisson distribution and positive for any overdispersed and zero-in�ated
distribution. Then, both properties are closed under independence of e¤ects (Puig
2003) and are explained by mixed Poisson distributions (Feller 1943) such Poisson-
Tweedie distributions and by stopped Poisson distributions (Douglas 1980) such
Hinde-Demétrio distributions. Only the negative binomial distribution is common
to Poisson-Tweedie and Hinde-Demétrio families as for many families of count dis-
tributions (with three parameters) having at least one of those properties (Castillo
and Pérez-Casany 2005; Kokonendji and Mizère 2005; Walhin and Paris 2006).

The aim of this paper is �rst to introduce HDRM for count data, for which we can
estimate the index parameter p for the adequate additive EDM, and then to study
the e¤ect of dispersion parameter � in HDRM when the index parameter p is �xed.
The discussion will be essentially on modelling the unit and standard means. Hence,
we organise the paper as follows. In Section 2 some main properties on the response
distributions are recalled and the HDRMs are de�ned with the generalized linear
modelling framework. Section 3 presents a test for choosing p in f2; 3; � � � g[f1g for
the adequate additive EDM in the Hinde-Demétrio family. Section 4 brie�y discusses
the estimation methods which could be used for a given count additive EDM of the
Hinde-Demétrio family when the index parameter p is �xed. Section 5 illustrates the
methodology using a horticultural data set. Section 6 concludes.

2 HINDE-DEMÉTRIO REGRESSION MODELS

2.1 Properties of Hinde-Demétrio Models

Given p 2 f0g [ [1;1) as in (1), the probability mass function (pmf) of any Hinde-
Demétrio distribution HDp(�; �) is written in form of the additive EDM as

P (y; p; �; �) = Ap(y;�) expf�y � �Kp(�)g; y 2 Sp; (2)
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where � 2 �p � R is the canonical parameter, � > 0 is the dispersion (or scaling)
parameter, Ap(y;�) is the normalizing constant, Kp(�) is the cumulant function
checking K 00

p (�) = Vp(K
0
p(�)) = K

0
p(�) + (K

0
p(�))

p, and the support Sp is such that
S0 = f�1g [ N, S1 = 2N and Sp = pN [ N for p > 1. Apart from the four distrib-
utions obtained for p 2 f0; 1; 2; 3g, none of the Hinde-Demétrio models has explicit
pmf even if the cumulant functions can be expressed as:

Kp(�) = e
�
2F1

 
1

p� 1 ;
1

p� 1;
p

p� 1; e
�(p�1)

!
; � < 0; p > 1; (3)

where 2F1 (a; b; c; z) = 1+(ab=c)(z=1!)+(a(a+1)b(b+1)=c(c+1))(z2=2!)+ � � � is the
Gaussian hypergeometric function (Johnson et al. 1992, pp. 17-19). When p ! 1
the limit case HD1(�; �) is the Poisson EDM with mean m = �K 0

1(�) = �e� as
described by Jørgensen (1997, pp. 90-92).

For p > 1, any Hinde-Demétrio distribution HDp(�; �) is a stopped Poisson distrib-
ution. Indeed, let U be a discrete random variable taking its values on

U(
) = f1; p; 2p� 1; 3p� 2; � � � g (4)

and such that its probability generating function (pgf) is

E(zU) = c(p; q) z 2F1

 
1

p� 1 ;
1

p� 1;
p

p� 1; (qz)
p�1
!
; (5)

where q = q(�) 2 (0; 1) is a reparametrization of � given in (2) and c(p; q) a normal-
izing constant. We denote U � HD�p(q) = HD�p(�). Let Nt be a standard Poisson
process on the interval (0; t] (N0 = 0) with intensity � [that is Nt � P(�t)] and
supposed to be independent of U . From the pgf of

Yt =
NtX
i=1

Ui = U1 + � � �+ UNt ; (6)

where the Ui are independent and identically distributed as U � HD�p(q(�)), one
has Y1 � HDp(q; �) = HDp(�; �) by �xing the time to t = 1 (Kokonendji et al.
2004). From (4-6) one can appreciate di¤erent connection of parameters p, � and �
with respect to auxiliary random variables U and N1. For p = 2 we then have a new
probabilistic interpretation of the negative binomial distribution HD2(�; �). There
the Poisson stopped-sum representation (6) can be also found under the popular
name of compound Poisson (Feller 1971; Hinde 1982), but could be confuse (for
example to certain mixed Poisson and to the Tweedie distributions with 1 < p <
2). Another property of Hinde-Demétrio processes (6) is that their modi�ed Lévy
measures, which describes the probabilistic character of the jumps of Yt, always are
the negative binomial distributions (up to a¢ nity) for all p > 1. See Kokonendji and
Khoudar (2006) for more details.

