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Unilateral contact with adhesion and friction between
two hyperelastic bodies

A.-S. Bretelle?, M. Cocou™®, Y. Monerie®
& Laboratoire de Mécanique et d’ Acoustique, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

bUniversité de Provence, Marseille, France

In the present paper, we consider a thermodynamic model using the contact kinematics developed by A.
Curnier, Q.C. He and J.J. Téléga [C. R. Acad. Sci. Paris Sér. II 314 (1992) 1] involving unilateral contact,
adhesion and Coulomb friction between two homogeneous, isotropic and hyperelastic bodies. Adhesion is
described by an internal state variable p¢ introduced by M. Frémond [C. R. Acad. Sci. Paris Sér. II 295 (1982)
913; J. Theor. Appl. Mech. 6 (1987) 383]. Taking the case of contact between a hyperelastic solid and a plane
support, we formulate the associated boundary value problem as a minimization problem when no friction is
involved. When the intensity of the adhesion obeys a “static' law, we obtain an existence result for this problem.

1. Introduction

In this paper, we propose a thermodynamic model considering both unilateral contact, adhe-
sion and friction between two elastic bodies in the framework of finite deformations [4]. Many
interface debonding models have been developed in the framework of small displacements and
small deformations. Our model deals with the evolution of the decohesion at the interface between
two bodies. Cohesive forces at the interface may act in both the normal and tangential directions.
Some of these models take into account unilateral conditions of non-penetration and friction
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between the bodies. This is the case of the model proposed by Cangémi [5] and Raous et al.
[20,21]. With our formulation, the interface debonding models are extended to include the case of
finite deformations, decohesion, friction and unilateral contact. According to Frémond [10,11],
the adhesion is characterized by its intensity f?, which can vary from 1 (perfect adhesion) to 0 (no
adhesion).

The thermodynamic bases of the model are presented in part 2. We begin by giving the contact
kinematics in the framework of finite deformations. Using an approach proposed by Curnier et al.
[7], we define the gap vector via the orthogonal projection of a point belonging to one of the
candidate potential contact surfaces onto the other one. Then we define an objective relative
contact velocity of one surface with respect to the other. This local approach is suitable for de-
fining the impenetrability condition via a signed gap vector. Another approach, proposed by
Ciarlet and Necas [6], consists in adopting an overall formulation, assuming a unilateral contact
condition under the constraint to stay within a set. Since this does not seem to be very suitable for
numerical investigations, we adopted the local approach. The thermodynamic bases of the model
are developed and we describe only the contact behavior of one of the two surfaces, as we are able
to deduce the behavior of the other one from the extended action-reaction principle [7]. When the
free energy density and the pseudo-potential of dissipation are suitably chosen, the complete
boundary value problem is obtained.

Finally, in the particular case of contact with a plane rigid support, we propose a variational
formulation of the problem with respect to the reference configuration. When the adhesive contact
is assumed to be frictionless, the corresponding variational problem can be reduced to a mini-
mization problem, for which an existence result can be obtained if the intensity of the adhesion
obeys a ‘static’ law [2,6,7].

2. A thermodynamic model for unilateral contact, adhesion and friction
2.1. Contact kinematics

Throughout this paper, the variable « will be assumed to be 1 and 2. We consider two solids %4*
occupying, in some reference configurations, two domains Q* € R* with their boundaries denoted
by I'* and let n* be the corresponding outward normal unit vector. We will identify each particle
of #” with its position vector in Q* denoted by X*. Motions of bodies are defined by the locally
invertible and orientation-preserving mappings ¢* such that for all ¢ € [0, 7]

o (-, 1) : Q" — R’

The sets Q7" = ¢*(Q,¢) are the deformed counterparts of Q*, and n?" is the outward normal unit
vector to 0Q”". Let us denote by x** = ¢*(X?, ¢) the position vector in the deformed configuration.
Finally, we assume that the boundaries are regular enough, and each of them is decomposed into
three disjoint open parts, denoted by I, r§,rg,r;§“ = @*(I'}, 1), re =g *(I't,t) and
r (‘@ = @"(I'¢., t), respectively. We assume that the deformations are prescrlbed on 'y and I g in
both configurations, that the surface density forces T7 T on I':, T " are, respectlvely, applied
and that I'¢,, I'{ ¢" are the potential contact surfaces in the two configurations, where the bodies can



be in unilateral contact. We denote by t*, t”* the surface densuy forces on '}, I'l ’, respectively.
The bodles are subjected to given body forces denoted by f*, f*" in Q*, Q" respectlvely Let us
take Q7 to be the contactor body and Q7 the target one. Under approprlate smoothness as-
sumptions, we define a one-to-one correspondence via the projection which associates to x?" his
prox1ma1 pomt denoted by x"* = ¢*(X""). This vector coincides with the orthogonal projection
of x*' onto I'”". Let us denote by ¢, this projection (Fig. 1). The point X™ is the solution to the
following minimization problem:

lo" (X",1) = *(X™, )| = min [lo" (X",1) = ¢* (X", 1) (1)

