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multivariate gamma models
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Université de Pau et des Pays de l�Adour, Laboratoire de mathématiques appliquées
UMR 5142 CNRS, IUT STID, avenue de l�Université, 64000 Pau, France

Abstract

It has been shown that the uniformly minimum variance unbiased (UMVU) esti-
mator of the generalized variance always exists for any natural exponential family.
In practice, however, this estimator is often di¢ cult to obtain. This paper explic-
itly identi�es the results in complete bivariate and symmetric multivariate gamma
models, which are diagonal quadratic exponential families. For the non-independent
multivariate gamma models, it is then pointed out that the UMVU and the maxi-
mum likelihood estimators are not proportional as conjectured for models belonging
in certain quadratic exponential families.

AMS 2000 subject classi�cation: 62F10; 62H12; 62H99

Keywords: Determinant; Diagonal variance function; Maximum likelihood estima-
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1 Introduction

Generalized variance estimators have been, for a long time, based on the deter-
minant of the sample covariance matrix. Generally biased, some of properties
of the sample generalized variance are known, in particular, under the normal
distribution hypothesis. See e.g. [11] and [20] and references therein.

In the context of natural exponential families (NEFs) on Rd which include
many usual distributions (Kotz et al. [16], Chap. 54), a common estimator
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of the generalized variance is obtained by considering the key result in Koko-
nendji and Seshadri [15] which we recall in the following proposition; see also
[13] and [14] for this complete version. LetM(Rd) denotes the set of �-�nite
positive measures � on Rd not concentrated on an a¢ ne subspace of Rd, with
the Laplace transform of � given by

L�(�) =
Z
Rd
exp(�Tx)�(dx)

and such that the interior �(�) of the domain f� 2 Rd;L�(�) < 1g is
non-empty. De�ning the cumulant function as K�(�) = logL�(�), the NEF
generated by � 2 M(Rd), denoted by F = F (�), is the family of probability
measures fP�;�(dx) = exp[�|x�K�(�)]�(dx);� 2 �(�)g.

Proposition 1 Let � 2M(Rd): Then, for all integers n � d+1; there exists
a positive measure �n = �n(�) on Rd satisfying the three following statements:
(i) the measure �n is the image of

1

(d+ 1)!

0B@det
264 1 1 � � � 1

x1 x2 � � � xd+1

375
1CA
2

�(dx1):::�(dxn)

by the map (x1; :::;xn) 7�! x1 + :::+ xn;
(ii) the Laplace transform of �n is given by

L�n (�) = (L� (�))
n detK 00

� (�) ; � 2 �(�) (1)

where K 00
�(�) = @

2K�(�)=(@�
T@�) is the Hessian matrix of K�(�);

(iii) there exists Cn : Rd �! R such that

�n (dx) = Cn (x)�
�n (dx) ; (2)

where ��n denotes the n-th convolution power of �.

We also recall that any NEF can be reparametrized in terms of the mean m
such that

m =m (�) = E�(X) =
@K�(�)

@�
= K 0

�(�);

where X is a random vector distributed according to a P�;� in F . The mean
domain MF = K 0

�(�(�)) depends only on F , and not on the choice of the
generating measure � of F ; so we can write F = fP(m; F ) ;m 2 MFg. The
function

VF (m) = V ar�(m)(X) = K
00
�(�(m)); m 2MF

is called the variance function of the family F . Here �(�) denotes the inverse
of the mapping m (�) = K 0

�(�). The pair (VF (�);MF ) characterizes F within
the class of all NEFs.
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Thus, the authors ([13], [14] and [15]) of Proposition 1 have shown that

Cn
�
nXn

�
= Cn(X1 + :::+Xn) (3)

is the uniformly minimum variance unbiased (UMVU) estimator of the gen-
eralized variance detVF (m) = detK 00

