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Abstract4

Layered Neural Networks, which are a class of models based on neu-5

ral computation , are applied to the measurement of uranium enrich-6

ment. The usual methods consider a limited number of γ-ray and X-7

ray peaks, and require previously calibrated instrumentation for each8

sample. But since, in practice, the source-detector ensemble geometry9

conditions are critically different, a mean of improving the above con-10

ventional methods is to reduce the region of interest ; this is possible11

by focusing on the KαX region where the three elementary components12

are present. The measurement of these components in mixtures leads to13

the desired ratio. Real data are used to study the performance of neu-14

ral networks and training is done with a Maximum Likelihood Method.15

We show that the encoding of data by Neural Networks is a promising16

method to measure uranium 235U and 238U quantities in infinitely thick17

samples.18

1 Introduction19

In the past few years, the topic of neural computing has generated widespread20

interest and popularity. The popularity of this technique is due in part to21

the analogy between Artificial Neural Networks (ANNs) and biological neu-22

ral networks. Many applications have been investigated using ANNs. We23

0Corresponding author : e-mail vvigne@soleil.serma.cea.fr.
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demonstrate here how they can be used, with photons spectra, in the particu-24

lar case of uranium enrichment measurements, to determine the
235U
Utotal

isotope25

ratio. Indeed, with modern detectors and high technology, spectral data are26

collected with even finer sampling and with even large precision, what imposes27

a perpetual need for efficient interpretation methods.28

Traditional non-destructive methods for uranium enrichment use several X-29

and γ-ray peaks, mainly in the 60 to 200 keV region. Most of these methods,30

which were developed more than 20 years ago, are based on measurements31

of the full energy peak at 185,7 keV ([10],[5],[9],[8]). They require a prior32

calibration of the system and the measurement conditions to be constant.33

Other methods have been developed using several γ-ray peaks [3],[2]. In fact,34

these latter methods require a self-calibration with a limited number of peaks,35

making them difficult to implement.36

Calibration procedures and matrix effects can be avoided by first, focusing37

the spectra analysis on a limited region, called KαX region , containing the38

main uranium components, second, by using so-called infinitely thick samples.39

These samples are such that any further thickness increase does not affect the40

γ emission.41

The processing of the KαX region requires taking into account 3 elemental42

images corresponding to 235U , 238U and X-ray fluorescence. This approach43

requires that all the parameters for constituting each elemental image are44

well-known and is based on the use of external data characterising the photon45

spectral emission together with the detector characteristics and geometry.46

It is precisely in this context that a Neural Network appears to be a useful47

tool. In fact, the training by ANNs can be considered as a search procedure for48

an ”optimum” regression function among a set of acceptable functions using a49

set of training examples. From the statictical point of view, ANNs belong to50

the evaluation techniques for non-parametric models, still called tabula rasa.51

ANNs, like most statistical methods, are able to process vast amounts of data52

and to make predictions that are sometimes surprisingly accurate. This does53

not make them intelligent in the usual sense of the word. ANNs learn in54

much the same way that many statistical algorithms do estimation. But in55

contrast to usual automatic spectra analysis methods, ANNs use full-parallel56

computing, are simple to implement, not very sensitive to outliers and contain57

nonlinearities.58

In the following, we describe the identification method based on neural59

networks to quantify uranium quantities. Section II covers the experimental60

procedure and the neural networks technique is explained in section III. Finally,61

Section IV gives the outlook and conclusion.62
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2 Experimental Aspect63

2.1 Preliminaries64

In the case of uranium spectra, the efficiency response is difficult to establish65

due to insufficient number of peaks that can be used. This can be overcome66

by reducing the region of interest of the spectrum so that the variation in the67

detector efficiency is limited. This is possible by considering only the relatively68

complex KαX region, which extends from 83 to 103 keV, where many peaks69

are superimposed (Fig. 1).70
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Figure 1: Principal useful X− and γ−rays in the spectral analysis of the KαX
region.

