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We derive l∞ convergence rate simultaneously for Lasso and Dantzig estimators in a high-dimensional linear regression model under a mutual coherence assumption on the Gram matrix of the design and two dierent assumptions on the noise: Gaussian noise and general noise with nite variance. Then we prove that simultaneously the thresholded Lasso and Dantzig estimators with a proper choice of the threshold enjoy a sign concentration property provided that the non-zero components of the target vector are not too small.

Introduction

The Lasso is an l 1 penalized least squares estimator in linear regression models proposed by Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]. The Lasso enjoys two important properties. First, it is naturally sparse, i.e., it has a large number of zero components. Second, it is computationally feasible even for high-dimensional data (Efron et al. [START_REF] Efron | Least angle regression[END_REF], Osborne et al. [START_REF] Osborne | On the Lasso and its dual[END_REF]) whereas classical procedures such as BIC are not feasible when the number of parameters becomes large. The rst property rises the question of model selection consistency of Lasso, i.e., of identication of the subset of non-zero parameters. A closely related problem is sign consistency, i.e., identication of the non-zero parameters and their signs (cf. Bunea [START_REF] Bunea | Consistent selection via the Lasso for high dimensional approximating regression models[END_REF],

Meinshausen and Bühlmann [START_REF] Meinshausen | High dimensional graphs and variable selection with the Lasso[END_REF], Meinshausen and Yu [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF], Wainwright [START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF], Zhao and Yu [START_REF] Zhao | On model selection consistency of Lasso[END_REF] and the references cited in these papers).

Zou [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF] has proved estimation and variable selection results for the adaptive Lasso: a variant of Lasso where the weights on the dierent components in the l 1 penalty vary and are data dependent. We mention also work on the convergence of the Lasso estimator under the prediction loss: Bickel, Ritov and Tsybakov [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], Bunea, Tsybakov and Wegkamp [START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF], Koltchinskii [START_REF] Koltchinskii | Sparsity in penalized empirical risk minimization[END_REF][START_REF] Koltchinskii | Dantzig selector and sparsity oracle inequalities[END_REF], Van der Geer [START_REF] Van Der Geer | High dimensional generalized linear models and the Lasso[END_REF][START_REF] Van Der Geer | The Deterministic Lasso[END_REF].

Knight and Fu [START_REF] Knight | Asymptotics for lasso-type estimators[END_REF] have proved the estimation consistency of the Lasso estimator in the case where the number of parameters is xed and smaller than the sample size. The l 2 consistency of Lasso with convergence rate has been proved in Bickel, Ritov and Tsybakov [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], Meinshausen and Yu [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF], Zhang and Huang [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF]. These results trivially imply the l p consistency, with 2 p ∞, however with a suboptimal rate (cf., e.g., Theorem 3 in [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF]). Bickel, Ritov and Tsybakov [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] have proved that the Dantzig selector of Candes and Tao [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] shares a lot of common properties with the Lasso. In particular they have shown simultaneous l p consistency with rates of the Lasso and Dantzig estimators for 1 p 2. To our knowledge, there is no result on the l ∞ convergence rate and sign consistency of the Dantzig estimator.

The notion of l ∞ and sign consistency should be properly dened when the number of parameters is larger than the sample size. We may have indeed an innity of possible target vectors and solutions to the Lasso and Dantzig minimization problems. This diculty is not discussed in [START_REF] Bunea | Consistent selection via the Lasso for high dimensional approximating regression models[END_REF][START_REF] Meinshausen | High dimensional graphs and variable selection with the Lasso[END_REF][START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF][START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF][START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF] where either the target vector or the Lasso estimator or both are assumed to be unique. We show that under a sparsity scenario, it is possible to derive l ∞ and sign consistency results even when the number of parameters is larger than the sample size. We refer to Theorem 6.3 and the Remark 1, p. 21, in [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] which suggest a way to clarify the diculty mentioned above.