� (�) based on n � d + 1 observations
X1; :::;Xn of P(m; F ). Obviously, the crucial problem of this estimator (3)
is to exhibit Cn(�) de�ned in (2). In the previous papers we only �nd the ex-
plicit expressions of Cn(�) for NEFs having homogeneous and simple quadratic
variance functions of Casalis ([5] and [6]). Pommeret [19] provides another
construction of the generalized variance UMVU estimator which is limited
to the simple quadratic NEFs. Moreover, in order to compare the UMVU
estimator Cn(nXn) to the maximum likelihood (ML) estimator detVF (Xn)
of detVF (m), Kokonendji and Pommeret [14] have conjectured the following
proportionality which holds for all homogeneous and simple quadratic NEFs:
there exists �n > 0 such that Cn(nXn) = �n detVF (Xn) if and only if there
exists (a;b; c) 2 R� Rd � R such that the canonical generalized variance is

detK 00
�(�) = exp

n
aK�(�) + b

T� + c
o
; � 2 �(�) : (4)

The condition (4) is used by Consonni et al. [7] for references prior analysis
of the simple quadratic NEFs and by Kokonendji and Masmoudi [12] (with
a = 0) for starting the characterization of the corresponding NEFs. We note in
passing that if � or F = F (�) is in�nitely divisible then there exists a positive
measure � = �(�) such that L�(�) = detK 00

� (�), for all � 2 �(�) [9].

Motivated by the recent result of Bernardo¤ [4] �Which multivariate gamma
distributions are in�nitely divisible?� and the use of a multivariate gamma
NEF for mixing Poisson distribution by Ferrari et al. [8], this paper is devoted
to the UMVU and ML estimators of some generalized variances under the
multivariate gamma hypothesis. Considered by the previous authors to be the
natural multivariate extension of the real gamma NEF, the following multi-
variate gamma models belong to the diagonal quadratic NEFs in the sense of
Bar-Lev et al. [2] (see Proposition 2) and, however, does not hold the condition
(4) of proportionality between UMVU and ML estimators of the generalized
variance for certain quadratic NEFs. The present paper is structured as fol-
lows. In Section 2, de�nition and variance function of d-dimensional gamma
NEFs are given. In Section 3, particular cases of the generalized variance for
a bivariate and a symmetric multivariate gamma families are presented. In
Section 4, the UMVU estimator of the generalized variance in the bivariate
case is pointed out and compared to the corresponding ML estimator. We
shall show that these two estimators are not proportional. In Section 5, sym-
metric multivariate gamma models are considered. We shall observe that its
corresponding bivariate is trivially a particular case of the one of the previ-
ous section. Finally, Section 6 concludes on independent multivariate case. To
make easy the reading of the results all proofs are collected in the Appendix.
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2 Multivariate gamma NEFs

For d = 1, for � and a > 0 the real gamma distribution with shape parameter
� and scale parameter a is


�;a(dx) =
x��1e�x=a

a��(�)
1(0;1)(x)dx:

This is an element of the univariate gamma NEF F = F (��) generated by
��(dx) = (�(�))

�1x��11(0;1)(x)dx, which is characterized by its variance func-
tion VF (m) = m2=�, m 2 (0;1) = MF (see Morris [17]). We also note
F = F (
�;a). The Laplace transform of 
�;a is L
�;a(�) = (1 � a�)�� for a
suitable �.

For d > 1, we consider the multivariate gamma distribution de�ned by its
Laplace transform (P (��))��, � > 0, where

P (�) =
X

S�f1;:::;dg
aS
Y
i2S
�i (5)

is an a¢ ne polynomial in � = (�1; :::; �d) (i.e., @2P=@�
2
i = 0 for i = 1; :::; d)

with suitable aS 2 R and a? = 1. We denote this distribution by 
�;P . For
simplicity, if S = fi1; :::; ikg then we shall write afi1;:::;ikg = ai1:::ik . The asso-
ciated multivariate gamma NEF F = F (
�;P ) is such that 
�;P must belong
to M(Rd). This study on the pair (�; P ) of 
�;P is a di¢ cult problem and
only su¢ cient or necessary conditions are known. In Bernardo¤ [4] the neces-
sary and su¢ cient conditions for existence and in�nite divisibility of 
1;P are
found, with the restriction to a1:::d 6= 0 in (5).

