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t An important issue in the tomographi
 re
onstru
tion of the solar poles isthe relatively rapid evolution of the polar plumes. We demonstrate that it is possibleto take into a

ount this temporal evolution in the re
onstru
tion. The di�
ulty ofthis problem 
omes from the fa
t that we want a 4D re
onstru
tion (three spatialdimensions plus time) while we only have 3D data (2D images plus time). To over
omethis di�
ulty, we introdu
e a model that des
ribes polar plumes as stationary obje
tswhose intensity varies homogeneously with time. This assumption 
an be physi
allyjusti�ed if one a

epts the stability of the magneti
 stru
ture. This model leads to abilinear inverse problem. We des
ribe how to extend linear inversion methods to thesekinds of problems. Studies of simulations show the reliability of our method. Resultsfor SOHO/EIT data show that we are able to estimate the temporal evolution of polarplumes in order to improve the re
onstru
tion of the solar poles from only one pointof view. We expe
t further improvements from STEREO/EUVI data when the twoprobes will be separated by about 60◦.1. Introdu
tionA method known as solar rotational tomography has been used to retrieve the 3Dgeometry of the solar 
orona (Frazin 2000; Frazin and Janzen 2002). This methodassumes the stability of the stru
tures during the time ne
essary to a
quire the data.Sin
e we generally have only one point of view at our disposal, about 15 days arerequired to have data for half a solar rotation at the poles. Here, we fo
us our studyon solar polar plumes. They are bright, radial, 
oronal ray stru
tures lo
ated at thesolar poles in regions of open magneti
 �eld. The study of plumes is of great interestsin
e it may be the key to the understanding of the a

eleration of the fast 
omponentof the solar wind (Teria
a et al., 2003). However the three-dimensional shape of thesestru
tures is poorly known and di�erent assumptions have been made, e.g. Gabriel
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N. Barbey et al.et al., 2005; Llebaria, Saez, and Lamy, 2002. The plumes are known to evolve with a
hara
teristi
 time of approximately 24 hours on spatial s
ales typi
al of Extreme ultra-violet Imaging Teles
ope (SOHO/EIT) data (2400 km) (DeForest, Lamy, and Llebaria,2001). Consequently the stability assumption made in rotational tomography fails.Fortunately, the Solar TErestrial RElations Observatory (STEREO) mission 
onsistsof two identi
al spa
e
raft STEREOA and STEREOB whi
h take pi
tures of the Sunfrom two di�erent points of view. With the SOHOmission still operating, this results inthree,simultaneous points of view. Three viewpoints help to improve the re
onstru
tionof the plumes, but they are still not enough to use standard tomographi
 algorithms.The problem is underdetermined and 
onsequently one has to add a priori informationin order to over
ome the la
k of information. This leads to 
hallenging and innovativesignal analysis problems. There are di�erent ways to deal with underdeterminationdepending on the kind of obje
t to be re
onstru
ted. Interestingly the �eld of medi
alimaging fa
es the same kind of issues. In 
ardia
 re
onstru
tion, authors make use ofthe motion periodi
ity in asso
iation with a high redundan
y of the data (Grass et al.,2003; Ka
helriess, Ulzheimer, and Kalender, 2000). If one 
an model the motion as ana�ne transformation, and if one assumes that we know this transformation, one 
anobtain an analyti
 solution (Rit
hie et al., 1996; Roux et al., 2004).In solar tomography, the proposed innovative approa
hes involve the use of addi-tional data su
h as magneti
-�eld measurements in the photosphere (Wiegelmann andInhester, 2003) or data fusion (Frazin and Kamalabadi, 2005). Attempts have beenmade by Frazin et al. (2005) to treat temporal evolution using Kalman �ltering.Sin
e polar plumes have apparently a lo
al, rapid, and aperiodi
 temporal evolution,we developed as in the previously referen
ed work, a model based on the spe
i�
s ofthe obje
t we intend to re
onstru
t (preliminary results 
an be found in Barbey et al.,(2007). Plumes have an intensity whi
h evolves rapidly with time, but their position
an be 
onsidered as 
onstant. This hypothesis is 
on�rmed by previous studies of theplumes su
h as DeForest, Lamy, and Llebaria (2001). The model is made up of aninvariant morphologi
al part (x) multiplied by a gain term (θt) that varies with time.Only one gain term is asso
iated with ea
h plume in order to 
onstrain the model.So we assume that the position of ea
h plume in the s
ene is known. This model isjusti�ed if we 
onsider polar plumes to be slowly evolving magneti
 stru
tures in whi
hplasma �ows.Thanks to this model we 
an perform time-evolving three-dimensional tomographyof the solar 
orona using only extreme ultra-violet images. Furthermore, there is no
omplex, underlying physi
al model. The only assumptions are the smoothness of thesolution, the area-dependant evolution model, and the knowledge of the plume position.These assumptions allow us to 
onsider a temporal variation of a few days, whileassuming only temporal smoothness would limit variations to the order of one solarrotation (about 27 days). To our knowledge, the estimation of the temporal evolutionhas never been undertaken in tomographi
 re
onstru
tion of the solar 
orona.We �rst explain our re
onstru
tion method in a Bayesian framework (Se
tion 2). Wethen test the validity of our algorithm with simulated data (Se
tion 3). An example ofa re
onstru
tion on real SOHO/EIT data is shown in Se
tion 4. Results are dis
ussedin Se
tion 5. We 
on
lude in Se
tion 6.
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A Time-Evolving 3D Method Dedi
ated to the Re
onstru
tion of Solar Plumes