For count Hinde-Demétrio HDp(�; �) distributions, that is p 2 f2; 3; � � � g [ f1g,
Kokonendji and Malouche (2005) have shown the following original property: if we
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denote ry = y P (y; p; �; �)=P (y� 1; p; �; �) = ry(p; �; �) for all � < 0 and � > 0 then

r1 = r2 = � � � = rp�1 < rp 6= rp+1 > r1; 8p 2 f2; 3; � � � g: (7)

These relations hold for all � and �. The equality part of (7) means that the index
parameter p 2 f2; 3; � � � g of any Hinde-Demétrio distribution is the �rst integer for
which the recursive ratio ry, y 2 N�, is di¤erent from the previous. For the Poisson
distribution with mean m > 0, we have ry = m for all y 2 N� and, therefore, it
is regarded as limit of HDp(�; �) when p tends to 1; as we can also show from
(6) with U = 1 almost surely. Hence, the two extremities of count Hinde-Demétrio
distributions (corresponding to p = 2 as negative binomial and p!1 as Poisson)
belong to the so-called Katz family by Johnson et al. (1992, p. 78). The property (7)
is characteristic of count Hinde-Demétrio distributions and constituted the point of
departure for evaluating p 2 f2; 3; � � � g by statistical tests which do not depend on
parameters � and �; see Section 3 below.

The last serie of properties is classical but most important for de�ning the regression
models. The �rst is that any Hinde-Demétrio model is closed under convolution:
HDp(�; �1) � HDp(�; �2) = HDp(�; �1 + �2) for �1; �2 > 0. Then, for �xed p 2
f0g[ [1;1), the expectation and variance of Y � HDp(�; �) are Ep;�;�(Y ) = �K 0

p(�)
and varp;�;�(Y ) = �K 00

p (�) = �Vp(K
0
p(�)), respectively. Since � 7! Kp(�) is strictly

convex for � < 0 and from (1), we �rstly reparametrize the additive HDp(�; �) by
its unit mean � = K 0

p(�) as HDp(�; �) for which the unit variance function Vp(�) is
proportional to the dispersion parameter � like a �reproductive�EDM:

� = K 0
p(�) = �

�1Ep;�;�(Y ) and var�;�(Y ) = �Vp(�) = (�+ �
p)�; (8)

where � > 0 and � = �(p; �) > 0 (not depending on �). Secondly, we use the
standard mean parametrization HDp(m;�) of the additive HDp(�; �) as follows:

m = �K 0
p(�) = Ep;�;�(Y ) and varm(Y ) = �Vp(m=�) = m+ �

1�pmp; (9)

where � > 0 and m = m(p; �; �) > 0. A reason behind the two mean parame-
trizations (8) and (9) is essentially due to the pratical use of the variance-to-mean
relationship, which must provide the same behaviour in presence of data as � is near
of 1 for given p. Finally, it is also known that all Hinde-Demétrio family has both
overdispersed [e.g., from (1): Vp(�) > � > 0] and zero-in�ated [e.g., from (6) and
Douglas (1980)] distributions with respect to Poisson distribution. From (2) the char-
acteristic indexes are OD(p; �; �) = [K 0

p(�)]
p�1 and ZI(p; �; �) = 1 � Kp(�)=K

0
p(�)

respectively and, they are positive and do not depend on �.

2.2 Hinde-Demétrio Regression Models (HDRMs)

Let Y be a single count response variable and let x be an associated vector of
covariates with a vector � of unknown regression coe¢ cients. The �rst HDRM for
Y on x is de�ned from (8) as Y � HDp(�; �), where � = �(x;�) is a positive-
valued function related to x and to � by a link function (McCullagh and Nelder
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1989; Jørgensen 2001), � > 0 and p 2 f2; 3; � � � g. For convenience we can write
Y � HDp(�(x;�); �) to denote this HDRM for which the dispersion parameter �
is not connected to the covariates x via the unit mean � = �(x;�) but through the
variance var(Y ) = (� + �p)� of Y . From (1) and Kokonendji et al. (2004, formula
(16)), its canonical link function is given, for all p 2 f2; 3; � � � g, as:

� = exp(xT�)[1� expf(p� 1)xT�g]�1=(p�1): (10)

In practice we can use the common log-linear link function of count data � =
exp(xT�), which does not depend on p and is also obtained from (10) when p!1.

Similarly we de�ne the second HDRM for Y on x as Y � HDp(m;�) such that
� is, theoretically, connected both to the standard mean m = m(x;�) and to the
variance var(Y ) = m+�1�pmp of Y . In Kokonendji and Marque (2005), this model
Y � HDp(m(x;�); �) is used for p 2 f2; 3g with the usual log-linear link function
log(m) = xT� and the maximum likehood method.

For this work we do not consider the dispersion parameter modelling � = �(z;),
where z is a second vector of covariates (not necessarily independent of the �rst x and
through to a¤ect the dispersion) and  is the corresponding vector of unknown re-
gression coe¢ cients. That would lead to a kind of Double Generalized Linear Model.
See, for example, Smyth and Jørgensen (2002) for a Tweedie regression model. Also,
it is not envisaged to modelling the index parameter as p = p(w; �). Finally, a
HDRM can be de�ned in di¤erent ways according to the modelling parameters as
above and also to the parametrizations, namely HDp(�; �) from (8), HDp(m;�)
from (9), HDp(�; �) from (2) and HDp(q; �) from (6). Of course these de�nition
could be extended to the others, likely Generalized Linear Mixed Model (Hinde and
Demétrio 1998, chap. 6, and references therein) or Double Hierarchical Generalized
Linear Models by Lee and Nelder (2006) for more ideas.

