Joshua Brody

Amit Chakrabarti

SUBLINEAR COMMUNICATION PROTOCOLS FOR MULTI-PARTY POINTER JUMPING AND A RELATED LOWER BOUND

Keywords: Subject Classification: F.1.3, F.2.2 Communication complexity, pointer jumping, number on the forehead

We study the one-way number-on-the-forehead (NOF) communication complexity of the k-layer pointer jumping problem with n vertices per layer. This classic problem, which has connections to many aspects of complexity theory, has seen a recent burst of research activity, seemingly preparing the ground for an Ω(n) lower bound, for constant k. Our first result is a surprising sublinear -i.e., o(n) -upper bound for the problem that holds for k ≥ 3, dashing hopes for such a lower bound.

A closer look at the protocol achieving the upper bound shows that all but one of the players involved are collapsing, i.e., their messages depend only on the composition of the layers ahead of them. We consider protocols for the pointer jumping problem where all players are collapsing. Our second result shows that a strong n -O(log n) lower bound does hold in this case. Our third result is another upper bound showing that nontrivial protocols for (a non-Boolean version of) pointer jumping are possible even when all players are collapsing.

Our lower bound result uses a novel proof technique, different from those of earlier lower bounds that had an information-theoretic flavor. We hope this is useful in further study of the problem.

Introduction

Multi-party communication complexity in general, and the pointer jumping problem (also known as the pointer chasing problem) in particular, has been the subject of plenty of recent research. This is because the model, and sometimes the specific problem, bears on several aspects of computational complexity: among them, circuit complexity [Yao90, HG91, BT94], proof size lower bounds [START_REF] Beame | Lower bounds for Lovász-Schrijver systems and beyond follow from multiparty communication complexity[END_REF] and space lower bounds for streaming algorithms [AMS99, [START_REF] Guha | Lower bounds for quantile estimation in random-order and multi-pass streaming[END_REF][START_REF] Amit Chakrabarti | Tight lower bounds for selection in randomly ordered streams[END_REF]. The most impressive known consequence of a strong multi-party communication lower bound would be to exhibit non-membership in the complexity class ACC 0 ; details can be found in Beigel and Tarui [START_REF] Beigel | On ACC[END_REF] or in the textbook by Arora and Barak [START_REF] Arora | Complexity Theory: A Modern Approach[END_REF]. Vexingly, it is not even known whether or not ACC 0 = NEXP.

The setting of multi-party communication is as follows. There are k players (for some k ≥ 2), whom we shall call plr 1 , plr 2 , . . . , plr k , who share an input k-tuple (x 1 , x 2 , . . . , x k). The goal of the players is to compute some function f (x 1 , x 2 , . . . , x k). There are two wellstudied sharing models: the number-in-hand model, where plr i sees x i , and the numberon-the-forehead (NOF) model, where plr i sees all x j s such that j = i. Our focus in this paper will be on the latter model, which was first introduced by Chandra, Furst and Lipton [START_REF] Ashok | Multi-party protocols[END_REF]. It is in this model that communication lower bounds imply lower bounds against ACC 0 . We shall use C(f) to denote the deterministic communication complexity of f in this model. Also of interest are randomized protocols that only compute f (x) correctly with high probability: we let R ε (f) denote the ε-error randomized communication complexity of f . Our work here will stick to deterministic protocols, which is a strength for our upper bounds. Moreover, it is not a serious weakness for our lower bound, because the ACC 0 connection only calls for a deterministic lower bound.

Notice that the NOF model has a feature not seen elsewhere in communication complexity: the players share plenty of information. In fact, for large k, each individual player already has "almost" all of the input. This intuitively makes lower bounds especially hard to prove and indeed, to this day, no nontrivial lower bound is known in the NOF model for any explicit function with k = ω(log n) players, where n is the total input size. The pointer jumping problem is widely considered to be a good candidate for such a lower bound. As noted by Damm, Jukna and Sgall [START_REF] Damm | Some bounds on multiparty communication complexity of pointer jumping[END_REF], it has many natural special cases, such as shifting, addressing, multiplication and convolution. This motivates our study.

The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jumping problem. Here we study two variants: a Boolean problem, mpj n k , and a non-Boolean problem, mpj n k (henceforth, we shall drop the superscript n). In both variants, the input is a subgraph of a fixed layered graph that has k + 1 layers of vertices, with layer 0 consisting of a single vertex, v 0 , and layers 1 through k -1 consisting of n vertices each (we assume k ≥ 2). Layer k consists of 2 vertices in the case of mpj k and n vertices in the case of mpj k . The input graph is a subgraph of the fixed layered graph in which every vertex (except those in layer k) has outdegree 1. The desired output is the name of the unique vertex in layer k reachable from v 0 , i.e., the final result of "following the pointers" starting at v 0 . The output is therefore a single bit in the case of mpj k or a ⌈log n⌉-bit string in the case of mpj k . 1 The functions mpj k and mpj k are made into NOF communication problems as follows: for each i ∈ [k], a description of the ith layer of edges (i.e., the edges pointing into the ith layer of vertices) is written on plr i 's forehead. In other words, plr i sees every layer of edges except the ith. The players are allowed to write one message each on a public blackboard and must do so in the fixed order plr 1 , plr 2 , . . . , plr k . The final player's message must be the desired output. Notice that the specific order of speakingplr 1 , plr 2 , . . . , plr kis important to make the problem nontrivial. Any other order of speaking allows an easy deterministic protocol with only O(log n) communication.