Figure 1. S
heme of the data a
quisition geometry. (O; x, y, z) de�nes the Carrington helio-
entri
 frame of referen
e. S is the spa
e
raft 
onsidered. φ is the latitude, and θ the longitudeof this spa
e
raft. V is the virtual dete
tor.2. MethodTomographi
 re
onstru
tion 
an be seen as an inverse problem, the dire
t problembeing the a
quisition of data images knowing the emission volume density of the obje
t(Se
tion 2.1). If the obje
t is evolving during the data a
quisition, the inverse problemis highly underdetermined. So our �rst step is to rede�ne the dire
t problem thanks toa reparametrization, in order to be able to de�ne more 
onstraints (Se
tion 2.2). Then,we pla
e ourselves in the Bayesian inferen
e framework in whi
h data and unknownsare 
onsidered to be random variables. The solution of the inverse problem is 
hosen tobe the maximum a posteriori (Se
tion 2.3). This leads to a 
riterion that we minimizewith an alternate optimization algorithm (Se
tion 2.4).2.1. Dire
t ProblemThe geometri
al a
quisition is mathemati
ally equivalent to a 
oni
al beam data a
qui-sition with a virtual spheri
al dete
tor (see Figure 1). In other words, the step betweentwo pixels verti
ally and horizontally is 
onstant in angle. The angle of the full �eldof view is around 45 minutes. In order to obtain an a

urate re
onstru
tion, we takeinto a

ount the exa
t geometry, whi
h means the exa
t position and orientation ofthe spa
e
raft relatively to Sun 
enter. We approximate integration of the emission ina �ux tube related to a pixel by an integration along the line of sight going throughthe middle of that pixel. We 
hoose to dis
retize the obje
t in the usual 
ubi
 voxels.
x is a ve
tor of size N 
ontaining the values of all voxels. In the same way, we de�nethe ve
tor of data yt of size M at time t. Sin
e the integration operator is linear, theproje
tion 
an be des
ribed by a matrix Pt. We 
hoose nt to be an additive noise:

yt = Ptxt + nt, ∀t ∈ [1, ..., T ] (1)
Pt is the proje
tion matrix at time t of size M×N whi
h is de�ned by the position andthe orientation of the spa
e
raft at this time. Its transpose is the ba
kproje
tion matrix.Note that a uniform sampling in time is not required. In order to be able to handlelarge problems with numerous well-resolved data images and a large re
onstru
tion
ube, we 
hose not to store the whole proje
tion matrix. Instead, we perform theproje
tion operation (Px) or its transpose ea
h time it is needed at ea
h iteration.

barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.3



N. Barbey et al.Thus, we need a very e�
ient algorithm. We developed a 
ode written in C whi
hperforms the proje
tion operation. It makes use of the geometri
al parameters given inthe data headers in order to take into a

ount the exa
t geometry (
oni
ity, position,and orientation of the spa
e
raft). To keep this operation fast, we implemented theSiddon algorithm (Siddon, 1985). It allows a fast proje
tion or ba
kproje
tion in the
ase of 
ubi
 voxels (Cartesian grid). Sin
e we fo
us on a small region at the poles,we 
onsider that we do not need to use a spheri
al grid whi
h would require a moretime-
onsuming proje
tion algorithm.We take into a

ount the fa
t that the �eld of view is 
oni
al. Despite the fa
tthat the a
quisition is very 
lose to the parallel a
quisition geometry, it is su�
ient tointrodu
e an error of several voxels of size 0.01 solar radius from one side to the otherof a three solar radii re
onstru
ted 
ube.2.2. Modeling of the Temporal EvolutionWith this model, the inverse problem is underdetermined sin
e we have at most threeimages at one time and we want to re
onstru
t the obje
t with its temporal evolution.In order to do so, we �rst rede�ne our unknowns to separate temporal evolution fromspatial stru
ture. We introdu
e a new set of variables gt of size N des
ribing thetemporal evolution and require that x does not depend on time:
yt = Pt(x ◦ gt) + nt (2)with ◦ being the term-by-term multipli
ation of ve
tors. This operator is 
learly bi-linear. However, this model would in
rease the number of variables ex
essively. So, weneed to introdu
e some other kind of a priori into our model. We make the hypothesisthat all of the voxels of one polar plume have the same temporal evolution:

gt = Lθt (3)The matrix L of size N × P (P being the number of areas) lo
alizes areas where thetemporal evolution is identi
al. Ea
h 
olumn of L is the support fun
tion of one ofthe plumes. We would like to stress that in our hypothesis, those areas do not moverelative to the obje
t. In other words, L does not depend on time. Lo
alizing theseareas de�nes L and only leaves P T variables to estimate. We rede�ned our problem ina way that limits the number of parameters to estimate but still allows many solutions.Furthermore, the problem is linear in x knowing θ and linear in θ knowing x. It willsimplify the inversion of the problem as we shall see later. Note, however that theuniqueness of a solution (x,θ) is not guaranteed with bilinearity despite its beingguaranteed in the linear 
ase. This example shows that A 
an be 
hosen arbitrarilywithout 
hanging the 
loseness to the data: x ◦ g = (Ax) ◦ (A−1g), where A is areal 
onstant. Introdu
ing an a priori of 
loseness to 1 for θ would allow us to dealwith this indetermina
y in prin
iple. But note that this indetermina
y is not 
riti
alsin
e the physi
al quantity of interest is only the produ
t x ◦ g. Féron, Du
hêne, andMohammad-Djafari (2005) present a method whi
h solves a bilinear inversion problemin the 
ontext of mi
rowave tomography.We do not deal with the estimation of the areas undergoing evolution, but we assumein this paper that the lo
alization is known. This lo
alization 
an be a
hieved usingother sour
es of information, e.g. stereos
opi
 observations. We expe
t to be able tolo
ate the areas using some other sour
e of information.
barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.4



A Time-Evolving 3D Method Dedi
ated to the Re
onstru
tion of Solar PlumesWe 
an regroup the equations of the dire
t problem. We have two ways to do so,ea
h emphasizing the linearity throughout one set of variables.
y = Uxθ + n







y1...
yT






=







P1XL 0. . .
0 PT XL













θ1...
θT






+







n1...
nT







(4)with X = diag(x), the diagonal matrix de�ned by x. x is of size N , y and n are ofsize M T , θ is of size P T and Ux is of size M T × P T .Similarly,
y = Vθx + nwith Vθ =







P1diag(Lθ1) 0. . .
0 PT diag(LθT )













Id...
Id







(5)with Id the identity matrix of size M × M . Vθ is of size MT × N .2.3. Inverse ProblemIn Bayes' formalism, solving an inverse problem 
onsists in knowing the a posteriori(the 
onditional probability density fun
tion of the parameters, the data being given).To do so we need to know the likelihood (the 
onditional probability density fun
tionof the data knowing the parameters) and the a priori (the probability density fun
-tion of the parameters). An appropriate model is a Gaussian, independent, identi
allydistributed (with the same varian
e) noise n. The likelihood fun
tion is dedu
ed fromthe noise statisti
:
f(y|x,θ, σn,M) = K1 exp