3 CHOICE OF THE RESPONSE EDM IN HDRMs

Consider a HDRM with unknown index parameter p 2 f2; 3; � � � g [ f1g. Without
loss of generality, let Y = (Y1; � � � ; Yn) be a vector of random sample of count
response with Yi � HDp(�i(x;�); �), i = 1; � � � ; n. To evaluate the adequate p 2
f2; 3; � � � g for this HDRM, we �rst adapt the statistical test procedure developed by
Kokonendji and Malouche (2005) with no covariates and then, if it is necessary, we
use a criterion of model selection (Akaike 1973; Schwarz 1978; Linhart and Zucchini
1986; Pan 2001) to determine the appropriated value of p.

More precisely, from (7) we investigate the p(p� 1)=2 testing problems

H ij
0p : ri = rj versus H ij

1p : ri < rj (1 � i < j � p); (11)

which are tested individually at signi�cance level � 2 (0; 1). Starting with p = 2,
we stop at the �rst p 2 f2; 3; � � � g, denoted by bp = bp(Y; �), for which one of
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alternative hypothesis H ip
1p (i = 1; � � � ; p � 1) is accepted, i.e., the corresponding

individual p-value b�ip is smaller than �. Thus, if we hesitate between two values
(bp1 and bp2 = bp1 + 1) of p according to the choice of the level �, we can use an
indicator of model selection (e.g., log-likelihood or deviance criterion) to choose
between them. This last part depends on the methods used to estimate � and �
in the HDRM Yi � HDp(�i(x;�); �); see the next section. So, in this section we
only present the theory necessary to the determination of bp based on (11). See
Kokonendji and Malouche (2005) for details on simulation studies and applications
without covariates, where the criterion of model selection is the adequation chi-
squared test of Pearson.

Let Y = (Y1; � � � ; Yn) be a vector of random sample of count response. Denote,

for all y 2 N, Fy = 1
n

nP
i=1
1fYi=yg = Fy(Y) the random sample relative frequency.

Following Kokonendji and Malouche (2005), we consider the test stastistics of (11)

Tij =
i Fi Fj�1
j Fi�1 Fj

= Tij(Y) (1 � i < j � p) (12)

such that their asymptotic normalities are obtained by the classical frequency sub-
stitution method (Bickel and Doksum 1977) as:

Proposition 1 Suppose p0; p1; � � � ; pk are (population) proportions with pl = Pr(Y =
l); l = 0; 1; � � � ; k � 1, pk = Pr(Y � k), and k � p 2 f2; 3; � � � g. Then the statistics
Tij = Tij(Y) de�ned in (12) are asymptotically normal:

p
n(Tij � ri=rj)=�ij ! N (0; 1) as n!1 (1 � i < j � p);

where �2ij := var(Tij) = �
2
ij(p0; p1; � � � ; pk) is given by

�2ij =

8><>: (ri=ri+1)
2 (1=pi�1 + 4=pi + 1=pi+1) for j = i+ 1

(ri=rj)
2 (1=pi�1 + 1=pi + 1=pj�1 + 1=pj) for j > i+ 1:

(13)

Remark 2 (i) A consistent estimator of �2ij is usually provided by b�2ij = �2ij(F0; F1; � � � ; Fk)
with Fk = 1

n

nP
i=1
1fYi�kg. (ii) When bp is large (or bp � k), we can decide that Y �

HD1(�; �), which is the Poisson distribution of mean m = ��. (iii) The frequent
situation bp = 2 means two things: p really equals to 2 (e.g. Yi � HD2(�i(x;�); �) as
negative binomial model) or not (i.e. Yi follows a Poisson model or another model
which is not a HDRM); thus, the test p = 2 has general interest for count data.

Another way to estimate p 2 f2; 3; � � � g is to use the moment methods. Indeed, if
Y � HDp(�; �) or Y � HDp(m;�) with �2 = var(Y ) then we easily get p from (8)
as p1(�) = log(�2=���)= log(�) and from (9) as p2(�) = log((�2�m)=�)= log(m=�),
respectively. For �xed � = 1 we have � = m and, then,

p1(1) = p2(1) =
log(�2 �m)
log(m)

= p: (14)
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Thus we obtain a real estimate p� which lies between two integers p�1 = bp�c and
p�2 = p

�
1 + 1, where bac denotes the integer part of a 2 R. As presented above, i.e.

after applying the twice corresponding HDRM with p�1 and p
�
2, we must use here an

indicator of model selection to decide �the�adequate p� between them. Kokonendji
et al. (2004) used this idea without covariates and, then, one could also use the
criterion of the adequation chi-squared test of Pearson to select p 2 f2; 3; � � � g.
However, an estimator by moment methods (14) is generally known to be ine¢ cient,
but sometimes more useful as correct indicator of the parameter p when the �rst p�

from (14) belongs to [2;1).