XZerg

Each point of F is thus linked to a point of I' s
In the reference configuration, we define the mappings @ : I'c — I't. and IT” : I't — I'¢ 2 by

—1
0f = (¢°) op,00', I’=g¢,00" (2)

The problem can therefore be written in both configurations using either the Cauchy stress tensor
or the Piola—Kirchhoff stress tensor.

Fig. 1. Contact and kinematics.



Let us now consider a parametrization of I'/ ¢" which will help to construct a local frame for the
solid Q’ [8,13,14]. We define therefore a dlfferentlable and invertible mapping 7? such that

P4 — Fé, (3)
where A2 is an open subset of R%. Let 3 : 42 — I'”. be such that
2
7 =gt oy’. @

Each element of 4 is denoted by

o (6.5) = (7) ().

.- . 2 2 .
For the position vector X*> € I’ é and the corresponding vector x?° € I'., we have the relation

(Fig. 2)
F(e7), X = (e7) = 0 ((67) )

The minimization problem (1) can then be written as follows:

Jo' (X0 —02(*(&) 1) | = min 0! (X'.0) 0 ((@). 0] )

EcA?

where 6;? denotes the minimizer.

We suppose that these parametrizations are sufficiently smooth, so that we can define a local
frame forzthe 2sulrface of the second solid at x”*. In the deformed configuration, we define the local
frame (7,75 ,n?") by

Fig. 2. Parametrization of the target’s potential contact zone.
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and in the reference configuration we define (2, 13,n?) by

2(xX) #(e) Mz(wﬂ1(%(5(”2))%;"2(5‘”),

We will denote by (t{,75,n?), (3],77,0%), (z{,25,0?) these local frames constructed at x",
(X" and y“’2(§;’), respectively, and by (-),, (+):, (-),» (:).» (+):» (-); the normal and tangential

components.
In this framework, we define the gap vector d” for any deformation ¢ by

d’ (x“’l,t> =x? — ®, <x"’1,t> =x? —y” (él‘f),
with the nominal counterpart, which can be written as follows:
(X0 o (X0) — 92 (05 (X), 1) = o' (X'1) - 0 (*(&7) ).
These quantities can be expressed in the previous local frames as follows:
i (57 1) = an (7, Y = (1)
and also
d’(X',¢)  dl (X', )’ =dg, (X', 1)a’.

Let us calculate the material derivative of this gap vector:

om0 - ()} awx)-ae(i(5)) - S e

k=1

= 0,0 (X, 1) — 8,0 (V2 (f;"),t) - &;f’.

(6)



From (9) we can write another expression for the material derivative of the gap vector as

d° (xwl , z) —&X 1) = 00+ doh” = 3000 4+ d00. (10)
We define a contact relative velocity as follows:

Ve <x¢1 , t) —ox? —oy” (qf) —ds, (x“"l , t) 7. (11)
This is an objective quantity and it is reduced to the classical relative velocity, that is,

VO (x?',1) = 0,x? (1) — th‘/’z(é;j’) in the case of established contact [8,18,19].
From (11) and (10), the contact velocity can be written:

Ve (x0) = di (x7 )i + & = dg (X1 )i + & (12)

2.2. The two principles of thermodynamics

Let us denote by ¢” the internal energy in an arbitrary domain 2 ¢ Q°° UT'Y such that

. 1 1 1

o _ ?* 0" Ax?" Qe ®

€’ = p?e” dx” + - pses da”,
79" Rz

where p?" is the density and pgl is the surface density of the first solid. In this paper, we study the
quasi-static case and using the principle of virtual powers, the first principle reads

€ =P+ Py = —P; + Pea,

where

2
o o o$ = o o
P, = / f7 - v dx? +/ CT? -v? da” |,
1 |Jo”* 079"\r¢

2
@i = Z / O-wu . Dqﬂ quooc _ / tw _vqﬂ daq)x 7 (13)
T | o 079" nre’

o=

2

o o ox

Poal = — E / q” -n? da*
a=1 0"

and v** is the virtual admissible velocity, T?" is the Cauchy stress vector, 6*” is the Cauchy stress
tensor, D" is the rate of deformation tensor, t*" = ¢?'n?" is the Cauchy stress vector, which
depends on the adhesive state, and q°” is the surface heat flux vector.