In this paper, we consider a high-dimensional linear regression model where the number of parameters can be much greater than the sample size. We show that under a mutual coherence assumption on the Gram matrix of the design, the target vector which has few non-zero components is unique. We do not assume the Lasso or Dantzig estimators to be unique. We establish the l ∞ convergence rate of all the Lasso and Dantzig estimators simultaneously under two dierent assumptions on the noise. The rate that we get improves upon those obtained for the Lasso in the previous works. Then we show a sign concentration property of all the thresholded Lasso and Dantzig estimators simultaneously for a proper choice of the threshold if we assume that the non-zero components of the sparse target vector are large enough. Our condition on the size of the non-zero components of the target vector is less restrictive than in [START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF][START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF][START_REF] Zhao | On model selection consistency of Lasso[END_REF]. In addition, we prove analogous results for the Dantzig estimator, which to our knowledge was not done before.

The paper is organized as follows. In Section 2 we present the Gaussian linear regression model, the assumptions, the results and we compare them with the existing results in the literature. In Section 3 we consider a general noise with zero mean and nite variance and we show that the results remain essentially the same, up to a slight modication of the convergence rate. In Section 4 we provide the proofs of the results.

Model and Results

Consider the linear regression model

Y = Xθ * + W, ( 1 
)
where

X is an n × M deterministic matrix, θ * ∈ R M and W = (W 1 , . . . , W n ) T is a zero-mean random vector such that E[W 2 i ] σ 2 , 1 i n for some σ 2 > 0. For any θ ∈ R M , dene J(θ) = {j : θ j = 0}. Let M (θ) = |J(θ)|
be the cardinality of J(θ) and sign(θ) = (sign(θ 1 ), . . . , sign(θ M )) T where

sign(t) =      1 if t > 0, 0 if t = 0, 1 if t < 0.
For any vector θ ∈ R M and any subset J of {1, . . . , M }, we denote by θ J the vector in R M which has the same coordinates as θ on J and zero coordinates on the complement J c of J. For any integers 1 d, p < ∞ and z = (z 1 , . . . , z d ) ∈ R d , the l p norm of the vector z is denoted by

|z| p ∆ = d j=1 |z j | p 1/p
, and

|z| ∞ ∆ = max 1 j d |z j |.
Note that the assumption of uniqueness of θ * is not satised if M > n. In this case, if a vector θ * = θ 0 satises (1), then there exists an ane space Θ * = {θ * : Xθ * = Xθ 0 } of dimension M -n of vectors satisfying [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF]. So the question of sign consistency becomes problematic when M > n because we can easily nd two distinct vectors θ 1 and θ2 satisfying (1) such that sign(θ 1 ) = sign(θ 2 ). However we will show that under our assumption of sparsity θ * is unique.

The Lasso and Dantzig estimators θL , θD solve respectively the minimization problems

min θ∈R M 1 n |Y -Xθ| 2 2 + 2r|θ| 1 , (2) 
and

min θ∈R M |θ| 1 subject to 1 n X T (Y -Xθ) ∞ r, (3) 
where r > 0 is a constant. A convenient choice in our context will be r = Aσ (log M )/n, for some A > 0. We denote respectively by ΘL and ΘD the set of solutions to the Lasso and Dantzig minimization problems (2) and (3). The denition of the Lasso minimization problem we use here is not the same as the one in [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF], where it is dened as

min θ∈R M 1 n |Y -Xθ| 2
for some t > 0. However these minimization problems are strongly related, cf. [START_REF] Chen | Atomic Decomposition by Basis Pursuit[END_REF]. The Dantzig estimator was introduced and studied in [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF]. Dene Φ(θ) =

1 n |Y -Xθ| 2 2 + 2r|θ| 1 .
A necessary and sucient condition for a vector θ to minimize Φ is that the zero vector in R M belongs to the subdierential of Φ at point θ, i.e.,

1 n (X T (Y -Xθ)) j = sign(θ j )r if θ j = 0, 1 n (X T (Y -Xθ)) j r if θ j = 0.
Thus, any vector θ ∈ ΘL satises the Dantzig constraint

1 n X T (Y -Xθ) ∞ r. (4) 
The Lasso estimator is unique if M < n, since in this case Φ(θ) is strongly convex. However, for M > n it is not necessarily unique. The uniqueness of Dantzig estimator is not granted neither. From now on, we set Θ = ΘL or ΘD and θ denotes an element of Θ.