4 BACKGROUND FOR ESTIMATING IN HDRMs

Now we consider a HDRM such that the index parameter p 2 f2; 3; � � � g is �xed or
estimated following the previous section. According to the value of p one can use var-
ious approaches, namely maximum likelihood, (extended) quasi-likelihood, pseudo-
likelihood and moment methods. See, for example, Hinde and Demétrio (1998, chap.
3) for a summary. For both models (8) and (9), and in view of application in the
next section, we here present the basic materials of likelihood and deviance which
are the unit pmf P �(y; p;�; �) from (2) and the unit deviance function

D�
p(y;�) := �2

Z �

y

y � t
Vp(t)

dt = �2
Z �

y

y � t
t+ tp

dt; (15)

respectively (Jørgensen 1997). In fact, if the considered HDRM is from (8), then the
pmf of Y � HDp(�; �) is P �(�y; p;�; �) and its deviance function is ��1D�

p(y;�).
Also, if the HDRM is de�ned from (9) like Y � HDp(m;�), then its pmf is given
by P �(y; p;m��1; �) and its deviance function is ��1D�

p(y;m�
�1). It is worth noting

for correct use of the models in terms of the dispersion parameter �.

Letting � = K 0
p(�) and, then,Bp(�) = exp(�). From (2-3) the unit pmf P

�(y; p;�; �) :=
P (y; p; logBp(�); �) can be expressed, for all y 2 N and p 2 f2; 3; � � � g, as:

P �(y; p;�; �) =Ap(y;�) [Bp(�)]
y

� exp
(
��Bp(�) 2F1

 
1

p� 1 ;
1

p� 1;
p

p� 1; [Bp(�)]
p�1
!)
; (16)

where Ap(y;�) remains as in (2) and, from Kokonendji et al. (2004, formula (16)),

Bp(�) = �
�
1 + �p�1

��1=(p�1)
: (17)

For instance, that gives explicitly (Johnson et al. 1992, p. 18) the negative binomial
case with p = 2 as

P �(y; 2;�; �) =
�(y + �)

y!�(�)

 
�

1 + �

!y  
1

1 + �

!�
; y 2 N;
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and the strict arcsine case with p = 3 as

P �(y; 3;�; �) =
A3(y;�)

y!

 
�p
1 + �2

!y
exp

(
�� arcsin �p

1 + �2

)
; y 2 N;

where A3(y;�) is given in Letac and Mora (1990) by

A3(y;�) =

8>><>>:
z�1Q
k=0
(�2 + 4k2) if y = 2z; and A3(0;�) = 1

�
z�1Q
k=0
[�2 + (2k + 1)2] if y = 2z + 1; and A3(1;�) = �:

Concerning to the unit deviance function (15) which can be written as

D�
p(y;�)= 2

"
y log

 
Bp(y)

Bp(�)

!
+
Z �

y

dt

1 + tp�1

#
(18)

=2

"
y log

 
Bp(y)

Bp(�)

!
+
��(��p�1; 1; 1=(p� 1))� y�(�yp�1; 1; 1=(p� 1))

p� 1

#
;

where �(a; s; b) =
P
k�0 a

k=(k+ b)s is the Lerch � function (Erdélyi et al. 1955), we
obtain from (17) the two only simple cases:

D�
p(y;�) =

8><>: 2 [y log fy(1 + �)[�(1 + y)]
�1g+ log f(1 + �)=(1 + y)g] for p = 2

2
h
y log

n
(y
p
1 + �2)=(�

p
1 + y2)

o
+ arctan�� arctan y

i
for p = 3:

A computer algebra program (e.g. Maple) can provide long expressions of D�
p(y;�)

for p = 4; 5; 6. Both expressions (16) and (18) show the need of good approximation
technics when we use a count HDRM with p 2 f4; 5; � � � g and quasi- and likelihood
methods. See, for instance, Dossou-Gbété et al. (2006).

5 ILLUSTRATIVE EXAMPLE

5.1 Data Set

We consider the data used by Ridout et al. (1998, tables 1 and 2); see also Ridout
et al. (2001, table 2). However, we examine them on a di¤erent way for studing the
behaviour of HDRM when the index parameter p belongs to f2; 3g [ f1g, which
are extremities of its domain. Table 1 gives the number of roots produced by 270
micropropagaged shoots of the columnar apple cultivar Trajan and some related
statistics. During the rooting period, all shoots were maintained under identical
conditions, but the shoots themselves had been produced under an 8- or 16-hour
photoperiod in culture systems. For each of two photoperiods, it was used one of four
di¤erent concentrations of the cytokinin BAP in the culture medium. There were
140 shoots produced under the 8-hour photoperiod, which are weakly overdipersed,
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as also shown in Figs. 1 and 2, and quasi-none zero-in�ated. However, the other 130
shoots produced under the 16-hour photoperiod are really overdispersed (see, e.g.,
Figs. 3 and 4) with an important excess of zeros. Ridout et al. (1998) analyzed these
phenomena by �tting various models to these data as a whole, based on the Poisson
and negative binomial distributions and their so-called zero-in�ated contreparts.
They had concluded on the di¤erent e¤ect of these two photoperiods.