Using the following extended action—reaction principle of contact forces:

[ () 1) o) =0 e g
re

where j, satisfies da?” = j,((x?') da® (see [12]), the internal power becomes
p p

2
o o o 1 1 2 1
,@i:—g /za“’: D? dx? +/ 1 (lt‘”-{v“’ —v" og,| da’ . (15)
= Jo 07" nre

Assuming that there is no flux of material between surface and volume, the volume and surface
mass conservation equations reads

'gp“ gp“ 'QD“ ({’a: . (px
{p +p?" div” v =0 in Q7 (16)

.ol 1 . 1 1 1
pS +pd divy vv =0 on I'¢,

where div?' and divg’1 are the volume and surface divergence operators [9,16].
Using (14) and (16), one can show that

2

o, 0 o 1,1 1
g p? e dx” + p¢ éf da” = —P+ Pea. (17)
= Jo" o' nre!

Using the decomposition with respect to the local frame, the definition of the contact velocity
(11) and the local moment balance [7], the internal power can be written as follows:

2 )

o o o 1/ 1 : 1

P = — E / ¢’ : D” dx* +/ o tyo o +t5, - &7 ) da” .
—l JI" 09 NI

We therefore obtain the local form of the first principle, as ¢ is arbitrary in Q"

p? e’ =6 . DY —div’ q*" in Q”, a=1,2,
(18)

1 1 1 = 1 . 1
A ¢ JP @ ® 4
ps €s = —lipdy —t, - &) on Ic.

Let us now denote by H? the entropy of 2" given by

H? = / p? h?" dx”” +/ 1 p¢'n¢ da”'.
7" 02°' nrg

The second principle of thermodynamics reads:

o o
. q‘/’ - n® "
H? > da”,
077"

T



which yields to the following local form for the second principle, as 2% is arbitrary in Q¢":

Ly o (g7 . x
p¢ h? = — div? <QT> in Q%, o=1,2, (19)

s ol 1
¢ @
hg =20 on I'¢,

where T is the absolute temperature. 1
We classically introduce the Helmholtz free energies * and Y% such that

Y =" — T, W =el —n¢'T.

In any isothermal process, relations (18)—(22) lead to the following Clausius—Duhem inequal-

ities which must be satisfied for any actual evolution of the bodies:
Y <o DY in Q, a=1,2,

{pw : 20

1.« 1 1 1 . 1
¢ P JP P ® @
ps P9 < —t,dy —t, &, onI'c.

2.3. State and complementary laws

Since the previous relations have been established quite generally, we will now present our
specific choice for expressions of the free energies.

As contact situations can occur either with or without adhesion, the surface variables dj, and &7
(which correspond to the normal and the tangential components of the displacement jump across
the interface under the assumption of small displacements) does not describe completely the
adhesion state. According to Frémond [10,11], we will characterize the adhesion by the internal
state variable f” € [0, 1], which represents the intensity of the adhesion between the two surfaces,
such that

0 < f? <1, the adhesion is partial,
p? =1, the adhesion is total, (21)
p? =0, there is no adhesion.

We consider a homogeneous, isotropic and hyperelastic material characterized by its stored en-
ergy function W* such that

OW*
p*r—=_—__"_ =12 22
av(paﬂ OC ) ) ( )

where P is the first Piola Kirchhoff stress tensor.

To describe the deformation of the bodies in the deformed configuration, we choose the
Hencky strain tensor [17] because it is conjugated to the Cauchy stress tensor when the solids are
hyperelastic and isotropic, we have the following relations (see [23]):



o7 OWE (1)
Pt OH”

o

¢ : DY =¢”: H” and ¢* = (23)

where wg“ is the strain energy density of the hyperelastic material with respect to the configu-
ration Q¢ .