(

−
‖y − Uxθ‖2

2σ2
n

) (6)
M = [P ,L] des
ribing our model (the proje
tion algorithm and parameters and the
hoi
e of the plume position). We assume that the solution is smooth spatially andtemporally, so we write the a priori as follows:

f(x|σx) = K2 exp

(

−
‖Drx‖

2

2σ2
x

) and f(θ|σθ) = K3 exp

(

−
‖Dtθ‖

2

2σ2
θ

) (7)
Dr and Dt are dis
rete di�erential operators in spa
e and time. Bayes' theorem givesus the a posteriori law if we assume that the model M is known as well as thehyperparameters H = [σn, σx, σθ ]:

f(x,θ|y,H,M) =
f(y|x,θ, σn,M)f(x|σx)f(θ|σθ)

f(y|H,M)
(8)We need to 
hoose an estimator. It allows us to de�ne a unique solution instead ofhaving a whole probability density fun
tion. We then 
hoose to de�ne our solution asthe maximum a posteriori. whi
h is given by:

(xMAP, θMAP) = arg max
x,θ

f(y|x,θ, σn,M)f(x|σx)f(θ|σθ) (9)
barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.5



N. Barbey et al.sin
e f(y|M) is a 
onstant. Equation (9) 
an be rewritten as a minimization problem:
(xMAP, θMAP) = argmin

x,θ

J(x,θ) (10)with:
J(x,θ) = −2σn log f(x,θ|y,M,H) = ‖y − Uxθ‖2 + λ‖Drx‖

2 + µ‖Dtθ‖
2 (11)

λ =
σ2

n

σ2
x

and µ =
σ2

n

σ2
α

are user-de�ned hyperparameters.The equivalen
e of Equations (9) and (10) has been proved by Demoment (1989).Note that the solution does not have to be very smooth. It mostly depends on thelevel of noise sin
e noise in
reases the underdetermination of the problem as it hasbeen shown by the de�nition of λ and µ.2.4. Criterion MinimizationThe two sets of variables x and θ are very di�erent in nature. However, thanks tothe problem's bilinearity, one 
an easily estimate one set while the other is �xed.Consequently we perform an iterative minimization of the 
riterion, and we alternateminimization of x and θ. At ea
h step n we perform:
θ

n+1 = argmin
θ

J(xn
, θ) and x

n+1 = arg min
x

J(x,θ
n+1) (12)The two subproblems are formally identi
al. However, θ is mu
h smaller than x.This is of the utmost pra
ti
al importan
e sin
e one 
an dire
tly �nd the solution on

θ by using the pseudo-inverse method. x is too big for this method, and we have touse an iterative s
heme su
h as the 
onjugate-gradient to approximate the minimum.These standard methods are detailed in Appendi
es A and B.2.5. Des
ent Dire
tion De�nition and Stop ThresholdWe 
hoose to use an approximation of the 
onjugate-gradient method that is known to
onverge mu
h more rapidly than the simple gradient method (No
edal and Wright,2000; Polak and Ribière, 1969).
dp+1 = dp + bp∇x J |

x=xp

bp =
〈∇x J|

x=x
p ,∇x J|

x=x
p−1〉

‖∇x J|
x=x

p−1‖2

(13)Sin
e the minimum is only approximately found, we need to de�ne a threshold whi
hwe 
onsider to 
orrespond to an appropriate 
loseness to the data in order to stop theiterations. Sin
e the solution is the point at whi
h the gradient is zero, we 
hoose thisthreshold for updating x:meanx∈[xp,xp−1,xp−2]‖∇xJ‖2
< Sx (14)For the global minimization, the gradient is not 
omputed, so we 
hoose:mean[n,n−1,n−2]‖(xn, θn) − (xn−1, θn−1) ‖2

< SG (15)Note that this way to stop the iteration allows one to de�ne how 
lose one wants tobe to the solution: if the di�eren
e between two steps is below this threshold, it is
onsidered negligible. The algorithm 
an be summarized as shown in Figure 2.
barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.6



A Time-Evolving 3D Method Dedi
ated to the Re
onstru
tion of Solar Plumesinitialize : x = 0 and θ = 1while Equation (15) is satis�ed
x minimization:while Equation (14) is satis�ed