Table 1 about here
Figures 1, 2, 3 and 4 about here

5.2 Methodology and Results

Here we use two HDRMs separately for each one of the two photoperiods 8 and
16 for pointing out the e¤ect of dispersion parameter through the double mean
parametrization (8) and (9). All computations are done using the R software (R
Development Core Team 2005; Kuhnert and Venables 2005; Venables and Ripley
2002). The corresponding p-value(t12) in Table 1 suggest that we have bp = 2 for
the two HDRMs [see Remark 2 (iii)]. However, the corresponding values of p� allow
to consider mainly two models (in the extended HDRM) between, �rst, p = 2 and
p = 1 for the 8-hour photoperiod, and second, p = 2 and p = 3 for the 16-hour
photoperiod, respectively. For all models HDp(�(x;�); �) and HDp(m(x;�); �), we
consider the common log-linear link function

� = exp(xT�) = m with xT� = �0 + �1x+ �2x
2 + �3x

3;

and only the variances change following (8) and (9). Hence, for �xed p 2 f2; 3; � � � g,
the adequate model would produce b� near of 1. Note that, following Jørgensen (1997,
pp. 90-92), the Poisson HDRM is HD1(m) = HD1(�; 1) = HD1(m; 1), without
dispersion parameter �.

For �xed p 2 f2; 3g [ f1g, full maximum likelihood estimation can be used be-
cause the corresponding HDRMs present a complete and explicit (unit) pmf for
the response variable. For a future use and since the unit variance function (1) has
a simple form, we here describe the quasi-likelihood and related methods (Hinde
and Demétrio 1998, chap. 3). Hence, for quasi-likelihood method, only deviance cri-
terion for comparing the performance of models must be computed and we could
use a modi�ed Akaike�s Information Criterion (AIC) which would provide the same
behaviour (Pan 2001; Lee and Nelder 2003).

The principle of the quasi-likelihood method for a model (8) with variance of the
form var(Yi) = �Vp(�i) is to estimate the regression parameters by maximizing the
quasi-likelihood

Qp = �
1

2

nX
i=1

D�
p(yi;�i)

�
;

where D�
p is the unit deviance function (15) and (18). The regression parameter

estimates b� are the same to those for the respective non-dispersed model (here
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Poisson) and the (over)dispersion parameter � is estimated by equating the Pearson
X2 statistic to the residual degrees of freedom n� r:

b� = 1

n� r

nX
i=1

(yi � b�i)2b�i :

The estimation of � and � is asymptotically independent.

Concerning to the model (9) or (8) which can be described with a variance of the form
var(Yi) = �i(�;mi; p)V (mi), where both the scale parameter �i and the variance
function V (:) may depend upon additional parameters. One suggests estimating the
unknown parameters in the mean (�) and in the variance model (�) by maximizing
the extended quasi-likelihood (EQL) function

Q+p = �
1

2

nX
i=1

(
D(yi;mi)

�i
+ log [2��iV (yi)]

)
;

where D(y;m) := �2
Rm
y (y � t)dt=V (t) is a kind of unit deviance function. Using

EQL for the HDRMs (8) and (9), like negative binomial (p = 2) and stirct arcsine
(p = 3) variance functions, we have the following variance decompositions

for (8): �i = (1 + �
p�1
i )� and V (�i) = �i;

for (9): �i = 1 +m
p�1
i =�p�1 and V (mi) = mi:

The regression parameter estimates b� are here identical to those for the respective
non-dispersed model (here Poisson with �i = 1) and are obtained by estimating
equations for a weighted Poisson model with weights 1=�i. We can obtain an estimate
for � by �tting a gamma model using the Poisson deviance components as y-variable,
an identity link and taking the linear model to have, for (8), a linear regression model
without intercept with 1+�p�1i as explanatory variable, and, for (9), a �xed intercept
(o¤set) of 1 and mp�1

i as explanatory variables. An approximate standard error is
obtained for � by setting the scale to 2, corresponding to modelling �21.

Table 2 about here
Table 3 about here

The results presented in Table 2 and Table 3 were obtained by EQL method, which
quickly converged. They are very interesting and suitable. Indeed, the regression
coe¢ cient estimates b�j(8) and b�j(16) are identical for the �ve proposed models with
respect to the photoperiods 8 and 16, and only standard errors change (Table 3). The
reason comes from the residual deviances and, therefore, the dispersion parameter b�
in Table 2. In fact, with respect to each photoperiod and except the Poisson model
HD1(m) which has poor �tting, we must compare the deviances or AIC within
[i.e. HD2(�(x;�); �) to HD2(m(x;�); �), and HD3(�(x;�); �) to HD3(m(x;�); �)]
and also between [i.e. HD2(�(x;�); �) to HD3(�(x;�); �), and HD2(m(x;�); �) to
HD3(m(x;�); �)] the models, respectively. Hence we can observe di¤erent e¤ects or
estmated values of � near 1 or not for the models (McCullagh and Nelder 1989, p.
400). Note in passing that, for the photoperiod 8, all regression coe¢ cient estimates
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b�j(8) are signi�cant but, for the photoperiod 16, only the intercept coe¢ cient b�0(16)
is signi�cant for the di¤erent models.