This region contains enough information to allow the determination of 235U71

and 238U and is sufficiently small for considering the efficiency as constant. It72

is however very complex to analyze, due to several interfering X- and γ-rays.73

These can be grouped as follows :74

• 235U and daughters : 84.21 keV (γ231Th), 89.95 keV (γ231Th, ThKα2X),75

92.28 keV (PaKα2X), 93.35 keV (ThKα1X), 95.86 keV (PaKα1X)76

• 238U and daughters : 83.30 keV (γ234Th), 92.28 keV (PaKα2X), 92.3877

keV (γ234Th), 92.79 keV (γ234Th), 94.65 keV (UKα2X), 95.86 keV (PaKα1X),78

98.43 keV (UKα1X), 99.85 keV (γ234Pa)79

• Uranium X-ray fluorescence : 94.65 keV (Kα2X), 98.43 keV(Kα1X).80

In the standard approach, the processing of the considered region takes into81

account the 3 elemental images, the first corresponding to 235U and his daugh-82

ters, the second to 238U and its daughters and the third to the uranium X-ray83

fluoresence spectrum. These images are then represented by mathematical ex-84

pressions taking into account the shapes of the X-ray (Voigt profile) and γ-ray85
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(Gaussian) peaks, their energies, and intensities. The determination is then86

carried out conventionally with a least squares method, like the MGA-U code87

[1]. The final enrichment is obtained by correcting for the presence of 234U88

with the 120.9 keV peak.89

2.2 Experimental protocol90

Six uranium oxide standards with different enrichments, from 0.7 to 9.6%,91

and infinite thickness were counted several times by γ-ray spectrometry to92

test the neural procedure. These were bare cylindrical pellets, with certified93

enrichments and their main characteristics are presented in Table 1.94

Table 1: Characteristics of UO2 standards

Diameter(cm)×
Height(cm)

U
O ratio (g.g−1%)

Stated enrich-
ment
(g.g−1%)

235U
235U+238U

ratio

(g.g−1%)

1,30× 2,00 88,00 0,7112 ±0,004 0,7112
1,30× 1,90 88,00 1,416 ±0,001 1,416
0,80× 1,10 88,00 2,785 ±0,004 2,786
0,80× 1,02 87,96 5,111 ±0,015 5,112
0,80× 1,00 87,98 6,222 ±0,018 6,225
0,92× 1,35 87,90 9,548 ±0,04 9,558

The Ge(HP) planar detector used in the measurement system had the95

following specification : surface, 2.00 cm2 ; thickness, 1.00 cm ; FWHM, 19096

eV at 6 keV and 480 eV at 122 keV. All the measurements were made under97

the same conditions, i.e. with 0.05 keV per channel and a distance between98

source and detector-window of 1.1 cm. Ten 20000-s. spectra for each standard99

pellet were analysed by our procedure. The 234U concentration is relatively100

low, although a
234U
235U

mass ratio varying from 0,5 to 1,1%, depending on the101

pellet, was determined by γ-ray spectrometry by using both the 53.2 and the102

120.9 keV peaks for 234U and the 185.7 keV peak for 235U .103

In short, 65 sets of experimental data from real-life experiments were pre-104

pared using the concentrations given in Table 1, and are illustrated in Fig.105

2.106

3 Layered Neural Network and Training method107

3.1 Using Neural Networks108

The purpose of this section, rather than the presentation of the neural network109

theory, is to present the place of the connectionnist approach in γ-spectrometry110
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Figure 2: 3D-Representation of the UO2 spectra set.