Let us present three important examples:
- A bivariate case (d = 2) which is in�nitely divisible is de�ned with � > 0
and

P (�1; �2) = 1 + a1�1 + a2�2 + a12�1�2 (6)

for a1, a2 and a12 > 0 such that a1a2 � a12 � 0. If a12 = a1a2 (i.e. P (�1; �2) =
(1 + a1�1)(1 + a2�2)) then the corresponding 
�;P is the distribution of the
random variable X = (Y1; Y2) where Y1 and Y2 are independent real random
variables with respective distribution 
�;ai for i = 1; 2.
- A symmetric multivariate case, also in�nitely divisible, is de�ned with � > 0
and

P (�) = 1� 1
a
+
1

a

dY
i=1

(1 + a�i); a 2 (0; 1) (7)

for �i < 1=a, i = 1; :::; d and
dQ
i=1
(1� a�i) > 1� a [4].
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- A line multivariate case with � > 0 and

P (�) = 1 +
dX
i=1

ai�i; ai > 0

is the distribution 
�;P of the random variable X = (a1Y; :::; adY ) where Y is
a real random variable with distribution 
�;1 [8].

The following preliminary result shows that all multivariate gamma NEFs
have a diagonal quadratic variance function (see also Bar-Lev et al.[2]).

Proposition 2 Let P be an a¢ ne polynomial (5) in d variables and � > 0.
If F is a multivariate gamma NEF associated with (�; P ) then its variance
function VF (m) = (Vi;j)i;j=1;:::;d, m = (m1; :::;md) 2 MF satis�es Vi;i = m2

i =�
and

 
P (��) @

2P (��)
@�i@�j

� @P (��)
@�i

@P (��)
@�j

!�
Vi;j �

mimj

�

�2

+�

 
@2P (��)
@�i@�j

!2
Vi;j = 0; i 6= j (8)

which does not depend on �i and �j.

In the sequel, we only investigate the generalized variance detVF (m) in the
in�nitely divisible cases of the bivariate and symmetric multivariate gamma
NEFs. Since the o¤-diagonal elements Vi;j of VF (m) are di¢ cult to exhibit via
equation (8) for some a¢ ne polynomials P given in (5), these particular cases
(6) and (7) shall su¢ ce for instance to illustrate the problem of UMVU and
ML estimators presented in the Introduction.

3 Generalized variance for some multivariate gamma NEFs

We here show two results of the generalized variance in the multivariate
gamma NEFs for which we investigate their estimators in the next sections.
The �rst concerns the bivariate case.

Proposition 3 Let P (�1; �2) = 1 + a1�1 + a2�2 + a12�1�2 be the associated
a¢ ne polynomial (6) of the bivariate gamma NEF F = F (
�;P ) with � > 0.
We denote b12 = (a1a2 � a12) =a212 � 0. Then, for m = (m1;m2) 2 MF =
(0;1)2, if b12 = 0 we have detVF (m) = m2

1m
2
2=�

2 and, if b12 > 0 the gener-
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alized variance is

detVF (m) =
�2

2b212

24 1 + 2b12m1m2

�2

! 
1 +

4b12m1m2

�2

!1=2
�
 
1 +

4b12m1m2

�2

!35

and tends to m2
1m

2
2=�

2 when b12 tends to 0.

The second result is devoted to the symmetric multivariate gamma NEFs.