1 Throughout this paper we use "log" to denote logarithm to the base 2.

Consider the case k = 2. The problem mpj 2 is equivalent to the two-party communication problem index, where Alice holds a bit-vector x ∈ {0, 1} n , Bob holds an index i ∈ [n], and Alice must send Bob a message that enables him to output x i . It is easy to show that C(mpj 2) = n. In fact, Ablayev [START_REF] Ablayev | Lower bounds for one-way probabilistic communication complexity and their application to space complexity[END_REF] shows the tight tradeoff R ε (mpj 2) = (1 -H(ε))n, where H is the binary entropy function. It is tempting to conjecture that this lower bound generalizes as follows.

Conjecture 1.1. There is a nondecreasing function ξ :

Z + → R + such that, ∀ k : C(mpj k) = Ω(n/ξ(k)).
Note that, by the results of Beigel and Tarui [START_REF] Beigel | On ACC[END_REF], in order to show that mpj k / ∈ ACC 0 it would suffice, for instance, to prove the following (possibly weaker) conjecture.

Conjecture 1.2. There exist constants α, β > 0 such that, for k = n α , C(mpj k) = Ω(n β).

Conjecture 1.1 is consistent with (and to an extent motivated by) research prior to this work. In weaker models of information sharing than the NOF model, an equivalent statement is known to be true, even for randomized protocols. For instance, Damm, Jukna and Sgall [START_REF] Damm | Some bounds on multiparty communication complexity of pointer jumping[END_REF] show an Ω(n/k 2) communication lower bound in the so-called conservative model, where plr i has only a limited view of the layers of the graph behind her: she only sees the result of following the first i -1 pointers. Chakrabarti [START_REF] Chakrabarti | Lower bounds for multi-player pointer jumping[END_REF] extends this bound to randomized protocols and also shows an Ω(n/k) lower bound in the so-called myopic model, where plr i has only a limited view of the layers ahead of her: she cannot see layers i + 2, . . . , k.

For the full NOF model, Wigderson, building on the work of Nisan and Wigderson [START_REF] Nisan | Rounds in communication complexity revisited[END_REF], showed that C(mpj 3) = Ω(√ n). This result is unpublished, but an exposition can be found in Babai, Hayes and Kimmel [START_REF] Babai | The cost of the missing bit: Communication complexity with help[END_REF]. Very recently, Viola and Wigderson [START_REF] Viola | One-way multi-party communication lower bound for pointer jumping with applications[END_REF] generalized this result and extended it to randomized protocols, showing that R 1/3 (mpj k) = Ω(n 1/(k-1) /k O(k)). Of course, this bound falls far short of that in Conjecture 1.1 and does nothing for Conjecture 1.2. However, it is worth noting that the Viola-Wigderson bound in fact applies to the much smaller subproblem of tree pointer jumping (denoted tpj k), where the underlying layered graph is a height-k tree, with every vertex in layers 0 through k -2 having n 1/(k-1) children and every vertex in layer k -1 having two children. It is easy to see that C(tpj k) = O(n 1/(k-1)). Thus, one might hope that the more general problem mpj k has a much stronger lower bound, as in Conjecture 1.1. On the upper bound side, Damm et al. [START_REF] Damm | Some bounds on multiparty communication complexity of pointer jumping[END_REF] show that C(mpj k) = O(n log (k-1) n), where log (i) n is the ith iterated logarithm of n. This improves on the trivial upper bound of O(n log n). Their technique does not yield anything nontrivial for the Boolean problem mpj k , though. However, Pudlak, Rödl and Sgall [START_REF] Pudlák | Boolean circuits, tensor ranks and communication complexity[END_REF] obtain a sublinear upper bound of O(n log log n/ log n) for a special case of mpj 3 . Their protocol works only when every vertex in layer 2 has indegree 1, or equivalently, when the middle layer of edges in the input describes a permutation of [n].

Our Results

The protocol of Pudlak et al. [START_REF] Pudlák | Boolean circuits, tensor ranks and communication complexity[END_REF] did not rule out Conjecture 1.1, but it did suggest caution. Our first result is the following upper bound -in fact the first nontrivial upper bound on C(mpj k) -that falsifies the conjecture.

Theorem 1.3. For k ≥ 3, we have

C(mpj k) = O n k log log n log n (k-2)/(k-1)
.

In particular, C(mpj 3) = O(n log log n/ log n).

A closer look at the protocol that achieves the upper bound above reveals that all players except for plr 1 behave in the following way: the message sent by plr i depends only on layers 1 through i -1 and the composition of layers i + 1 through k. We say that plr i is collapsing. This notion is akin to that of the aforementioned conservative protocols considered by Damm et al. Whereas a conservative player composes the layers behind hers, a collapsing player does so for layers ahead of hers.

We consider what happens if we require all players in the protocol to be collapsing. We prove a strong linear lower bound, showing that even a single non-collapsing player makes an asymptotic difference in the communication complexity.