problems. Neural Networks are non-linear black-box model structures, to be111

used with conventional parameter estimation methods. Most details and basic112

concepts are clearly described in a paper to be published [12]. ANN consists113

of a large number of neurons, i.e. simple linear or nonlinear computing el-114

ements, interconnected in complex ways and often organized into layers [6].115

The collective or parallel behaviour of the network is determined by the way116

in which the nodes are connected and the relative type and strengh (excitory117

or inhibitory) of the interactions among them [7].118

The objective of ANNs is to construct a suitable model which, when applied119

to a 235U enrichment spectrum, produces an output, y, which approximates120

the exact uranium enrichment ratio. The principal idea of the connectionist121

approach is to substitute a neural model and the learning procedure of the net-122

work for classical fitting algorithms, which make use of complex mathematical123

algorithms, generally based on the separation of a given curve, associated to124

each individual peak, plus a background.125

An exemple of multi-layer network is given in Fig. 3.a. The notation126

convention is such that the square represents a computational unit into which127

the input variables xj’s are fed and multiplied by the respective weights ωj’s.128

The fundamental processing element of an ANN is a node (Fig. 3.b). Nodes are129

analogous to neurons in biological systems. Each node has a series of weighted130

inputs, ωi, which may be either an external signal or the output from other131

nodes. The sum of the weighted inputs is transformed with a linear or a132

non-linear transformation function (often the logistic function f(x) = 1
1+e−x ) .133

In the statistical context, this standard Neural Network called Multi-Layered134

Perceptron (MLP), is analogous to the Multivariate Nonlinear Regression.135
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Figure 3: (a) MLP 3-5-1 with nonlinear threshold and (b) schematic represen-
tation of a node in an ANN.

Transmission of information between units of two neighboring layers is136

performed through oriented links. These links are level-headed by connection137

weights. The essential of the construction is as follows :138

• input layer : this layer contains input units. Each unit receives input-139

variables, selected through a free parameters reduction procedure.140

• hidden layer : this layer acts as an array of feature detectors picking141

up features without regard to position. The information coming to the142

input units is coded on the hidden layer into an internal representation143

Thus, the input-layer units contribute to the input of each second-layer144

unit. It is fully-connected to the output.145

• output layer : it applies a sigmöıd activation function to the weighted146

sum of the hidden outputs.147

The role of the hidden layer is fundamental. A network without hidden units148

will be unable to perform the necessary multi-input multi-output mappings,149

in particular with non-linear problems. Input pattern can always be encoded,150

if there are enough hidden units, in a form so that the appropriate output151

pattern can be generated from the corresponding input pattern.152

The training data are denoted by χ = (x,yd)Nt=1 where N is the number153

of observations and x is the feature vector corresponding to the tth obser-154

vation. The expected response yd = (y1, y2, . . . yM) is related to the inputs155

x = (x1, x2, . . . xN) according to156

y = φ(x, ω), (1)

where ω are the connection weights.157
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The approximation results are non-constructive, and in practice the weights158

have to be chosen to minimize some fitting criterion, e.g. least squares159

J(ω) =
1

2

N∑
p

(yd
p − φ(xp, ω))2, (2)

with respect to all the parameters, where yd
p is the target for the pth example160

pattern. The minimization has to be done by some numerical search procedure.161

This is called nonlinear optimization. The parameter estimate is defined as162

the minimizing argument :163

ω̂ = argminωJ(ω) (3)

Most efficient search routines are based on local iteration along a ”downhill”164

direction from the current point. We then have an iterative scheme of the165

following kind :166

ω̂(i+1) ← ω̂(i) − η × ∂J

∂ω(i)
(4)

where ω̂(i) is the parameter estimate after iteration number i, η(> 0) is the167

step size and ∂J
∂ω(i) an estimate of the gradient of J(ωi). The practical difference168

between this device and the statistical version lies in the way the training data169

are used to dictate the values for ω. It turns out that there are 2 main aspects170

to the processing : (1) specifying the architecture of a suitable network, (2)171

training the network to perform well with reference to a training set.172

3.2 Application of the ANN173

To check that this method was general and reliable, we have applied it to 65174

sets of experimental data from real-life experiment : five 235U -pure idealized175