Proposition 4 Let P (�) = 1�1=a+(1=a)(1+a�1):::(1+a�d) be the associated
a¢ ne polynomial (7) of the symmetric multivariate gamma NEF F = F (
�;P )
with � > 0. Then, for m = (m1; :::;md) 2MF ,

detVF (m) =
ad�1(ds� a� (d� 1))

�sd
(m1 : : :md)

2

where s = mi(1� a�i), i = 1; : : : ; d is the unique real non-negative solution of
the equation of degree d

sd � �asd�1 � (1� a)m1 : : :md = 0: (9)

Writing s = ((1 � a)m1 : : :md)
1=dy and u = �a((1 � a)m1 : : :md)

�1=d the
equation (9) becomes

yd � uyd�1 � 1 = 0;

and following Hochstadt [10] (p. 77) its unique real non-negative solution can
be expressed as

y(u) =
1

d

1X
r=0

(�1)r
�
�
r(d�1)+1

d

�
�
�
r(d�1)+1

d
+ 1� r

� (�u)r
r!

=
1

d

1X
r=0

�
��
1� r�1

d

�
+ (r � 1)

�
�
�
1� r�1

d

� ur

r!

= 1 +
u

d
+
1

d

1X
r=2

"
r�1Y
k=1

�
1� r
d

+ k
�#
ur

r!
; juj < d (d� 1)(1�d)=d :

For example, when d = 2 we have y(u) = u=2 + (1 + u2=4)1=2 and the Taylor
expansion provides the corresponding above result.
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4 Generalized variance estimators for bivariate gamma NEF

Following Bernardo¤ [3] and with the notations of Proposition 3 the density
of the bivariate gamma distribution 
�;P can be written, for x = (x1; x2), as


�;P (dx) =
(x1x2)

��1

a�12 (� (�))
2 exp

�
�a2x1 + a1x2

a12

�
0F1 (�; b12x1x2) 1(0;1)2 (x) dx

(10)
where 0Fq (b1; : : : ; bq; z) is the generalized hypergeometric function de�ned by

0Fq (b1; : : : ; bq; z) =
1X
k=0

� (b1) :::� (bq)

� (b1 + k) :::� (bq + k)

zk

k!
:

We now show its UMVU generalized variance estimator.

Theorem 5 Let X1; :::;Xn be i.i.d. sample from the bivariate gamma dis-
tribution 
�;P of (10) for �xed � > 0. With the notations of Proposition

3, we assume n � 3 and b12 > 0, then the UMVU estimator Cn
�
nXn

�
=

Cn(X1 + :::+Xn) of detVF (m) is such that, for (x1; x2) 2 (0;1)2,

Cn (x1; x2) =
(x1x2)

2

n2 (�n+ 1)2
� 1

0F1 (�n; b12x1x2)

�
(
0F1 (�n+ 2; b12x1x2) +

2b12x1x2

(�n+ 2)2
0F1 (�n+ 3; b12x1x2)

)

=
�x1x2

n (�n+ 1) b12
� 1

I�n�1 [2(b12x1x2)1=2]

�
(
I�n+1

h
2(b12x1x2)

1=2
i
+
2(b12x1x2)

1=2

�n+ 2
I�n+2

h
2(b12x1x2)

1=2
i)
;

where I� is the modi�ed Bessel function with index � such that

1X
k=0

1

� (�+ k)

zk

k!
=

1

� (�)
0F1 (�; z) = z

(1��)=2I��1
�
2z1=2

�
: (11)

From Proposition 3 the ML estimator of detVF (m) is detVF
�
Xn

�
. The fol-

lowing proposition gives the ratio of the previous two estimators.

Proposition 6 Under the assumptions of Theorem 5 the ratio of the estima-
tors Cn

�
nXn

�
and detVF

�
Xn

�
of detVF (m) is, for �xed � > 0 and n � 3,
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Cn
�
nXn

�
detVF

�
Xn

� = 2p3 (t2 + 2p2)

(p+ 2) (p+ 1) t3

24 1 + t2

2p2

! 
1 +

t2

p2

!�1=2
+ 1

35
�
 
Ip (t)

Ip�1 (t)
� pt

t2 + 2p2

!

where p = n� and t = 2n(b12X1X2)
1=2 with Xn = (X1; X2).