For the photoperiod 16, the e¤ect (or value near of 1) of dispersion parameter � is
insigni�cant within the negative binomial (p = 2) models, compared to the strict
arcsine (p = 3) models. This suggests that the negative binomial model can be
�the�best model among the HDRMs for this data set. As for the photoperiod 8,
the e¤ect of dispersion parameter is sizeable both within and between the negative
binomial (p = 2) and strict arcsine (p = 3) models. Hence, also from the end of
Remark 2 (iii), the regression analysis of this photoperiod 8 could be improved by
other models which do not belong to the HDRMs (Ridout et al. 1998, 2001; Walhin
and Paris 2006; Kokonendji and Mizère 2005, for a future use of weighted Poisson
models taking into account both over- and underdispersion situations).

6 CONCLUDING REMARKS

HDRMs cover a new broad family of the overdispersed count data regression models
and, among other models, provide an alternative to the mixtures of Poisson models
(Hougaard et al. 1997; Walhin and Paris 2006). They can be applied in various
domains like agriculture, �nance, epidemiology and ecology. For any index parameter
p �xed in f2; 3; � � � g [ f1g, the EQL method is numerically e¢ cient for estimating
parameters in the HDRMs. The EQL could be generalized when p is unknown. For
instance, the maximum likelihood and quasi-likelihood methods can be used for
p 2 f2; 3g [ f1g. In this paper we have presented a statistical evaluation of the
index parameter p 2 f2; 3; � � � g [ f1g, which is arbitrarily chosen in similar classes
of models (e.g. Walhin and Paris 2006; Dunn and Smyth 2005, for the Tweedie
models). Note that another way than the moment method (14) to evaluate the index
parameter p would be to �nd the p to minimize a distance between the empirical
distribution and the Hinde-Demétrio distribution.

For given p 2 f2; 3; � � � g and from the mean parametrizations (8) and (9), the
e¤ect of dispersion parameter � > 0 according to the unit and standard means
modelling is more important within and between the models when the HDRMs
are not appropriated to the (overdispersed) data set. Conversely, if the dispersion
parameter e¤ect is negligible within a reasonable HDRM for a given p 2 f2; 3; � � � g,
that is � near of 1, then this model is the best one. The same log-linear link function
used in this application for both the unit and standard mean parametrizations,
clearly, allows the within and between comparison of the models. In many count data
regressions using an additive EDM for the response distribution, we must have the
same behaviour as in HDRMs. The standard mean parametrization (9) is generally
and commonly used in lieu of the unit mean parametrization (8), which theoretically
appears appropriate to many situations and present some pratical advantages.

Acknowledgments. This research was essentially done while the �rst author was
visiting USP/ESALQ that he has always appreaciated the hospitality. We are very

12



grateful to FAPESP, CNPq, CCInt/USP and LMA/CNRS for funding that visit.

BIBLIOGRAPHICAL REFERENCES

Akaike, H. (1973), �Information Theory and an Extension of the Maximum Likeli-
hood Principle,�by Petrov, B. N. and Csáki, F. (Eds), Second International Sym-
posium on Inference Theory, pp. 267-281, Budapest: Akadémiai Kiadó. [Reprinted
by Samuel Kotz and Norman L. Johnson (eds.), Breakthroughs in Statistics (Vol.
I), New York: Springer-Verlag (1992 ed.), pp. 599-624 (with an introduction by J.
deLeeuw)].
Bickel, P. J., and Doksum, K. A. (1977), Mathematical Statistics, California - Oak-
land: Holden - Day.
Bosch, R. J., and Ryan, L. M. (1998), �Generalized Poisson Models Arising From
Markov Processes,�Statistics and Probability Letters, 39, 205-212.
Cameron, A. C., and Trivedi, P. K. (1998), Regression Analysis of Count Data,
Cambridge - UK: Cambridge University Press.
Castillo, J., and Pérez-Casany, M. (2005), �Overdispersed and Underdispersed Pois-
son Generalizations,�Journal of Statistical Planning and Inference, 134, 486-500.
Cox, D. R., and Reid, N. (1987), �Parameter Orthogonality and Approximate Con-
ditional Inference�(with discussion), Journal of the Royal Statistical Society, Ser.
B, 49, 1-39.
Dean, C., Lawless, J. F., and Willmot, G. E. (1989), �A Mixed Poisson-Inverse
Gaussian Regression Model,�The Canadian Journal of Statistics, 17, 171-181.
Dossou-Gbété, S., Demétrio, C. G. B., and Kokonendji, C. C. (2006), �An MM-
Algorithm for a Class of Overdispersed Regression Models,�in Proceedings of the
9th International Conference Zaragoza-Pau on Applied Mathematics and Statis-
tics, Jaca (Spain), September 19-21th 2005 (to appear).
Douglas, J. B. (1980), Analysis With Standard Contagious Distributions, Fairland
- Md: International Cooperative Publishing House.
Dunn, P. K., and Smyth, G. K. (2005), �Series Evaluation of Tweedie Exponential
Dispersion Model Densities,�Statistics and Computing, 15, 267-280.
Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1955), Higher
Transcendental Functions (vol. III), New York: McGraw-Hill.
Feller, W. (1943), �On a General Class of Contagious Distributions,�The Annals
of Mathematical Statistics, 14, 389-400.
� � �(1971), An Introduction to Probability Theory and its Applications (vol. 2,
2nd ed.), New York: Wiley.
Hall, D. B., and Berenhaut, K. S. (2002), �Score Tests for Heterogeneity and
Overdispersion in Zero-In�ated Poisson and Binomial Regression Models, The
Canadian Journal of Statistics, 30, 1-16.
Hinde, J. (1982), �Compound Poisson Regression Models,�by R. Gilchrist (Ed.),
GLIM82, pp. 109-121, New York: Springer-Verlag.
Hinde, J., and Demétrio, C. G. B. (1998), Overdispersion: Models and Estimation,
São Paulo: Associação Brasileira de Estatística.
Hougaard, P., Lee, M-L. T., and Whitmore, G. A. (1997), �Analysis of Overdis-
persed Count Data by Mixtures of Poisson Variables and Poisson Processes,�
Biometrics, 53, 1225-1238.