The §uperso}ripts (‘)R, (-)IR will denote, respectively, the reversible and irreversible parts. We
take (12,)%, (t%,)% to denote the thermodynamic forces associated with d%, and &) (the expressions
for the irreversible components will be given later by the complementary laws). The thermody-
namics forces associated to the sate variables are presented in Table 1.

The free energy depends on the Hencky strain tensor according to the following relation:

1

Yo (H) ;W‘g“(w“). (24)

The surface free energy w¢' is chosen onto I’ (‘@1 as follows:

1 i
P = 7 B0 ) = () 1 57)) + 7 (45 58). (25)
N

where K={d,; d, >0}, P={y; 0<y<1}, IdK, Idp are the indicator functions of K and P and
‘P“’ is assumed to be objective. Moreover, ‘P“’ is assumed to be equal to 0 when % =0 and
dlfferentlable at (dy, &, B7).

We choose the following specific form for 'P(" (o, &7, B):

2
Wo = enfO(dl) + erp?||El|[

where ey = 0, ¢t = 0 and

B =1 if 0<0<d,
0<p’ <1 if <5<,
B =0 if 5. <0,

with §, a mechanical parameter for which the decohesion begins and J. the one for which dec-
ohesion is complete. Here § denotes the norm of the gap between the two bodies:

Table 1

The thermodynamic variables
State variables H* di 44 B’
Thermodynamic forces —(e)} (l,ﬁ] )R (tf/‘l ) Gp




P \2 2
5=1/(d2) +||&

For example, one can take

2
.ﬁ(é):(écé 5)) 50:0a 6C<OO,

0. — 0
[ ] ﬁ(é)—m, 50<5C<OO,

o B(S) = (%)2 3¢ = 00

This formulation is similar to the classical continuum damage mechanics formulation, in the

case of surface damage, and generalizes some formulas used in small displacements (see [15]).
We consider the following state laws:

¢
(a“’a)R p” oy in Q, a=1,2,

26
o \" ! 0! 0! 0! o' 26)
; —<t%w) €ps 0¥’ , —Gpepg op¥? on ¢,

where 0, is the sub-differential with respect to y.
We now choose the following expression for the pseudo-potential of dissipation:

o =0 (& py) L

1 OW¢
1
ps

S od?,

1
ti +p

5

w oy (B 87) 2= (e g ),

(27)

where p is the friction coefficient, @7 is a given, frame indifferent and differentiable mapping that
is equal to 0 when f” = 0, finite and convex with respect to f°.

The complementary laws are as follows:

(6)" =0 in Q" o=

o\ R o\!
- (Z;,tp> = 07 _(ti-‘l’

R 1 1 1 1 1 (28)

1,2,

10



Let us define the dissipation of the system as follows:
d” = —p” Yy 46 : H” in Q"
D = —pg' ' — 0 dl —t0 & on TP,
where ¥¢' is the right derivative of po', Using (26) one obtains the positivity of D¢ on I’ gl if
I\ IR A NIR . .
() a5 - (&) &+ G =0, (29)

The previous inequality will be satisfied, for example, in the case of a positive pseudo-potential
of dissipation which is zero when é;f =0, ”=0.

2.4. The quasi-static problem

Using the expressilon for P¢' given by (25), we can write the state laws (26) via a partial sub-
differentiation of ¥ . The first inclusions in (26) become

A o\ o! o' (0 2o @
—() = () ) € o Vg e W8 (. &7) + Dldi(df),

and by making appropriate variational choices, we obtain [3]

1
(0 R ¢1alP§ 0
(tﬁq,> € p$ o, + 0ldy (df,), (30)
1
0! R__ (Pla'f’g ol
(tf¢> = —pg 28 on I'l. (31)

We can now write (30) as follows:

Vi, Idg (d;fw) — Ldg(df) > — ((tf;’;)R +p¢ %Zf ) (d;@ _ dZL),

which is equivalent to

R 0wy
Yy €K, ((ﬂ‘) + 08 58 > (@ —az) = 0.

By making suitable variational choices, we obtain

R oy’
() +0¢ 20, dl >0,
ne

o\ R (169""] . o
((t,f(p) +ps adg >d,{;=0 on I'%,
ne

which correspond to the unilateral contact conditions involved in finite deformations.