Theorem 1.4. In a protocol for mpj k where every player is collapsing, some player must communicate at least n -1 2 log n -2 = n -O(log n) bits. Finally, one might wonder whether the collapsing requirement is so strong that nothing nontrivial is possible anyway. The same question can be raised for the conservative and myopic models where Ω(n/k 2) and Ω(n/k) lower bounds were proven in past work. It turns out that the upper bound on C(mpj k) due to Damm et al. [START_REF] Damm | Some bounds on multiparty communication complexity of pointer jumping[END_REF] (see Section 1.1) is achievable by a protocol that is both conservative and myopic. We can show a similar upper bound via a different protocol where every player is collapsing. The requirement that layers be permutations is a natural one and is not new. The protocol of Pudlak et al. also had this requirement; i.e., it gave an upper bound on C(mpj perm 3). Theorem 1.5 can in fact be strengthened slightly by allowing one of the layers from 2 through k to be arbitrary; we formulate and prove this stronger version in Section 4.

Organization

The rest of the paper is organized as follows. Theorems 1.3, 1.4 and 1.5 are proven in Sections 2, 3 and 4 respectively. Section 2.1 introduces some notation that is used in subsequent sections.

A Sublinear Upper Bound

Preliminaries, Notation and Overall Plan

For the rest of the paper, "protocols" will be assumed to be deterministic one-way NOF protocols unless otherwise qualified. We shall use cost(P) to denote the total number of bits communicated in P , for a worst case input.

Let us formally define the problems mpj k and mpj k . We shall typically write the input k-tuple for mpj k as (i, f 2 , . . . , f k-1 , x) and that for mpj k as (i, f 2 , . . . , f k), where i ∈

[n], each f j ∈ [n] [n] and x ∈ {0, 1} n . We then define mpj k : [n] × [n] [n] k-2 × {0, 1} n → {0, 1} and mpj k : [n] × [n] [n] k-1 → [n] as follows. mpj 2 (i, x) := x i ; mpj k (i, f 2 , f 3 , . . . , f k-1 , x) := mpj k-1 (f 2 (i), f 3 , . . . , f k-1 , x) , for k ≥ 3 mpj 2 (i, f) := f (i) ; mpj k (i, f 2 , f 3 , . . . , f k) := mpj k-1 (f 2 (i), f 3 , . . . , f k) , for k ≥ 3 .
Here, x i denotes the ith bit of the string x. It will be helpful, at times, to view strings in {0, 1} n as functions from [n] to {0, 1} and use functional notation accordingly. It is often useful to discuss the composition of certain subsets of the inputs. Let î2 := i, and for 3

≤ j ≤ k, let îj := f j-1 • • • • • f 2 (i). Similarly, let xk-1 := x, and for 1 ≤ j ≤ k -2, let xj := x • f k-1 • • • • • f j+1 .
Unrolling the recursion in the definitions, we see that, for k ≥ 2,

mpj k (i, f 2 , . . . , f k-1 , x) = x • f k-1 • • • • • f 2 (i) = x1 (i) = x îk ;
(2.1)

mpj k (i, f 2 , . . . , f k) = f k • • • • • f 2 (i) = f k (îk) . (2.2)
We also consider the subproblems mpj perm where each f j above is a bijection from [n] to [n] (equivalently, a permutation of [n]). We let S n denote the set of all permutations of [n].

Here is a rough plan of the proof of our sublinear upper bound. We leverage the fact that a protocol P for mpj perm 3 with sublinear communication is known. To be precise: The exact structure of P will not matter; we shall only use P as a black box. To get a sense for why P might be useful for, say, mpj 3 , note that the players could replace f 2 with a permutation π and just simulate P , and this would work if π(i) = f (i). Of course, there is no way for plr 1 and plr 3 to agree on a suitable π without communication. However, as we shall see below, it is possible for them to agree on a small enough set of permutations such that either some permutation in the set is suitable, or else only a small amount of side information conveys the desired output bit to plr 3 . This idea eventually gives us a sublinear protocol for mpj 3 . Clearly, whatever upper bound we obtain for mpj 3 applies to mpj k for all k ≥ 3. However, we can decrease the upper bound as k increases, by embedding several instances of mpj 3 into mpj k . For clarity, we first give a complete proof of Theorem 1.3 for the case k = 3.

A 3-Player Protocol

Following the plan outlined above, we prove Theorem 1.3 for the case k = 3 by plugging Fact 2.1 into the following lemma, whose proof is the topic of this section.

Lemma 2.2. Suppose φ :

Z + → (0, 1] is a function such that C(mpj perm 3) = O(nφ(n)). Then C(mpj 3) = O(n φ(n)). Definition 2.3. A set A ⊆ S n of permutations is said to d-cover a function f : [n] → [n] if, for each r ∈ [n]
, at least one of the following conditions holds:

(i) ∃ π ∈ A such that π(r) = f (r), or (ii) |f -1 (f (r))| > d. Lemma 2.4. Let f : [n] → [n]
be a function and d be a positive integer. There exists a set

A d (f) ⊆ S n , with |A d (f)| ≤ d, that d-covers f .
Proof. We give an explicit algorithm to construct A d (f). Our strategy is to partition the domain and codomain of f (both of which equal [n]) into parts of matching sizes and then define bijections between the corresponding parts. To be precise, suppose Range(f) = {s 1 , s 2 , . . . , s t }.