∗ 
ompute gradient at xn with Equation (20)
∗ 
ompute des
ent dire
tion with Equation (13)
∗ 
ompute optimum step with Equation (22)
∗ update x with Equation (23)endwhile

θ minimization:
∗ 
ompute the matrix UT

xnUxn and the ve
tor UT
xny

∗ inverse the matrix UT
xnUxn + µDT

r Dr

∗ 
ompute Equation (19)endwhileFigure 2. Tomographi
 Re
onstru
tion with Temporal Evolution Algorithm3. Method ValidationIn order to validate the prin
iple of our method and test its limits, we simulate anobje
t 
ontaining some plumes with temporal evolution and try to extra
t it from thedata.3.1. Simulation Generation Pro
essWe generate an emission 
ube with randomly-pla
ed, ellipsoidal plumes with a Gaus-sian shape along ea
h axis:
Ep = A exp

(

−
1

2

[

r.uφ)

a

]2

−
1

2

[r.uφ+π

2

b

]2
) (16)The plumes evolve randomly but smoothly by interpolating over a few randomly gen-erated points. On
e the obje
t is generated, we 
ompute a typi
al set of 60 imagesequally spa
ed along 180◦ using our proje
tor algorithm. A Gaussian random noiseis added to the proje
tions with a signal to noise ratio (SNR) of �ve. The simulationparameters are summarized in Table 1.Table 1. Simulation De�nition: Plumes ParametersPlume Semimajor Semiminor φ x0 y0 IntensityNumber Axis a Axis b (A)1 4.8 4.2 1.2 29 29 3292 5.6 3.3 1.1 23 33 4303 5.2 4.8 0.1 40 42 723
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N. Barbey et al.Table 2. Simulation De�nition: Geometri
 Parameters
ube size 
ube number pixel proje
tion(solar radii) of voxels size (radians) number of pixels
1 × 1 × 0.05 64 × 64 × 4 5 × 10−5 × 5 × 10−5 128 × 8Table 3. Simulation De�nition: Other ParametersSNR λ µ Sx SG

5 2 × 10−2 100 2 × 10−2 1 × 10−23.2. Results AnalysisWe now 
ompare our results (Figure 3) with a �ltered ba
k-proje
tion (FBP) algorithm.This method is explained by Natterer (1986) and Kak and Slaney (1987).By 
omparing the simulation and the re
onstru
tion in Figure 3, we 
an see thequality of the temporal evolution estimation. The shape of the intensity 
urves is wellreprodu
ed ex
ept for the �rst plume in the �rst ten time steps where the intensity isslightly underestimated. This 
orresponds to a period when plume 1 is hidden behindplume 2. Thus, our algorithm attributes part of the plume 1 intensity to plume 2.Let us note that this kind of ambiguity will not arise in the 
ase of observations frommultiple points of view su
h as STEREO/EUVI observations. The indetermina
y ofthe problem is due to its bilinearity dis
ussed in Se
tion 2.2. This allows the algorithmto attribute larger values to the θ parameters and to 
ompensate by de
reasing the
orresponding x. This is not a drawba
k of the method sin
e it allows dis
ontinuitiesbetween plumes and interplumes. The only physi
al value of interest is the produ
t
x ◦ g.Figure 4 shows the relative intensity of the plumes at di�erent times. One 
an
ompare with the re
onstru
tion. One way to quantify the quality of the re
onstru
tionis to 
ompute the distan
e (quadrati
 norm of the di�eren
e) between the real obje
tand the re
onstru
ted one. Sin
e the FBP re
onstru
tion does not a
tually 
orrespondto a re
onstru
tion at one time, we evaluate the minimum of the distan
es at ea
h time.We �nd it to be 3000. This is to be 
ompared with a value of 700 with our algorithm,whi
h is mu
h better.3.3. Choi
e of Evolution AreasOne 
an think that the 
hoi
e of the evolution areas is 
riti
al to the good performan
eof our method. We show in this se
tion that it is not ne
essarily the 
ase by performinga re
onstru
tion based on simulations with in
orre
t evolution areas. All parametersand data are exa
tly the same as in the previous re
onstru
tion. The only di�eren
e isin the 
hoi
e of the areas, i.e. the L matrix. These are now de�ned as shown in Figure5(a).Although approximately 50 % of the voxels are not asso
iated with their 
orre
t area,we 
an observe that the algorithm still performs well. The emission map of Figure 5(b)
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tion to de�ne θ inthe simulation (e) and our re
onstru
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θ is a gain representing the emission variation over time. Ex
ept for the FBP re
onstru
tion,only the produ
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al dimensions. The spatial s
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ubes at the same
z = 0.1 R⊙. Emission densities (arbitrary units) are s
aled in the 
olor bars in the right-endside of (a), (b), (
).
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ted at di�erent times. ∆T is the timebetween two data images (5.6 hours). Distan
es are in solar radii. Values represent the volumeemission density. All of this images are sli
es of 3D 
ubes at the same z = 0.1R⊙.
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(a) New 
hoi
e of areas (b) x with our algorithm (
) θ with our algorithmFigure 5. Re
onstru
tion with smaller areas. To be 
ompared with Figure 3. The new areas(a) do not 
orrespond anymore to the ones used to generate the data. (b) is the emission mapand (
) the temporal evolution estimated with our algorithm. (b) and (
) are sli
es of 3D 
ubesat the same z = 0.1 R⊙. Emission densities (arbitrary units) are s
aled in the 
olor bars in theright-end side of (b).is still better than the emission re
onstru
ted by a FBP method. Plus, the estimationof the temporal evolution in Figure 5(
) 
orresponds to the true evolution 3(e) even ifless pre
isely than in Figure 3(f).4. Re
onstru
tion of SOHO/EIT Data4.1. Data Prepro
essingWe now perform re
onstru
tion using SOHO/EIT data. We have to be 
areful whenapplying our algorithm to real data. Some problems may arise due to phenomena nottaken into a