Now we state the assumptions on our model. The rst assumption concerns the noise variables.

Assumption 1. The random variables

W 1 , . . . , W n are i.i.d. N (0, σ 2 ).
We also need assumptions on the Gram matrix

Ψ = 1 n X T X.
Assumption 2. The elements Ψ i,j of the Gram matrix Ψ satisfy

Ψ j,j = 1, ∀1 j M, (5) 
and

max i =j |Ψ i,j | 1 α(1 + 2c 0 )s , (6) 
for some constant α > 1, where c 0 = 1 if we consider the Dantzig estimator, and c 0 = 3 if we consider the Lasso estimator.

The notion of mutual coherence was introduced in [START_REF] Donoho | Stable recovery of Sparse Overcomplete representations in the Presence of Noise[END_REF] where the authors required that max i =j |Ψ i,j | were suciently small. Assumption 2 is stated in a slightly weaker form in [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF]- [START_REF] Bunea | Aggregation for Gaussian regression[END_REF].

Consider two vectors θ 1 and θ 2 satisfying (1) such that M (θ 1 ) s and M (θ 2 ) s. Denote θ = θ 1 -θ 2 and J = J(θ 1 ) ∪ J(θ 2 ). We clearly have Xθ = 0 and |J| 2s. Assume that θ = 0. Under Assumption 2, similarly as we derive the inequality [START_REF] Koltchinskii | Dantzig selector and sparsity oracle inequalities[END_REF] in Section 4 below and using the fact that |θ| 1 √ 2s|θ| 2 , we get that

|Xθ| 2 2 n|θ| 2 2 > 0.
This contradicts the fact that Xθ = 0. Thus we have θ 1 = θ 2 . We have proved that under Assumption 2 the vector θ * satisfying (1) with M (θ * ) s is unique.

Our rst result concerns the l ∞ rate of convergence of Lasso and Dantzig estimators.

Theorem 1. Take r = Aσ (log M )/n and A > 2

√ 2. Let Assumptions 1,2 be satised. If M (θ * ) s, then P sup θ∈ Θ θ -θ * ∞ c 2 r 1 -M 1-A 2 /8 , with c 2 = 3 2 1 + (1+c0) 2 (1+2c0)(α-1)
. Theorem 1 states that in high dimensions M the set of estimators Θ is necessarily well concentrated around the vector θ * . Similar phenomenon was already observed in [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], cf. Remark 1, page 21, for concentration in l p norms, 1 p 2. Note that c 2 in Theorem 1 is an absolute constant. Using Theorem 1, we can easily prove the consistency of the Lasso and Dantzig estimators simultaneously when n → ∞. We allow the quantities s, M , Θ, θ * to vary with n. In particular, we assume that

M → ∞ and lim n→∞ log M n = 0,
as n → ∞, and that Assumptions 1,2 hold true for any n. Then we have

sup θ∈ Θ θ -θ * ∞ → 0 (7) 
in probability, as n → ∞. The condition (log M )/n → 0 means that the number of parameters cannot grow arbitrarily fast when n → ∞. We have the restriction

M = o(exp(n))
, which is natural in this context. A result on l ∞ consistency of Lasso has been previously stated in Theorem 3 of [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF], where θL was assumed to be unique and under another assumption on the matrix Ψ. It is not directly related to our Assumption 2, but can be deduced from a restricted version of Assumption 2 where α is taken to be substantially larger than 1. The result in [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF] is a trivial consequence of the l 2 consistency, and has therefore the rate | θL -θ * | ∞ = O P (s 1/2 r) which is slower than the correct rate given in Theorem 1. In fact, the rate in [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF] depends on the unknown sparsity s which is not the case in Theorem 1. Note also that Theorem 3 in [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF] concerns the Lasso only, whereas our result covers simultaneously the Lasso and Dantzig estimators.