Let A i = f -1 (s i) be the corresponding fibers of f . Clearly, {A i } t i=1 is a partition of [n]. It is also clear that there exists a partition {B i } t i=1 of [n] such that, for all i ∈ [t], B i ∩ Range(f) = {s i } and |B i | = |A i |. We shall now define certain bijections π i,ℓ : A i → B i , for each i ∈ [t] and ℓ ∈ [d]. Let a i,1 < a i,2 < • • • < a i,|A i | be the elements of A i arranged in ascending order. Similarly, let b i,1 < • • • < b i,|B i | be those of B i . We define π i,ℓ (a i,j) := b i,(j-ℓ) mod |B i | , for i ∈ [t], ℓ ∈ [d] ,
where, for convenience, we require "α mod β" to return values in [β], rather than {0, 1, . . . , β-1}. It is routine to verify that π i,ℓ is a bijection. Notice that this construction ensures that for all i ∈ [t] and j ∈ [|A i |] we have

|{π i,ℓ (a i,j) : ℓ ∈ [d]}| = min{d, |B i |} . (2.3) Let π ℓ : [n] → [n]
be the bijection given by taking the "disjoint union" of π 1,ℓ , . . . , π t,ℓ . We claim that A d (f) = {π 1 , . . . , π d } satisfies the conditions of the lemma. It suffices to verify that this choice of A d (f) d-covers f , i.e., to verify that every r ∈ [n] satisfies at least one of the two conditions in Definition 2.3. Pick any r ∈

[n]. Suppose r ∈ A i , so that f (r) ∈ B i and π ℓ (r) = π i,ℓ (r). If |B i | > d, then |f -1 (f (r))| = |A i | = |B i | > d,
so condition (ii) holds. Otherwise, from Eq. (2.3), we conclude that {π i,ℓ (r) : ℓ ∈ [d]} = B i . Therefore, for each s ∈ B i -in particular, for s = f (r) -there exists an ℓ ∈ [d] such that π ℓ (r) = π i,ℓ (r) = s, so condition (i) holds.

Proof of Lemma 2.2. Let (i, π, x) ∈ [n] × S n × {0, 1} n denote an input for the problem mpj perm 3 . Then the desired output is x π(i) . The existence of a protocol P for mpj perm 3 with cost(P) = O(nφ(n)) means that there exist functions ,π,α(π,x),β(i,x,α(π,x))) = x π(i) . The functions α, β and γ yield the messages in P of plr 1 , plr 2 and plr 3 respectively.

α : S n × {0, 1} n → {0, 1} m , β : [n] × {0, 1} n × {0, 1} m → {0, 1} m , and γ : [n] × S n × {0, 1} m × {0, 1} m → {0, 1} , where m = O(nφ(n)), such that γ(i
To design a protocol for mpj 3 , we first let plr 1 and plr 3 agree on a parameter d, to be fixed below, and a choice of

A d (f) for each f : [n] → [n], as guaranteed by Lemma 2.4. Now, let (i, f, x) ∈ [n] × [n] [n]
× {0, 1} n be an input for mpj 3 . Our protocol works as follows.

• plr 1 sends a two-part message. The first part consists of the strings {α(π, x)} π for all π ∈ A d (f). The second part consists of the bits x s for s ∈

[n] such that |f -1 (s)| > d.
• plr 2 sends the strings {β(i, x, α)} α for all strings α in the first part of plr 1 's message.

• plr 3 can now output x f (i) as follows. If |f -1 (f (i))| > d, then she reads x f (i) off
from the second part of plr 1 's message. Otherwise, since A d (f) d-covers f , there exists a π 0 ∈ A d (f) such that f (i) = π 0 (i). She uses the string α 0 := α(π 0 , x) from the first part of plr 1 's message and the string β 0 := β(i, x, α 0) from plr 2 's message to output γ(i, π 0 , α 0 , β 0). To verify correctness, we only need to check that plr 3 's output in the "otherwise" case indeed equals x f (i) . By the correctness of P , the output equals x π 0 (i) and we are done, since f (i) = π 0 (i).

We now turn to the communication cost of the protocol. By the guarantees in Lemma 2.4,

|A d (f)| ≤ d,

A k-Player Protocol

We now show how to prove Theorem 1.3 by generalizing the protocol from Lemma 2.2 into a protocol for k players. It will help to view an instance of mpj k as incorporating several "embedded" instances of mpj 3 . The following lemma makes this precise.