ount in our model; e.g. 
osmi
 rays, or missing data.Some of these problems 
an be handled with simple prepro
essing. We 
onsiderpixels hit by 
osmi
 rays as missing data. They are dete
ted with a median �lter.These pixels and missing blo
ks are labeled as missing data and the proje
tor andthe ba
kproje
tor do not take them into a

ount (i.e. the 
orresponding rows in thematri
es are removed).4.2. Results AnalysisIn Figures 6 and 7, we present results from 17.1 nm EIT data between 1 and 14November 1996. This period 
orresponds to the minimum of solar a
tivity when one 
anexpe
t to have less temporal evolution. 17.1 nm is the wavelength where the 
ontrastof the plumes is the strongest. Some images are removed resulting in a sequen
e of 57irregularly-spa
ed proje
tions for a total 
overage of 191◦. We assume that we knowthe position of four evolving plumes as shown on Figure 6(b). For ea
h re
onstru
tedimage, we present subareas of the re
onstru
ted 
ube of size 64×64 
entered on the axisof rotation. We assume the rotation speed to be the rigid body Carrington rotation.All of the parameters given in Table 4 and 5 are shared by the di�erent algorithmsprovided they are required by the method. The 
omputation of this re
onstru
tion ona Intel(R) Pentium(R) 4 CPU 3.00 GHz was 13.5 hours long.Presen
e of negative values is the indi
ation of a poor behavior of the tomographi
algorithm sin
e it does not 
orrespond to a
tual physi
al values. We 
an see in Figure6 that our re
onstru
tion has many fewer negative values in the x map than the FBP
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omparison of FBP (a), a gradient-like algorithm without temporal evolution (
),and our algorithm (d) with real EIT data. x is the spatial distribution of the volume emissiondensity integrated over EIT 17.1 nm passband. The 
hosen areas are shown in (b). θ is a gainrepresenting the emission variation during time (e). The time s
ale is in days. In the 
ase ofour algorithm, only the produ
t x ◦ θ has physi
al meaning. The spatial s
ales are given insolar radii and 
entered on the solar axis of rotation. (a), (b), (
), and (d) are sli
es of 3D
ubes at the same z = 1.3R⊙. Emission densities (arbitrary units) are s
aled in the 
olor barsin the right-end side of (a), (
), (d).
barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.11



N. Barbey et al.Table 4. EIT Data Re
onstru
tion: Geometri
 Parameters
ube size 
ube number pixel proje
tion(solar radii) of voxels size (radians) number of pixels
3 × 3 × 0.15 256 × 256 × 8 2.55 × 10−5 × 2.55 × 10−5 512 × 38Table 5. EIT Data Re
onstru
tion: Other Parameters