We now study the sign consistency. We make the following assumption.

Assumption 3. There exists an absolute constant c 1 > 0 such that

ρ ∆ = min j∈J(θ * ) |θ * j | > c 1 r.
We will take r = Aσ (log M )/n. We can nd similar assumptions on ρ in the work on sign consistency of the Lasso estimator mentioned above. More precisely, the lower bound on ρ is of the order s 1/4 r 1/2 in [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF], n -δ/2 with 0 < δ < 1 in [START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF][START_REF] Zhao | On model selection consistency of Lasso[END_REF], (log M n)/n in [START_REF] Bunea | Consistent selection via the Lasso for high dimensional approximating regression models[END_REF] and √ sr in [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF]. Note that our assumption is the less restrictive.

We now introduce thresholded Lasso and Dantzig estimators. For any θ ∈ Θ the associated thresholded estimator θ ∈ R M is dened by

θj = θj , if | θj | > c 2 r, 0 
elsewhere.

Denote by Θ the set of all such θ. We have rst the following non-asymptotic result that we call sign concentration property.

Theorem 2. Take r = Aσ (log M )/n and A > 2 √ 2. Let Assumptions 1-3 be satised. We assume furthermore that c 1 > 2c 2 , where c 2 is dened in Theorem 1. Then

P sign( θ) = sign(θ * ), ∀ θ ∈ Θ 1 -M 1-A 2 /8 .
Theorem 2 guarantees that every vector θ ∈ Θ and θ * share the same signs with high probability. Letting n and M tend to ∞ we can deduce from Theorem 2 an asymptotic result under the following additional assumption. Assumption 4. We have M → ∞ and lim n→∞ log M n = 0, as n → ∞.

Then the following asymptotic result called sign consistency follows immediately from Theorem 2.

Corollary 1. Let the assumptions of Theorem 2 hold for any n large enough.

Let Assumption 4 be satised. Then

P sign( θ) = sign(θ * ), ∀ θ ∈ Θ → 1, as n → ∞.
The sign consistency of Lasso was proved in [START_REF] Meinshausen | High dimensional graphs and variable selection with the Lasso[END_REF][START_REF] Zhao | On model selection consistency of Lasso[END_REF] with the Strong Irrepresentable Condition on the matrix Ψ which is somewhat dierent from ours. Papers [START_REF] Meinshausen | High dimensional graphs and variable selection with the Lasso[END_REF][START_REF] Zhao | On model selection consistency of Lasso[END_REF] assume a lower bound on ρ of the order n -δ/2 with 0 < δ < 1, whereas our Assumption 3 is less restrictive. Note also that these papers assume θL to be unique. Wainwright [START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF] does not assume θL to be unique and discusses sign consistency of Lasso under a mutual coherence assumption on the matrix Ψ and the following condition on the lower bound: (log M )/n = o(ρ) as n → ∞, which is more restrictive than our Assumption 3. In particular Proposition 1 in [START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF] states that as n → ∞, if the sequence of θ * satises the above condition for all n large enough, then This result does not guarantee sign consistency for all the estimators θL ∈ ΘL but only for some unspecied subsequence that is not necessarily the one chosen in practice. On the contrary, Corollary 1 guarantees that all the thresholded Lasso and Dantzig estimators and θ * share the same sign vector asymptotically. It follows from this result that any solution selected by the minimization algorithm is covered and that the case M > n, where the set Θ is not necessarily reduced to an unique estimator, can still be treated. We note also that the papers mentioned above treat the sign consistency for the Lasso only, whereas we prove it simultaneously for Lasso and Dantzig estimators. An improvement in the conditions that we get is probably due to the fact that we consider thresholded Lasso and Dantzig estimators. In addition note that not only the consistency results, but also the exact non-asymptotic bounds are provided by Theorems 1 and 2.