Lemma 2.5. Let (i, f 2 , . . . , f k-1 , x) be input for mpj k . Then, for all 1 j < k,

mpj k (i, f 2 , . . . , x) = mpj 3 (f j-1 • • • • • f 2 (i), f j , x • f k-1 • • • • • f j+1).
In our protocol for mpj k , for 2 ≤ j ≤ k -1, the players plr 1 , plr j , and plr k will use a modified version of the protocol from Lemma 2.2 for mpj 3 on input (f j-1

• • • • • f 2 (i), f j , x • • • • • f j+1
). Before we get to the protocol, we need to generalize the technical definition and lemma from the previous subsection. Proof. This proof closely follows that of Lemma 2.4. As before, we give an explicit algorithm to construct A S,d (f). Suppose Range(f) = {s 1 , s 2 , . . . , s t }, and let {A i } and {B i } be defined as in Lemma 2.4. Let a i,1 < • • • < a i,z be the elements of A i ∩ S arranged in ascending order, and let

a i,z+1 < • • • < a i,|A i | be the elements of A i \ S arranged in ascending order. Similarly, let b i,1 < • • • < b i,|B i |-1 be the elements of B i \ {s i } arranged in ascending order, and let b i,|B i | = s i . For i ∈ [t], ℓ ∈ [d], we define π i,ℓ (a i,j) := b i,(j-ℓ) mod |B i | .
As before, it is routine to verify that π i,ℓ is a bijection. Let π ℓ : [n] → [n] be the bijection given by taking the "disjoint union" of π 1,ℓ , . . . , π t,ℓ . We claim that A S,d (f) = {π 1 , . . . , π d } satisfies the conditions of the lemma. It suffices to verify that this choice of A S,d (f) (S, d)-covers f , i.e., to verify that every r ∈ S satisfies at least one of the two conditions in Definition 2.6. Pick any r ∈ S. Suppose r ∈ A i , and fix j such that r = a i,j .

If |S ∩ f -1 (f (r))| > d, then condition (ii) holds. Otherwise, setting ℓ = j < |S ∩ f -1 (f (i))| ≤ d, we conclude that π ℓ (r) = π i,ℓ (r) = π i,ℓ (a i,j) = b i,|B i | = s i = f (r), so condition (i) holds.
Proof of Theorem 1.3. To design a protocol for mpj k , we first let plr 1 and plr k agree on a parameter d, to be fixed below. They also agree on a choice of A S,d (f) for all S ⊆ [n] and f : [n] → [n]. Let (i, f 2 , . . . , f k-1 , x) denote an input for mpj k . Also, let S 1 = [n], and for all 2

≤ j ≤ k -1, let S j = {s ∈ [n] : |S j-1 ∩ f -1 j (s)| > d}.
Our protocol works as follows:

• plr 1 sends a (k -1)-part message. For 1 ≤ j ≤ k -2, the jth part of plr 1 's message consists of the strings {α(π, xj+1)} π for each π ∈ A S j ,d (f j+1). The remaining part consists of the bits x s for s ∈ S k-1 . • For 2 ≤ j ≤ k -1, plr j sends the strings {β(îj , xj , α)} α for all strings α in the (j -1)th part of plr 1 's message.

• plr k can now output x îk as follows. If |S 1 ∩ f -1 2 (f 2 (i))| ≤ d, then, because A S 1 ,d (f 2) (S 1 , d)-covers f 2 , there exists π 0 ∈ A S 1 ,d (f 2) such that f 2 (i) = π 0 (i).
She uses the string α 0 = α(π 0 , x2) from the first part of plr 1 's message and the string β 0 = β(i, x2 , α 0) from plr 2 's message to output γ 0 = γ(i, π 0 , α 0 , β 0). Similarly, if there is a j such that 2 ≤ j ≤ k -2 and

|S j ∩ f -1 j+1 (f j+1 (îj+1))| ≤ d, then since A S j ,d (f j+1) (S j , d)-covers f j+1 , there exists a π 0 ∈ A S j ,d (f j+1) such that f j+1 (îj+1) = π 0 (îj+1)
. She uses the string α 0 = α(π 0 , xj+1) from the jth part of plr 1 's message and the string

β 0 = β(îj+1 , xj+1 , α 0) from plr j+1 's message to output γ 0 = γ(îj+1 , π 0 , α 0 , β 0). Otherwise, |S k-2 ∩ f -1 k-1 (f k-1 (îk-1))| > d, hence îk ∈ S k-1
, and she reads x îk off from the last part of plr 1 's message.

To verify correctness, we need to ensure that plr k always outputs

x • f k-1 • • • • • f 2 (i).
In the following argument, we repeatedly use Lemma 2.5. We proceed inductively. If

|S 1 ∩ f -1 2 (f 2 (i))| ≤ d then there exists π 0 ∈ A S 1 ,d (f 2) such that f 2 (i) = π 0 (i), α 0 = α(π 0 , x2
), and β 0 = β(i, x2 , α 0), and plr k outputs

γ 0 = γ(i, π 0 , α 0 , β 0) = x2 (π 0 (i)) = x • f k-1 • • • • • f 2 (i). Otherwise, |S 1 ∩ f -1 2 (f 2 (i))| > d, hence f 2 (i) ∈ S 2 . Inductively, if îj ∈ S j-1 , then either |S j-1 ∩ f -1 j (f j (îj))| ≤ d, or |S j-1 ∩ f -1 j (f j (îj))| > d.
In the former case, there is π 0 ∈ A S j-1 ,d (f j) such that f j (îj) = π 0 (îj); α 0 (π 0 , xj), and β 0 = β(îj , xj , α 0), and plr k outputs