λ µ Sx SG

2 × 10−2 1 × 104 0.1 0.05re
onstru
tion. In the FBP re
onstru
tion 
ube, 50% of the voxels have negative values;in the gradient-like re
onstru
tion without temporal evolution 36% of the voxels arenegative while in our re
onstru
tion only 25 % are negative. This still seems like a lotbut most of these voxels are in the outer part of the re
onstru
ted 
ube. The averagevalue of the negative voxels is mu
h smaller also. It is -120 for the FBP, -52 for thegradient-like method without temporal evolution, and only -19 for our re
onstru
tionwith temporal evolution. However, we noti
e that the gain 
oe�
ients present a fewslightly negative values.In the re
onstru
tions without temporal evolution, plumes three (upper right) andfour (lower right) 
orrespond to a unique elongated stru
ture whi
h we 
hoose to divide.Note how our algorithm updated the x map redu
ing the emission values between thesetwo plumes. It shows that what was seen as a unique stru
ture was an artifa
t resultingfrom temporal evolution and it tends to validate the usefulness of our model. Wenote the disappearan
e of a plume lo
ated around (-0.2, -0.15) solar radii on the FBPre
onstru
tion. It shows the utility of gradient-like methods to get rid of artifa
ts due tothe non-uniform distribution of images. Another plume at (0.2, 0.2) solar radii has moreintensity in the re
onstru
tion without temporal evolution than with our algorithm. Itillustrates how temporal evolution 
an in�uen
e the spatial re
onstru
tion.
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onstru
tion at t25 (b) Re
onstru
tion at t35 (
) Re
onstru
tion at t45(6 days) (8.5 days) (9.8 days)Figure 7. Re
onstru
tion of x ◦ g at di�erent times. Distan
es are in solar radii. Valuesrepresent the volume emission density integrated over the EIT 17.1 nm passband. All of theseimages are sli
es of 3D 
ubes at the same z = 1.3 R⊙.
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A Time-Evolving 3D Method Dedi
ated to the Re
onstru
tion of Solar Plumes5. Dis
ussionThe major feature of our approa
h is the quality of our re
onstru
tion, whi
h is mu
himproved with respe
t to FBP re
onstru
tion, as demonstrated by the smaller numberof negative values and the in
reased 
loseness to the data. Let us now dis
uss thevarious assumptions that have been made through the di�erent steps of the method.The strongest assumption we made, in order to estimate the temporal evolution ofpolar plumes, is the knowledge of the plume position. Here, we 
hoose to de�ne theplumes as being the brightest points in a re
onstru
tion without temporal evolution.The 
hoi
e is not based on any kind of automati
 threshold. The areas are entirelyhand-
hosen by looking at a re
onstru
tion. It is possible that these areas do not
orrespond to the a
tual physi
al plumes, they 
ould 
orrespond to areas presentingin
reased emission during half a rotation. Note that this is biased in favor of plumes
loser to the axis of rotation sin
e, along one sli
e of the re
onstru
ted 
artesian 
ube,their altitude is lower and thus, their intensity is higher. In order to have 
onstantaltitude maps one would have to 
arry out the 
omputation on a spheri
al grid or tointerpolate afterwards onto su
h a grid. For this re
onstru
tion example we are awarethat we did not lo
ate all of the plumes but only tried to �nd a few. It would beinteresting to try to lo
ate the plumes using other data or with a method estimatingtheir positions and shapes.The method involves hyperparameters whi
h we 
hoose to set manually. There aremethods to estimate hyperparameters automati
ally su
h as the L-
urve method, the
ross-validation method (Golub, Heath, and Wahba, 1979) or the full-bayesian method(Higdon et al., 1997; Champagnat, Goussard, and Idier, 1996). We performed re
on-stru
tions using di�erent hyperparameter values. We then looked at the re
onstru
tionto see if the smoothness seemed exaggerated or if the noise were ampli�ed in the results.This allowed us to redu
e the 
omputational 
ost and does not really put the validityof the method into question.One possible issue with this algorithm is the non-
onvexity of our 
riterion. This 
anlead to the 
onvergen
e to a lo
al minimum that does not 
orrespond to the desiredsolution de�ned as the global minimum of the 
riterion. One way to test this would beto 
hange the initialization many times.We 
hose the speed of rotation of the poles to be the Carrington rotation speed. Butthe speed of the polar stru
tures has not been measured pre
isely to our knowledge and
ould a�e
t drasti
ally the re
onstru
tion. This is an issue shared by all tomographi
re
onstru
tions of the Sun.In the 
urrent approa
h, we need to 
hoose on our own the position of the time-evolving areas whi
h are assumed to be plumes. This is done by assuming that moreintense areas of a re
onstru
tion without temporal evolution 
orrespond to plumepositions. A more rigorous way would be to try to use other sour
es of informationto try to lo
alize the plumes. Another, self-
onsistent way, would be to develop amethod that jointly estimates the position of the plumes in addition to the emission(x) and the time evolution (θ). We 
ould try to use the results of Yu and Fessler (2002)who propose an original approa
h in order to re
onstru
t a pie
e-wise homogeneousobje
t while preserving edges. The minimization is alternated between an intensitymap and boundary 
urves. The estimation of the boundary 
urves is made using levelsets te
hni
s ((Yu and Fessler, 2002) and referen
es therein). It would also be possibleto use a Gaussian mixture model (Snoussi and Mohammad-Djafari, 2007).
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N. Barbey et al.6. Con
lusionWe have des
ribed a method that takes into a