13



Johnson, N. L., Kotz, S., and Kemp, A. W. (1992), Univariate Discrete Distribu-
tions (2nd ed.), New York: John Wiley & Sons.
Jørgensen, B. (1997), The Theory of Dispersion Models, London: Chapman & Hall.
� � �(2001), �Generalized Linear Models,�Research Report No. 33, Odense Uni-
versity, Dept. of Statistics and Demography [Contribution to Encyclopedia of En-
vironmetrics, to be published by Wiley, Chichester].
Kokonendji, C. C., Demétrio, C. G. B., and Dossou-Gbété, S. (2004), �Some
Discrete Exponential Dispersion Models: Poisson-Tweedie and Hinde-Demétrio
Classes,�Statistics and Operations Research Transactions, 28, 201-214.
Kokonendji, C. C., and Khoudar, M. (2004), �On Strict Arcsine Distribution,�
Communication in Statistics, Part A - Theory and Methods, 33, 993-1006.
� � �(2006), �On Lévy Measure for In�nitely Divisible Natural Exponential Fam-
ilies,�Statistics and Probability Letters, in press.
Kokonendji, C. C., and Malouche, D. (2005), �A Property of Count Distributions
in the Hinde-Demétrio Family,�Technical Report No. 0421, University of Pau,
Laboratory of Appl. Math.(submitted for publication).
Kokonendji, C. C., and Marque, S. (2005), �A Strict Arcsine Regression Model,�
Advances in Mathematics - African Diaspora Journal of Mathematics, 1, 85-92.
Kokonendji, C. C., and Mizère, D. (2005), �Overdispersion and Underdispersion
Characterization of Weighted Poisson Distributions,�Technical Report No. 0523,
University of Pau, Laboratory of Appl. Math. (submitted for publication).
Kuhnert, P., and Venables, B. (2005), An Introduction to R: Software for Statistical
Modelling & Computing, Piracicaba - SP: ESALQ/USP Silvio S. Zocchi (ed.).
Lawless, J. F. (1987), �Negative Binomial and Mixed Poisson Regression,�The
Canadian Journal of Statistics, 15, 203-225.
Lee, Y., and Nelder, J. A. (2003), �Extended-REML Estimators,�Journal of Ap-
plied Statistics, 30, 845-856.
� � �(2006), �Double Hierarchical Generalized Linear Models�(with discussion),
Journal of the Royal Statistical Society, Ser. C, 55 (2), in press.
Letac, G., and Mora, M. (1990), �Natural Real Exponential Families With Cubic
Variance Functions,�The Annals of Statistics, 18, 1-37.
Linhart, H., and Zucchini, W. (1986), Model Selection, New York: Wiley.
McCullagh, P., and Nelder, J. A. (1989), Generalized Linear Models (2nd ed.),
London: Chapman & Hall.
Mullahy, J. (1997), �Heterogeneity, Excess Zeros, and the Structure of Count Data
Models,�Journal of Applied Economestrics, 12, 337-350.
Pan, W. (2001), Akaike�s Information Criterion in Generalized Estimating Equa-
tions, Biometrics, 57, 120-125.
Puig, P. (2003), �Characterizing Additively Closed Discrete Models by a Property
of their Maximum Likelihood Estimators With Application to Generalized Her-
mite Distributions,�Journal of the American Statistical Association, 98, 687-692.
Puig, P., and Valero, J. (2006), �Count Data Distributions: Some Characterizations
With Applications,�Journal of the American Statistical Association, 101, 332-340.
R Development Core Team (2005), R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, URL http://www.R-project.org.
Ridout, M., Demétrio, C. G. B., and Hinde, J. (1998), �Models for Count DataWith

14



Many Zeros,� in Proceedings of the XIXth International Biometrics Conference,
Cape Town, Invited Papers, pp. 179-192.
Ridout, M., Hinde, J., and Demétrio, C. G. B. (2001), �A Score Test for Testing a
Zero-In�ated Poisson Regression Model Against Zero-In�ated Negative Binomial
Alternatives,�Biometrics, 57, 219-223.
Schwarz, G. (1978), �Estimating the Dimension of a Model,�The Annals of Sta-
tistics, 6, 461-464.
Smyth, G. K., and Jørgensen, B. (2002), �Fitting Tweedie�s Compound Poisson
Model to Insurance Claims Data: Dispersion Modelling,�Astin Bulletin, 32, 143-
157.
Venables, W. N., and Ripley, B. D. (2002), Modern Applied Statistics With S (4th
ed.), New York: Springer-Verlag.
Vinogradov, V. (2006), �On In�nitely Divisible Exponential Dispersion Model Re-
lated to Poisson-Exponential Distritbution,�Communication in Statistics, Part
A - Theory and Methods, submitted for publication.
Walhin, J. F., and Paris, J. (2006), �A Mixed Poisson Model With Varying Element
Sizes,�Statistical Methodology, in press.