γ 0 = γ(îj , π 0 , α 0 , β 0) = xj (f j (îj)) = x • f k-1 • • • • • f 2 (i).
In the latter case, f j (îj) ∈ S j . By induction, we have that either

plr k outputs x • f k-1 • • • • • f 2 (i), or îk ∈ S k-1 . But in this case, plr k outputs x(îk) = x • f k-1 • • • • • f 2 (i) directly from the last part of plr 1 's message. Therefore, plr k always outputs x • f k-1 • • • • • f 2 (i) correctly.
We now turn to the communication cost of the protocol. By Lemma 2.7, |A S j ,d (f j)| ≤ d for each 2 ≤ j ≤ k -1, hence the first k -2 parts of plr 1 's message each are at most dm bits long, as is plr j 's message for all 2 ≤ j ≤ k -1. Also, since for all 2 ≤ j ≤ k -1, there are at most

|S j-1 |/d elements s ∈ S j such that |S j-1 ∩ f -1 j (s)| > d, we must have that |S 2 | ≤ |S 1 |/d = n/d, |S 3 | ≤ |S 2 |/d ≤ n/d 2 , etc., and |S k-1 | ≤ n/d k-2
. Therefore, the final part of plr 1 's message is at most n/d k-2 bits long, and the total communication cost is at most

2(k-2)dm+n/d k-2 = O((k-2)dnφ(n)+n/d k-2). Setting d = ⌈1/((k-2)φ(n)) 1/(k-1) ⌉ gives us a bound of O(n(kφ(n)) (k-2)/(k-1)) as desired.
Note that, in the above protocol, except for the first and last players, the remaining players access very limited information about their input. Specifically, for all 2 ≤ j ≤ k -1, plr j needs to see only îj and xj , i.e., plr j is both conservative and collapsing. Despite this severe restriction, we have a sublinear protocol for mpj k . As we shall see in the next section, further restricting the input such that plr 1 is also collapsing yields very strong lower bounds.

Collapsing Protocols: A Lower Bound

Let F : A 1 × A 2 × • • • × A k → B
be a k-player NOF communication problem and P be a protocol for F . We say that plr j is collapsing in P if her message depends only on x 1 , . . . , x j-1 and the function g x,j :

A 1 × A 2 × • • • × A j → B
given by g x,j (z 1 , . . . , z j) = F (z 1 , . . . , z j , x j+1 , . . . , x k). For pointer jumping, this amounts to saying that plr j sees all layers 1, . . . , j -1 of edges (i.e., the layers preceding the one on her forehead), but not layers j + 1, . . . , k; however, she does see the result of following the pointers from each vertex in layer j. Still more precisely, if the input to mpj k (or mpj k) is (i, f 2 , . . . , f k), then the only information plr j gets is i, f 2 , . . . , f j-1 and the composition

f k • f k-1 • • • • • f j+1 .
We say that a protocol is collapsing if every player involved is collapsing. We shall prove Theorem 1.4 by contradiction. Assume that there is a collapsing protocol P for mpj k in which every player sends less than n -1 2 log n -2 bits. We shall construct a pair of inputs that differ only in the last layer (i.e., the Boolean string on plr k 's forehead) and that cause players 1 through k -1 to send the exact same sequence of messages. This will cause plr k to give the same output for both these inputs. But our construction will ensure that the desired outputs are unequal, a contradiction. To aid our construction, we need some definitions and preliminary lemmas. Definition 3.1. A string x ∈ {0, 1} n is said to be consistent with (f 1 , . . . , f j , α 1 , . . . , α j) if, in protocol P , for all h ≤ j, plr h sends the message α h on seeing input

(i = f 1 , . . . , f h-1 , x• f j • f j-1 • • • • • f h+1) and previous messages α 1 , . . . , α h-1 . 2 A subset T ⊆ {0, 1} n is said to be consistent with (f 1 , . . . , f j , α 1 , . . . , α j) if x is consistent with (f 1 , . . . , f j , α 1 , . . . , α j) for all x ∈ T .
Definition 3.2. For strings x, x ′ ∈ {0, 1} n and a, b ∈ {0, 1}, define the sets I ab (x, x ′) := {j ∈ [n] : (x j , x ′ j) = (a, b)} . A pair of strings (x, x ′) is said to be a crossing pair if for all a, b ∈ {0, 1}, I ab (x, x ′) = ∅. A set T ⊆ {0, 1} n is said to be crossed if it contains a crossing pair and uncrossed otherwise. The weight of a string x ∈ {0, 1} n is defined to be the number of 1s in x, and denoted |x|.

For the rest of this section, we assume (without loss of generality) that n is large enough and even.

Lemma 3.3. If T ⊆ {0, 1} n is uncrossed, then |{x ∈ T : |x| = n/2}| ≤ 2.
Proof. Let x and x ′ be distinct elements of T with |x| = |x ′ | = n/2. For a, b ∈ {0, 1}, define t ab = |I ab (x, x ′)|. Since x = x ′ , we must have t 01 + t 10 > 0. An easy counting argument shows that t 01 = t 10 and t 00 = t 11 . Since T is uncrossed, (x, x ′) is not a crossing pair, so at least one of the numbers t ab must be zero. It follows that t 00 = t 11 = 0, so x and x ′ are bitwise complements of each other. Since this holds for any two strings in {x ∈ T : |x| = n/2}, that set can have size at most 2. Lemma 3.4. Suppose t ≤ n -1 2 log n -2. If {0, 1} n is partitioned into 2 t disjoint sets, then one of those sets must be crossed.