3 Convergence rate and sign consistency under a general noise

In the literature on Lasso and Dantzig estimators, the noise is usually assumed to be Gaussian [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF][START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF][START_REF] Meinshausen | High dimensional graphs and variable selection with the Lasso[END_REF][START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF][START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF] or admitting a nite exponential moment [START_REF] Bunea | Consistent selection via the Lasso for high dimensional approximating regression models[END_REF][START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF].

The exception is the paper by Zhao and Yu [START_REF] Zhao | On model selection consistency of Lasso[END_REF] who proved the sign consistency of the Lasso when the noise admits a nite moment of order 2k where k 1 is an integer. An interesting question is to determine whether the results of the previous section remain valid under less restrictive assumption on the noise. In this section, we only assume that the random variables W i , i = 1, . . . , n, are independent with zero mean and nite variance E[W 2 i ] σ 2 . We show that the results remain similar. We need the following assumption Assumption 5. The matrix X is such that

1 n n i=1 max 1 j M |X i,j | 2 c , for a constant c > 0.
For example, if all X i,j are bounded in absolute value by a constant uniformly in i, j, then Assumption 4 is satised. The next theorem gives the l ∞ rate of convergence of Lasso and Dantzig estimators under a mild noise assumption. Theorem 3. Assume that W i are independent random variables with

E[W i ] = 0, E[W 2 i ] σ 2 , i = 1, . . . , n. Take r = σ (log M ) 1+δ n
, with δ > 0. Let Assumptions 2,5 be satised. Then

P sup θ∈ Θ θ -θ * ∞ c 2 r 1 - c (log M ) δ ,
where c 2 is dened in Theorem 1, and c > 0 is a constant depending only on c .

Therefore the l ∞ convergence rate under the bounded second moment noise assumption is only slightly slower than the one obtained under the Gaussian noise assumption and the concentration phenomenon is less pronounced. If we assume that lim n→∞ (log M ) 1+δ /n = 0 and that Assumptions 2,3 and 5 hold true for any n with r = σ (log M ) 1+δ /n, then the sign consistency of thresholded Lasso and Dantzig estimators follows from our Theorem 3 similarly as we have proved Theorem 2 and Corollary 1. Zhao and Yu [START_REF] Zhao | On model selection consistency of Lasso[END_REF] stated in their Theorem 3 a result on the sign consistency of Lasso under the nite variance assumption on the noise. They assumed θL to be unique and the matrix X to satisfy the condition max 1 i n ( M j=1 X 2 i,j )/n → 0, as n → ∞. This condition is rather strong. It does not hold if M > n and all the X i,j are bounded in absolute value by a constant. In addition, [START_REF] Zhao | On model selection consistency of Lasso[END_REF] assumes that the dimension M = O(n δ ) with 0 < δ < 1, whereas we only need that M = o(exp(n 1/(1+δ) )) with δ > 0. Note also that [START_REF] Zhao | On model selection consistency of Lasso[END_REF] proves the sign consistency for the Lasso only, whereas we prove it for thresholded Lasso and Dantzig estimators. Lemma 1. Let Assumption 1 and (5) of Assumption 2 be satised. Take r = Aσ (log M )/n. Here Θ denotes either ΘL or ΘD . Then we have, on an event of probability at least 1 -M -A 2 /8 , that

sup θ∈ Θ Ψ(θ * -θ) ∞ 3r 2 , (8) 
and for all θ ∈ Θ,

|∆ J(θ * ) c | 1 c 0 |∆ J(θ * ) | 1 , (9) 
where ∆ = θ -θ * , c 0 = 1 for the Dantzig estimator and c 0 = 3 for the Lasso.

Proof. Dene the random variables Z j = n -1 n i=1 X i,j W i , 1 j M . Using (5) we get that Z j ∼ N (0, σ 2 /n), 1 j M . Dene the event

A = M j=1 {|Z j | r/2}.