(32)

11



Let us now study the contribution of the friction. According to the complementary laws (28),
taking a partial sub-differentiation of P given by (27), we can obtain

ut; +ps1%§: ( f‘”)z —(t?ip> (é“” fw) vy,
and from (31)
o8 28 (e - ) » - (tz’;wzl aa'ig) (&-&) W (33)
ne p

The above relations are equivalent to the friction law [5]:

(/)l

IR alp
(tff;) <ulth +p¢ =&| onTY (34)
ody,
and
IR aqjlpl .
H(tﬁﬁ) < |t +p¢ 5| = & =0
IR 9! ) IR
H(té‘ﬁ) :ut}fiﬂLpgl% —~ >0, gﬁz_g(tg})
7o

To express the evolution of the adhesion, we use the Legendre—Fenchel transformation, denoted
by ()", which, if the functionals are smooth enough, gives

Gy € pl0 @ > [ € 0q, (pglw‘)*. (35)

Inequations (32), (34) and (35), together with the equilibrium conditions, the boundary conditions
and the generalized action—reaction principle (14), yield to the following boundary value problem:

Problem 2. Find ¢* : Q¢ x]0,T[— R®, * : Fgl — R with ¢*(0) = @f in %", f2(0) = 7 on F(“;l,
such that for all 7 €]0, T'[ and o = 1,2,

LAl
oHY”

. o o o o o . o
div” ¢? +17 =0, ¢” =p° in Q¥

4 o o o o
p*=¢ only, 6¢’*n” =T? onI7,

6”n” =0 on ng \ (pp<Fgl),

12



Jp (x"’l) (o‘”zn‘/’z) (qop (x‘/’l>) +t (x‘”l) =0 on Fgl,

1 1
! (laqj(p ! (laql(/) q !
tﬁﬂq’ +pSﬂ ad% > 07 df(zp‘/’ > 0’ <tr{)‘/’ +pS/) ad%) )dﬁef’ = 0 on Fé ?
1 1 gl 1 16?/(6)1 1
» % ® ® ®
t + ps a—éz) < Wtio + Ps ad?, on I'c
and
0! (laqﬂpl o! (lag/wl £
08 g | <Kl T05 ggr| F =0,
P A
L g 0% Lo U STt 74
t$ﬂ+p§a—ég :uz;‘iﬁpg"ﬁ = =0, & =-4 t§p+p§”a—§3 ,
P i P

B € g, (p§”1@¢1> , —Gpe pg‘a,;w we' on IY.

3. Application to the adhesive contact between a hyperelastic body and a plane rigid support
3.1. The quasi-static problem
Let us now study the contact between a hyperelastic body and a rigid fixed body (Fig. 3). We

shall write 2, using the Piola—Kirchhoff stress tensor and we neglect the superscript 1 in the
following. The local frame is reduced to (n,t), the previous state variables become u?,u?, .

n’

Fig. 3. Contact between an hyperelastic body and a rigid plane support.

13



The hyperelastic constitutive equation can be likewise written in a nominal formulation (22).
In this particular case, the boundary value problem is reduced to:

Problem #,. Find ¢ : 2x]0,T[— R, f? : I'c — R with ¢(0) = ¢, in @, $%(0) = B on I'c, such
that V¢ €]0, T[:

) . OW
divP+f=0inQ P — inQ
v P+ n £, Vo n €2,

¢ = ¢p on I'p, Pn=T on ['t,

owy ovy
t,,+psﬁg >0, u? >0, (t,,—i—ps au£>u:f20 on I'c,

(I/GD @
t,+ po—o| < ulty + ps—2| on I’
T Ps ou® Sy UL Ps ou’ C
and
® ¢ _
tr—i-Psaucg <l”n+/’sa<9 = uf =0,
ovy? ¢ ope
tr"’pSa(uq?) :th+Psa Q(J) = 3/1207 uf:—l(t,—kpswé)),

= Og,(ps®?)", where — Gy € pgOpe P’ on I'c,
where div denotes the volume divergence operator with respect to the reference configuration and

t = Pn.