spectra, and ten of each precited standard (see Table 1). Each spectrum176

contains 4096 points. The computations of the spectra are compared on two177

regression models: the MLP MODEL ( Fig. 3), where the inputs are spectral178

data, and the MIXTURES OF EXPERTS MODEL (Fig. 4) [4] where the inputs are179

the enrichment values.180

The specifications for the networks created for the calibration of the sim-181

ulated data are listed in Table 2. They were found to be optimal according182

to the rigourous methodology described in [12], for low prediction bias. The183

choice of the right architecture is mainly intuitive and implies arbitrary deci-184

sions. But an attempt to apply ANN directly fails due to dimensionability. In185

acccordance with this, the dimension of the input vector has been reduced dra-186

matically by Principle Components Analysis (PCA), leading to the adequate187

7



Figure 4: Mixtures of Experts model.

reduction of weights emerging from the first layer of the ANN.188

Table 2: ANNs specifications and parameters

parameter MLP 6-3-1 MLP 3-5-1 Mixtures of Experts
Type of input spectral data spectral data enrichment value
input nodes 6 3 1
hidden node 3 5 1050
output node 1 1 210
learning rule BP BP Maximum Likelihood
input layer transfer function linear linear linear
hidden layer transfer function sigmöıdal sigmöıdal sigmöıdal
output layer transfer function linear linear exponential

The MLP MODEL, depicted in Fig. 3, consists of an input layer of 6 or 3189

units leading up through one layer of hidden units to an output layer of a single190

unit that corresponds to the desired enrichment. This network represents a191

poor parametrized model, but the training dataset (x; y(d))65t=1 was small. The192

network is initialized with random weights and trained. For each pattern, the193

bias, Eq. 2, is evaluated. This quantity decreases rapidly (Fig. 5) in the194

beginning, and the training is stopped when the network reaches a minimum195

error on the training set, because this is an efficient way to avoid overfitting.196

After 32 000 successful training passes, the bias rate range from -0.05 to 0.04%197

for the 6-3-1 net (from -0.031 to 0.061% for the 3-5-1 net).198

In the case of mixtures of experts (MEX), each item is associated with a199

vector of measurable features, and a target yd which represents the enrich-200

ment. The network receives the input x and creates the output vector y as201
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Figure 5: Sum of squares of bias on the training set for MLP architectures

a predicted value of the unknown yd. This model consists of 210 indepen-202

dant fully-connected networks (Fig. 4) : One expert is put for one channel of203

the KαX region, each expert being an observer, trying to find a ”signal” due204

to radioactive decay in a large amount of noise, the variance of each count205

being proportional to the level and thus depending on the enrichment of a206

particular sample and on the background level of the particular observation.207

A cooperation-competition procedure driven by a supervisor between the ex-208

pert’s outputs leads to the choice of the most appropriate concentration.209

Let y1,y2, . . . denote the output vectors of the experts, and g1, g2, . . .210

the supervisor output units, then the output of the entire architecture, y,211

is y =
∑210

i=1 giyi. The supervisor decides whether expert i is currently appli-212

cable or not. The winning expert is the network with the smallest bias (yd−yi).213

214

4 Discussion of the Results using ANN215

As the initial base included only 65 examples, we wanted to keep a maximum216

of examples for the training base. Redundances in the data-set enrichments217

present one main advantage : as we measure more than one response for each218

case, information from all the measured responses can be combined to provide219

more precise parameter estimation and to determine a more realistic model.220

In all simulations, the measure of the system’s performance is the Mean221

Square Error. The bias rates obtained by using MEX are benchmarked against222

the results obtained by using MLPs in Table 3 and on Fig. 5 and Fig. 7. The223

Fig. 5 shows the learning curves (i.e. the learning performances) for the two224

MLP networks using a random training procedure. The horizontal axis gives225

the number of epochs ; the vertical axis gives the Mean Square Errors value226

(MSE). Clearly, the 6-3-1 network learned significantly faster than the 3-5-227
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1. This difference can be explained by the information gain of the 6-inputs228