ount the temporal evolution of polarplumes for tomographi
 re
onstru
tion near the solar poles. A simple re
onstru
tionbased on simulations demonstrates the feasibility of the method and its e�
ien
y inestimating the temporal evolution assuming that parameters su
h as plume position orrotation speed are known. Finally we show that it is possible to estimate the temporalevolution of the polar plumes with real data.In this study we limited ourselves to re
onstru
tion of images at 17.1 nm but one 
anperform re
onstru
tions at 19.5 nm and 28.4 nm as well. It would allow us to estimatethe temperatures of the ele
trons as in Frazin, Kamalabadi, and Weber (2005) orBarbey et al. (2006).A
knowledgements Ni
olas Barbey a
knowledges the support of the Centre Nationald'Études Spatiales and the Colle
te Lo
alisation Satellites. The authors thank the referee fortheir useful suggestions for the arti
le.AppendixA. Pseudo-Inverse MinimizationWe want to minimize:
J = ‖y − Uxnθ‖2 + λ‖Drx

n‖2 + µ‖Dtθ‖
2 (17)The se
ond term does not depend on θ. Due to the stri
t 
onvexity of the 
riterion,the solution is a zero of the gradient. Sin
e the 
riterion is quadrati
, one 
an expli
itlydetermine the solution:

∇θJ |
θ=θn+1 = 2U

T
xn

(

Uxnθ
n+1 − y

)

+ 2µD
T
t Dtθ

n+1 = 0 (18)from whi
h we 
on
lude:
θ

n+1 =
[

U
T
xnUxn + µD

T
t Dt

]−1

U
T
xny (19)B. Gradient-like MethodIn this method we try to �nd an approximation of the minimum by de
reasing the 
rite-rion iteratively. The problem is divided in two subproblems: sear
hing for the dire
tionand sear
hing for the step of the des
ent. In gradient-like methods, the 
onvergen
e isgenerally guaranteed ultimately to a lo
al minimum. But sin
e the 
riterion is 
onvex,the minimum is global. To iterate, we start at an arbitrary point (x0) and go along adire
tion related to the gradient. The gradient at the pth step is:

∇xJ |
x=xp = 2V

T
θn+1 (Vθn+1x

p − y) + 2λD
T
r Drx

p (20)
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onstru
tion of Solar PlumesOn
e the dire
tion is 
hosen, sear
hing for the optimum step is a linear minimizationproblem of one variable:
a

p+1OPT = argmin
a

J(xp + ad
p+1) (21)whi
h is solved by:

a
p+1OPT = −

1

2

dp+1 ∇xJ |
x=xp

‖Vθn+1dp+1‖2 + λ‖Drdp+1‖2
(22)We 
an write the iteration:

x
p+1 = x

p + a
p+1OPTdp+1 (23)Referen
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