Standard inequalities on the tail of Gaussian variables yield

P (A c ) M P (|Z 1 | r/2), M exp - n 2σ 2 r 2 2 M 1-A 2 8 .
On the event A, we have

1 n X T W ∞ r 2 . ( 10 
)
Any vector θ in ΘL or ΘD satises the Dantzig constraint ( 4). Thus we have on A that

sup θ∈ Θ Ψ(θ * -θ) ∞ 3r 2 .
Now we prove the second inequality. For any θD ∈ ΘD , we have by denition

that | θD | 1 |θ * | 1 , thus |∆ J(θ * ) c | 1 = j∈J(θ * ) c | θD j | j∈J(θ * ) |θ * j | -| θD j | |∆ J(θ * ) | 1 .
Consider now the Lasso estimators. By denition, we have for any θL ∈ ΘL

1 n |Y -X θL | 2 2 + 2r| θL | 1 1 n |W | 2 2 + 2r|θ * | 1 .
Developing the left hand side on the above inequality, we get

2r| θL | 1 2r|θ * | 1 + 2 n ( θL -θ * ) T X T W.
On the event A, we have for any θL ∈ ΘL

2| θL | 1 2|θ * | 1 + | θL -θ * | 1 ,
Adding | θL -θ * | 1 on both side, we get

| θL -θ * | 1 + 2| θL | 1 2|θ * | 1 + 2| θL -θ * | 1 | θL -θ * | 1 2(| θL -θ * | 1 + |θ * | 1 -| θL | 1 ),
Now we remark that if j ∈ J(θ * ) c , then we have | θL

j -θ * j | + |θ * j | -| θL j | = 0.
Thus we have on the event A that

|∆ J(θ * ) c | 1 -|∆ J(θ * ) | 1 |∆| 1 2|∆ J(θ * ) | 1 |∆ J(θ * ) c | 1 3|∆ J(θ * ) | 1 ,
for any θL ∈ ΘL .

Lemma 2. Let Assumption 2 be satised. Then

κ(s, c 0 ) = min J⊂{1,••• ,M },|J| s min λ =0:|λ J c |1 c0|λ J |1 |Xλ| 2 √ n|λ J | 2 1 - 1 α > 0.
Proof. For any subset J of {1, . . . , M } such that |J| s and λ ∈ R M such that

|λ J c | 1 c 0 |λ J | 1 , we have |Xλ J | 2 2 n|λ J | 2 2 = 1 + λ T J (Ψ -I M )λ J |λ J | 2 2 1 - 1 α(1 + 2c 0 )s M i,j=1 |λ (i) J ||λ (j) J | |λ J | 2 2 1 - 1 α(1 + 2c 0 )s |λ J | 2 1 |λ J | 2 2 , (11) 
where we have used Assumption 2 in the second line, I M denotes the M × M identity matrix and λ J = (λ (1) J , . . . , λ (M ) J

) denotes the components of the vector λ J . This yields

|Xλ| 2 2 n|λ J | 2 2 |Xλ J | 2 2 n|λ J | 2 2 + 2 λ T J X T Xλ J c n|λ J | 2 2 1 - 1 αs(1 + 2c 0 ) |λ J | 2 1 |λ J | 2 2 - 2 αs(1 + 2c 0 ) |λ J | 1 |λ J c | 1 |λ J | 2 2 1 - 1 αs |λ J | 2 1 |λ J | 2 2 1 - 1 α > 0.
We have used Assumption 2 in the second line, the inequality |λ J c | 1 c 0 |λ J | 1 in the third line and the fact that

|λ J | 1 |J||λ J | 2 √ s|λ J | 2 in the last line.
Proof of Theorem 1. For all 1 j M , θ ∈ Θ we have

(Ψ(θ * -θ)) j = (θ * j -θj ) + M i=1,i =j Ψ i,j (θ * i -θi ).
Assumption 2 yields

|(Ψ(θ * -θ)) j -(θ * j -θj )| 1 α(1 + 2c 0 )s M i=1,i =j |θ * i -θi |, ∀j.
Thus we have

|θ * -θ| ∞ Ψ(θ * -θ) ∞ + 1 α(1 + 2c 0 )s |θ * -θ| 1 . (12) 
Set ∆ = θ -θ * . Lemma 1 yields that on an event A of probability at least 1 -M 1-A 2 /8 we have for any