network vs the 3-inputs network.229

Table 3: Ranges of calculated Enrichments with MLP and MEX

Declared enrich-
ment

MLP 3-5-1 MLP 6-3-1 MEXs

0.711% 0.691-0.723 0.700-0.720 0.702-0.710
1.416% 1.394-1.426 1.406-1.435 1.406-1.416
2.785% 2.732-2.822 2.762-2.799 2.784-2.790
5.111% 5.066-5.148 5.089-5.132 5.112-5.136
6.122% 6.105-6.162 6.117-6.133 6.088-6.112
9.548% 9.531-9.570 9.541-9.550 9.542-9.552

The Fig. 6 concerns the Multi-Expert model. The plotted points are pre-230

dicted enrichment value (one for each of the 210 experts) when a 5.111%−235U231

spectrum is presented to the MEX model. The credit assignement procedure232

on these 210 contributions is supervised to produce a final estimation. In the233

right most column of Table 3, the final predicted values of the simulations with234

MEX can be seen. Compared with the MLPs, this shows that MEX method is235

really reliable ; for example, the bias between the predicted and the calculated236

2.785% enrichments range from 2.784 to 2.790%. As noted above, after 32237

000 successful training passes, the larger bias happens for 5.111 and 6.122%238

enrichments. This relative lack of precision can be ascribed to the small size239

of the training dataset.240
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Figure 6: Example of enrichment value (at 5,785 %) predicted by the Mixtures
of Experts

Fig. 7 compares the results of the three models. The bias between the241

predicted and the desired enrichments is plotted for each of the 65 samples.242
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The darkest line is put for the MEX. The results suggest that the strong dis-243

persion of the bias with MLP is significantly attenuated when MEX is applied.244

This judgement must be moderated for the 6.122-enrichment-ratio samples. A245

comparison of the absolute bias curves suggest that, among of the three sys-246

tems studied, the Mixtures of Experts is capable of showing the most robust247

performance.248
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In fact, the modular approach presents three main advantages on the MLP249

models: it is able to model behavior, it learns faster than a global model250

and the representation is easier to interpret. The modular architecture takes251

advantage of task decomposition, but the learner must decide which variables252

to allocate to the networks. This method is, at the same time, very general253

and very specific. It is very general in the sense that no hypothesis is made254

on the aspect of the spectra : it does not depend on whether the spectra are255

well resolved or not, whether they are very likely or not, whether you select256

most significative areas of spectrum only (MLP models) or a global part of the257

spectrum (MEX model). But, at the same time, the method is very specific258

because the ANN must learn representative spectra of the family spectra to259

identify. Furthermore, other tests proved to us that ANNs are resistant to260

noise. Presently, we must put the blame on the excessively short size of the261

training dataset.262

5 Conclusion263

The simulation studies on UO2 real spectra have shown that Neural Networks264

can be very effective to predict 235U enrichment. They appear to be useful265

when a fast response is needed with a reasonnable accuracy, when no hypoth-266
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esis is made on the aspect of the spectra or when no definite mathematical267

model can be assigned a priori. The resistance to noise is certainly one of the268

most powerful characteristics of this method. Final network with connections269

and weighting functions could be easily implemented using commercial digi-270

tal processing hardware. The good results obtained show that this method271

can be considered at the state of art to produce quantitative estimates of272

the concentrations of isotopic components in mixtures with fixed experimental273

conditions : they may be better than those obtained with standard methods274

in similar cases. This method has also been already successfully used in an275

X-ray fluorescence application [11].276

There is no single learning procedure which is appropriate for all tasks. It is277

of fundamental importance that special requirements of each task are analyzed278

and that appropriate training algorithms are developed for families of tasks.279

However, an efficient use of the networks requires as careful as possible analysis280

of the problem, an analysis that is often ignored by impatient users.281
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