Proof. Let {0, 1} n = T 1 ⊔T 2 ⊔• • •⊔T m be a partition of {0, 1} n into m uncrossed sets. Define X := {x ∈ {0, 1} n : |x| = n/2}. Then X = m i=1 (T i ∩ X). By Lemma 3.3, |X| ≤ m i=1 |T i ∩ X| ≤ 2m . Using Stirling's approximation, we can bound |X| > 2 n /(2 √ n). Therefore, m > 2 n-1 2 log n-2 .
Proof of Theorem 1.4. Set t = n -1 2 log n -2. Recall that we have assumed that there is a collapsing protocol P for mpj k in which every player sends at most t bits. We shall prove the following statement by induction on j, for j ∈ [k -1].

(*) There exists a partial input

(i = f 1 , f 2 , . . . , f j) ∈ [n] × [n] [n] j-1 , a
sequence of messages (α 1 , . . . , α j) and a crossing pair of strings (x, x ′) ∈ ({0, 1} n) 2 such that both x and x ′ are consistent with (f 1 , . . . , f j , α 1 , . . . , α j), whereas

x • f j • • • • • f 2 (i) = 0 and x ′ • f j • • • • • f 2 (i) = 1.
Considering (*) for j = k -1, we see that plr k must behave identically on the two inputs (i, f 2 , . . . , f k-1 , x) and (i, f 2 , . . . , f k-1 , x ′). Therefore, she must err on one of these two inputs. This will give us the desired contradiction.

To prove (*) for j = 1, note that plr 1 's message, being at most t bits long, partitions {0, 1} n into at most 2 t disjoint sets. By Lemma 3.4, one of these sets, say T , must be crossed. Let (x, x ′) be a crossing pair in T and let α 1 be the message that plr 1 sends on seeing a string in T . Fix i = f 1 such that i ∈ I 01 (x, x ′). These choices are easily seen to satisfy the conditions in (*). Now, suppose (*) holds for a particular j ≥ 1. Fix the partial input (f 1 , . . . , f j) and the message sequence (α 1 , . . . , α j) as given by (*). We shall come up with appropriate choices for f j+1 , α j+1 and a new crossing pair (y, y ′) to replace (x, x ′), so that (*) is satisfied for j + 1. Since plr j+1 sends at most t bits, she partitions {0, 1} n into at most 2 t subsets (the partition might depend on the choice of (f 1 , . . . , f j , α 1 , . . . , α j)).

As above, by Lemma 3.4, she sends a message α j+1 on some crossing pair (y, y ′). Choose f j+1 so that it maps I ab (x, x ′) to I ab (y, y ′) for all a, b ∈ {0, 1}; this is possible because I ab (y, y ′) = ∅. Then, for all i ∈ [n], x i = y f j+1 (i) and x ′ i = y ′ f j+1 (i) . Hence, x = y • f j+1 and x ′ = y ′ • f j+1 . Applying the inductive hypothesis and the definition of consistency, it is straightforward to verify the conditions of (*) with these choices for f j+1 , α j+1 , y and y ′ . This completes the proof.

Collapsing Protocols: An Upper Bound

We now turn to proving Theorem 1.5 by constructing an appropriate collapsing protocol for mpj perm k

. Our protocol uses what we call bucketing schemes, which have the flavor of the conservative protocol of Damm et al. [START_REF] Damm | Some bounds on multiparty communication complexity of pointer jumping[END_REF]. For any function f ∈ [n] [n] and any S ⊆ [n], let 1 S denote the indicator function for S; that is, 1 S (i) = 1 ⇔ i ∈ S. Also, let f | S denote the function f restricted to S; this can be seen as a list of numbers {i s }, one for each s ∈ S. Players will often need to send 1 S and f | S together in a single message. This is because later players might not know S, and will therefore be unable to interpret f | S without 1 S . Let m 1 , . . . , m t denote the concatenation of messages m 1 , . . . , m t . Definition 4.1. A bucketing scheme on a set X is an ordered partition B = (B 1 , . . . , B t) of X into buckets. For x ∈ X, we write B[x] to denote the unique integer j such that B j ∋ x.

We actually prove our upper bound for problems slightly more general than mpj perm k . To be precise, for an instance (i, f 2 , . . . , f k) of mpj k , we allow any one of f 2 , . . . , f k to be an arbitrary function in [n] [n] . The rest of the f j s are required to be permutations, i.e., in S n .

Theorem 4.2 (Slight generalization of Theorem 1.5). There is an O(n log (k-1) n) collapsing protocol for instance (i, f 2 , . . . , f k) of mpj k when all but one of f 2 , . . . , f k are permutations. In particular, there is such a protocol for mpj perm k .

Proof. We prove this for mpj perm k only. For 1 ≤ t ≤ ⌈log n⌉, define the bucketing scheme B t = (B 1 , . . . , B 2 t) on [n] by B j := {r ∈ [n] : ⌈2 t r/n⌉ = j}. Note that each |B j | ≤ ⌈n/2 t ⌉ and that a bucket can be described using t bits. For 1 ≤ j ≤ k, let b j = ⌈log (k-j) n⌉. In the protocol, most players will use two bucketing schemes, B and B ′ . On input (i, f 2 , . . . , f k):

• Note that the definitions guarantee that f j (îj) ∈ S j . plr j sends 1 S j , {B ′ [fj (s)] : s ∈ S j }

• plr k sees îk and plr k-1 's message and outputs f k (îk).