15



Table 1
Frequency distributions of the number of roots produced by 270 shoots of the apple cultivar
Trajan, classi�ed by experimental conditions (photoperiod and BAP concentration) under
which the shoots were reared; shown are the numbers of shoots that produced 0; 1; � � � ; 12
roots; counts that exceeded 12 are shown individually (Redout et al., 1998, 2001). Some
statistics are also calculated with OD = (b�2 � bm)=bm, ZI = 1 + log(f0)=bm, p� = log(b�2 �bm)= log(bm) from (14) and p-value(t12) from (12).

Photoperiod 8 8 8 8 16 16 16 16

Bap (�M) 2:2 4:4 8:8 17:6 2:2 4:4 8:8 17:6

No. of roots Total 8 Total 16

0 0 0 0 2 2 15 16 12 19 62

1 3 0 0 0 3 0 2 3 2 7

2 2 3 1 0 6 2 1 2 2 7

3 3 0 2 2 7 2 1 1 4 8

4 6 1 4 2 13 1 2 2 3 8

5 3 0 4 5 12 2 1 2 1 6

6 2 3 4 5 14 1 2 3 4 10

7 2 7 4 4 17 0 0 1 3 4

8 3 3 7 8 21 1 1 0 0 2

9 1 5 5 3 14 3 0 2 2 7

10 2 3 4 4 13 1 3 0 0 4

11 1 4 1 4 10 1 0 1 0 2

12 0 0 2 0 2 1 1 1 0 3

> 12 13; 17 13 14; 14 14 6

No. of shoots 30 30 40 40 140 30 30 30 40 130

Mean: bm 5:8 7:8 7:5 7:2 7:1 3:3 2:7 3:1 2:5 2:9

Variance: b�2 14:1 7:6 8:5 8:8 9:8 16:6 14:8 13:5 8:5 12:8

OD 1:42 �0:03 0:13 0:22 0:39 4:06 4:40 3:31 2:47 3:46

ZI � � � 1:10 1:10 1:82 2:03 1:80 2:18 2:44

p� 1:2 � 0 0:24 0:52 2:17 2:51 2:07 1:96 2:18

p-value(t12) � � � � 8e-8 � 3e-3 6e-4 9e-5 0
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Table 2
Results of AIC, deviance and dipersion parameter with its standard error (se) for �tting
various HDRMs [(8) and (9)] to the data from Table 1.

Model Photoperiod AIC df Deviance b�(se)
HD1(m) 8 729:31 136 206:88 �

HD2(�; �) 8 485:40 136 140:00 0:189(0:023)

HD2(m;�) 8 503:99 136 143:34 15:491(5:890)

HD3(�; �) 8 471:64 136 140:00 0:032(0:004)

HD3(m;�) 8 514:95 136 147:44 10:851(8:579)

HD1(m) 16 843:60 126 606:16 �

HD2(�; �) 16 187:43 126 130:00 1:206(0:150)

HD2(m;�) 16 187:40 126 129:96 0:782(0:124)

HD3(�; �) 16 187:79 126 130:00 0:513(0:064)

HD3(m;�) 16 188:41 126 130:51 1:495(0:474)

Table 3
Results of standard errors of regression coe¢ cient estimates b�j(8) and b�j(16) for the Table
2 according to the photoperiods 8 and 16.

Model b�0(8) = 1:15810 b�1(8) = 0:36104 b�2(8) = �0:04203 b�3(8) = 0:00137
HD1(m) 0:291691 0:145364 0:018804 0:000655

HD2(�; �) 0:348643 0:178646 0:023343 0:000817

HD2(m;�) 0:347798 0:175108 0:022733 0:000793

HD3(�; �) 0:347472 0:184144 0:024330 0:000855

HD3(m;�) 0:341715 0:173359 0:022571 0:000789b�0(16) = 1:64502 b�1(16) = �0:28746 b�2(16) = 0:03843 b�3(16) = �0:00139
HD1(m) 0:431564 0:226852 0:030012 0:001057

HD2(�; �) 0:949686 0:492558 0:065009 0:002289

HD2(m;�) 0:951093 0:492903 0:065046 0:002290

HD3(�; �) 0:984797 0:501132 0:065899 0:002319

HD3(m;�) 0:974558 0:497715 0:065496 0:002305
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Fig. 1. Half-normal plot for photoperiod 8 with Poisson simulated envelope.
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Fig. 2. Half-normal plot for photoperiod 8 with negative binomial simulated envelope.
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Fig. 3. Half-normal plot for photoperiod 16 with Poisson simulated envelope.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Half normal scores

|D
ev

ia
nc

e 
re

si
du

al
|

Fig. 4. Half-normal plot for photoperiod 16 with negative binomial simulated envelope.
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