θ ∈ Θ |Ψ∆| ∞ 3r 2 , (13) 
and

|∆| 1 = |∆ J(θ * ) c | 1 + |∆ J(θ * ) | 1 (1 + c 0 )|∆ J(θ * ) | 1 (1 + c 0 ) √ s|∆ J(θ * ) | 2 .
Thus we have, on the same event A,

1 n |X∆| 2 2 = ∆ T Ψ∆ |Ψ∆| ∞ |∆| 1 3r 2 (1 + c 0 ) √ s|∆ J(θ * ) | 2 , (14) 
for any θ ∈ Θ. Lemma 2 yields

1 n |X∆| 2 2 1 - 1 α |∆ J(θ * ) | 2 2 , (15) 
for any θ ∈ Θ. Combining ( 14) and ( 15), we obtain that

|∆| 1 3 2 r(1 + c 0 ) 2 α α -1 s, (16) 
for any θ ∈ Θ. Combining ( 12), ( 13) and ( 16) we obtain that

sup θ∈ Θ | θ -θ * | ∞ 3 2 1 + (1 + c 0 ) 2 (1 + 2c 0 )(α -1)
r.

Proof of Theorem 2. Since we assume that c 1 > 2c 2 , we have on A that | θj | (c 1 -c 2 )r > c 2 r. Thus on the event A we have: j ∈ J(θ * ) ⇔ | θj | > c 2 r. This yields sign( θj ) = sign( θj ) = sign(θ * j ) if j ∈ J(θ * ) on the event A. If j ∈ J(θ * ), sign(θ * j ) = 0 and θj = 0 on A, so that sign( θj ) = 0. The same reasoning holds true simultaneously for all θ ∈ Θ on the event A. Thus we get the result.

Proof of Theorem 3. The proof of Theorem 3 is similar to the one of Theorem 1 up to a modication of the bound on P (A c ) in Lemma 1. Recall that Z j = n -1 n i=1 X i,j W i , 1 j M and the event A is dened by

A = M j=1 {|Z j | r/2} = { max 1 j M |Z j | r/2}.

The Markov inequality yields that

P (A c ) 4E[max 1 j M Z 2 j ] r 2 .
Then we use Lemma 3 given below with p = ∞ and the random vectors Y i = (X i,1 W i /n, . . . , X i,M W i /n) ∈ R M , i = 1, . . . , n. We get that

P (A c ) c log M r 2 σ 2 n i=1 max 1 j M X 2 i,j n 2 ,
where c > 0 is an absolute constant. Taking r = σ (log M ) 1+δ /n and using Assumption 5 yields that

P (A c ) c (log M ) δ ,
where c > 0 is an absolute constant.

The following result is Lemma 5.2.2, page 188 of [START_REF] Nemirovski | Topics in nonparametric statistics[END_REF].

Lemma 3. Let Y 1 , . . . , Y n ∈ R M be independent random vectors with zero means and nite variance, and let M 3. Then for every p ∈ [2, ∞], we have

E | n i=1 Y i | 2 p c min[p, log M ] n i=1 E |Y i | 2 p ,
where c > 0 is an absolute constant.

  Theorem 1 yields sup θ∈ Θ | θ -θ * | ∞ c 2 r on an event A of probability at least 1 -M 1-A 2 /8 . Take θ ∈ Θ. For j ∈ J(θ * ) c , we have θ * j = 0, and | θj | c 2 r on A. For j ∈ J(θ * ), we have by Assumption 3 that |θ * j | c 1 r and |θ * j | -| θj | |θ * j -θj | c 2 r on A.

subject to |θ| 1 t,

P ∃ θL ∈ ΘL s.t. sign( θL ) = sign(θ * ) → 1.

ProofsWe begin by stating and proving two preliminary lemmas. The rst lemma originates from Lemma 1 of[START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF] and Lemma 2 of[START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF].
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