We claim that this protocol costs O(n log (k-1) n) and correctly outputs mpj k (i, f 2 , . . . , f k). For each 2 ≤ j ≤ k -1, plr j uses bucketing scheme B b j-1 to recover the bucket B b containing fj (f j (îj)). She then encodes each element in B b in the bucketing scheme B b j . Each bucket in B b j has size at most ⌈n/b j+1 ⌉. In particular, each bucket in scheme B k-1 has size at most ⌈n/b k ⌉ = 1, and the unique element in the bucket (if present) is precisely f k (îk). Turning to the communication cost, plr 1 sends b 1 = ⌈log (k-1) n⌉ bits to identify the bucket for each i ∈ [n], giving a total of n⌈log (k-1) n⌉ bits. For 1 < j < k, plr j uses n + b j (n/b j) = O(n) bits. Thus, the total cost is O(n log (k-1) n + kn) bits.

For k ≤ log * n players, we are done. For larger k, we can get an O(n) protocol by doubling the size of each b j and stopping the protocol when the buckets have size ≤ 1.

Concluding Remarks

We have presented the first nontrivial upper bound on the NOF communication complexity of the Boolean problem mpj k , showing that C(mpj k) = o(n). A lower bound of Ω(n) had seemed a priori reasonable, but we show that this is not the case. One plausible line of attack on lower bounds for mpj k is to treat it as a direct sum problem: at each player's turn, it seems that n different paths need to be followed in the input graph, so it seems that an information theoretic approach (as in Bar-Yossef et al. [START_REF] Bar-Yossef | An information statistics approach to data stream and communication complexity[END_REF] or Chakrabarti [START_REF] Chakrabarti | Lower bounds for multi-player pointer jumping[END_REF]) could lower bound C(mpj k) by n times the complexity of some simpler problem. However, it appears that such an approach would naturally yield a lower bound of the form Ω(n/ξ(k)), as in Conjecture 1.1, which we have explicitly falsified.

The most outstanding open problem regarding mpj k is to resolve Conjecture 1.2. A less ambitious, but seemingly difficult, goal is to get tight bounds on C(mpj 3), closing the gap between our O(n log log n/ log n) upper bound and Wigderson's Ω(√ n) lower bound.

A still less ambitious question is prove that mpj 3 is harder than its very special subproblem tpj 3 (defined in Section 1.1). Our n -O(log n) lower bound for collapsing protocols is a step in the direction of improving the known lower bounds. We hope our technique provides some insight about the more general problem.

Theorem 1. 5 .

 5 For k ≥ 3, there is an O(n log (k-1) n)-communication protocol for mpj perm k in which every player is collapsing. Here mpj perm k denotes the subproblem of mpj k in which layers 2 through k of the input graph are permutations of [n].

 Fact 2.1 (Pudlak, Rödl and Sgall [PRS97, Corollary 4.8]). C(mpj perm 3) = O(n log log n/ log n).

 so the first part of plr 1 's message is at most dm bits long, as is plr 2 's message. Since there can be at most n/d values s ∈ [n] such that |f -1 (s)| > d, the second part of plr 2 's message is at most n/d bits long. Therefore the communication cost is at most 2dm + n/d = O(dnφ(n) + n/d). Setting d = ⌈1/ φ(n)⌉ gives us a bound of O(n φ(n)), as desired.

Definition 2. 6 .

 6 Let S ⊆ [n] and let d be a positive integer. A set A ⊆ S n of permutations is said to (S, d)-cover a function f : [n] → [n] if, for each r ∈ S, at least one of the following conditions holds: (i) ∃ π ∈ A such that π(r) = f (r), or (ii) |S ∩ f -1 (f (r))| > d. Lemma 2.7. Let f : [n] → [n] be a function, S ⊆ [n], and d be a positive integer. There exists a set A S,d (f) ⊆ S n , with |A S,d (f)| ≤ d, that (S, d)-covers f .

 plr 1 sees f1 , computes B ′ := B b 1 , and sends B ′ [f1 (1)], . . . , B ′ [f1 (n)] . • plr 2 sees î2 , f2 , and plr 1 's message. plr 2 computes B := B b 1 and B′ := B b 2 . She recovers b := B[f2 (f 2 (î2))] and hence B b . Let S 2 := {s ∈ [n] : f2 (s) ∈ B b }. Note that f 2 (î2) ∈ S 2 . plr 2 sends 1 S 2 , {B ′ [f2 (s)] : s ∈ S 2 }• plr j sees îj , fj , and plr j-1 's message. plr j computes B := B b j-1 and B ′ := B b j . She recovers b := B[fj (f j (îj))] and hence B b . Let S j := {s ∈ [n] : fj (s) ∈ B b }.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 145-156 www.stacs-conf.org

It is worth noting that, in Definition

3.1, x is not to be thought of as an input on plr k 's forehead.Instead, in general, it is the composition of the rightmost kj layers of the input graph.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Work supported in part by an NSF CAREER Award CCF-0448277, NSF grants CCF-0514870 and EIA-98-02068. Work partly done while the authors were visiting the University of Washington, Seattle, WA. .