Let us now establish a variational formulation for the previous boundary value problem. In
what follows, we will denote by Q and K’ the following sets:

Q= {}:Q—R; y=opponlp},
(36)
K ={y€0; u/ >0o0nIc}.

n

We shall adopt the notations:

(A(p,n):/[ﬁ’: Vi dX, L(n):/T-nda—l—/f-ndX, (37)

Q I't Q

) oy’

i(B%, @,n) —/ ulty + ps | [[ut]] da, (38)
I'c Un

14



® ®

( Gl ( oY
CT(ﬂpa (,0777) = /I" Ps auq()) ! llZ d(l, CN(ﬂpv %’7) = /l“ Ps 61/!(2 MZ da. (39)
¢ T c n

The problem 2, is formally equivalent to the following variational formulation [3]:

Problem #5. Find ¢, ” such that ¢(0) = ¢, in Q and $°(0) = B on I'c such that V¢ €]0, T],
¢(t) € K' and

(Ap,0m —00) + j(B?, @, 0m) — j(B’, @, 0:¢) + Cr(B’, @, 0m)

> L0 — 0:p) + / 400 —0p), Vi€ O, (40)
I'c
/ ta(uy —ul) + Cn(B’ 0w — ) 20 YweK, (41)
I'c
B € 36, (ps®’)",  —Gp € plOp V. (42)

We note that we can simplify this expression by coupling (40) and (41) and obtain
(Ao, n— @) + (B ¢, 00 +1— @) = j(B* ¢, 0m —n+ @) + C(B*, 0,01 — @)
>Ln—¢) Vnek, (43)
B’ € 86,(ps®°)’, —Gy € pgdp P, (44)
with C = Cr + Cx.
3.2. An existence result for the frictionless contact problem
Let us consider the previous system (44) in a static form
B? € 86,A%, —Gp € psOpe V7, (45)
where A? is deduced by a discretization of the pseudo-potential of dissipation (see [22]).

By assuming Gy in (45) does not depend explicitly on f*, problem (43), (44) can be reduced to
the following minimization:

inf{(n) +J(n) — L(m)},

where

1(n) Z/QW(W) dX, J(n)z/r ps'Po(n) da.

C

15



Let us study this minimization problem over an appropriate set 2 of admissible deformations:

2={neWP(QR’); cof Vi € L1(Q;R’), det Vi € L'(Q),
det Vi >0 p.p.in Q, n=¢pp.p.-onlp, n,=>0p.p.onlc}

We assume that:

(a) 'i’o() is lower semi-continuous on R* and ﬁ’o(n) =>0Vne 2

(b) W is polyconvex [2];

(c) there exist constants « >0, f, p =2, q>p/(p— 1), r > 1, such that

W(EF) = o(|[F|l” + [[cof F|[* + (det F)") + B,

for all F € Mi (where Mi is the set of matrices with positive determinants);
(d) limge, 5o+ W(F) = +oc for all F € M.
We have the following result:

Theorem 3.1. Let Q be a domain in R* and W - Mi — R be a strain energy density with properties
(b), (¢), (d) and let L : W'?(Q,R*) — R be continuous.

Let I' = I'n U Tt U T ¢ be a da-measurable partition of the boundary of Q with area I', > 0, and
let pp : I'n — R be a measurable function such that the set 2 is non-empty. We assume that the
integrand of J has the property (a). Let us assume that

inf[I(n) +J(n)] < oco. (46)

ne2
Then there exists at least one function ¢ such that:

9 €2 and I(g)+J(p) =inflI(n) +J(n)]- (47)

Proof. Let (¢*) an infimizing sequence for the functional 7 +J, i.e., a sequence that satisfies
" € 2 Vk € N* and

lim (1(¢") +J(¢")) inf[I(n) +J(n)],

k—o00 ne2
and let us consider a sub-sequence of the infimizing sequence (¢*) such that
o — @ in WP(Q; [RQ3).
From assumptions (a) and (46), inf,c, (1) < oo, ¢ € 2 and [2,6]

. . k
1(9) <llr/€riicnfl(¢ ).

We now show that J is sequentially weakly lower semi-continuous. For this purpose, we consider
a sequence (1) € 2 such that n* — y in W'?(Q;R?). Then from a compactness result (see, e.g.,
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[1]), n* — 5 in L?(I'c; RY). This means that there exists a subsequence of (1) that converges almost
everywhere towards 7. Under the hypothesis (a), this sub-sequence satisfies

Po(n) < lim inf ¥, (n").

k—o0

Using this relation and Fatou’s lemma, we obtain

. . T k 1 : k
J(n) <lim inf Cp‘PO(n ) da = 11rlgli?fJ(n ).

r

It can therefore be concluded that J is sequentially weakly lower semi-continuous. Then the
minimization problem has the solution ¢ since,

inf[I(n) +J(n)] <1(p) +J(p) <lim inf[I(¢*) + J(¢")] inf[i(n)+J(p)]. O

ne2 k—o0 ne2
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