We observe that the ratio Cn
�
nXn

�
= detVF

�
Xn

�
depends on the components

of the sample mean Xn = (X1; X2). Graphically it is shown by Maple that
Cn

�
nXn

�
= detVF

�
Xn

�
< 1 (Fig. 1). Also, it is pointed out in the proof of

Theorem 5 that the canonical generalized variance is a sum of two exponential
terms. This means that the equation (4) does not hold for non-independent bi-
variate gamma distributions (b12 > 0). Thus, the conjecture of proportionality
is not contradicted in this case.

0 20 40 80 100
p

0
50 t

0

0.2

0.4

0.6

0.8

1

z

Fig. 1: Graphic of the ratio z = Cn
�
nXn

�
= detVF

�
Xn

�
= z(t; p) with

p = n� and t = 2n(b12X1X2)
1=2 of Proposition 6.

5 Generalized variance estimators in a symmetric multivariate case

Bernardo¤ [4] has de�ned the density of the corresponding symmetric multi-
variate gamma distribution 
�;P of Proposition 4 as


�;P (dx)=
(x1 : : : xd)

��1

a(d�1)� (� (�))d
exp

�
�x1 + : : :+ xd

a

�
� 0Fd�1

�
�; : : : ; �; (1� a)a�dx1 : : : xd

�
1(0;1)d (x) (dx) ; (12)
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for x = (x1; :::; xd). The following theorem states its UMVU generalized vari-
ance estimator.

Theorem 7 Let X1; :::;Xn be i.i.d. sample from the symmetric multivari-
ate gamma distribution 
�;P of (12) for �xed � > 0. With the notations of

Proposition 4, we assume n � 3, then the UMVU estimator Cn
�
nXn

�
=

Cn(X1 + :::+Xn) of detVF (m) is such that

Cn (x)=
�d(x1 : : : xd)

2

0Fd�1 (n�; : : : ; n�; (1� a)a�dx1 : : : xd)

�
d�1X
k=0

 
d� 1
k

!
(k + 1)

"
� (n�)

� (n�+ 2 + k)

#d h
(1� a)a�dx1 : : : xd

ik
� 0Fd�1

�
n�+ 2 + k; : : : ; n�+ 2 + k; (1� a)a�dx1 : : : xd

�
;

for x = (x1; :::; xd) 2 (0;1)d.

For d = 2 the formula becomes

Cn (x)=
(�x1x2)

2

n2 (�n+ 1)2
� 1

0F1 (n�; (1� a)a�2x1x2)

�
(
0F1

 
n�+ 2;

x1x2
a2=(1� a)

!
+
2(1� a)x1x2
a2(�n+ 2)2

0F1

 
n�+ 3;

x1x2
a2=(1� a)

!)
;

which is the particular case of the bivariate gamma models (6) with a1 = a2 =
1, a12 = a and then b12 = (1 � a)=a2. These symmetric multivariate gamma
models are non-independent.

The ML estimator of detVF (m) is detVF
�
Xn

�
by using Proposition 4. How-

ever, the comparison study of these two estimators may be just more complex
to write.

6 Concluding remarks

A very standard case of the generalized variance estimators is to consider the
univariate (d = 1) situation where the sample size is n = d + 1. See e.g.
Antoniadis et al. [1] for the practical use in wavelet shrinkage.

The standard multivariate case (d > 1) for the gamma models can be seen
through the independent multivariate gamma NEF F = F (
�;P ) with � > 0

9



and

P (�) =
dY
i=1

(1� ai�i); ai > 0:

Recall that the density of 
�;P can be written as


�;P (dx) =
(x1 : : : xd)

��1

(a1 : : : ad)
� (� (�))d

exp
�
�
�
x1
a1
+ :::+

xd
ad

��
1(0;1)d (x) (dx) :

It is easy to check the corresponding ingredients: the generalized variance is

detVF (m) = det diag

 
m2
1

�
; :::;

m2
d

�

!
=
m2
1:::m

2
d

�d
; m 2 (0;1)d ;

the UMVU function (2) is Cn(x) = (x1 : : : xd)
2 n�d(n� + 1)�d, and the ratio

Cn(nX)= detVF (X) is �n = [n�=(n�+ 1)]
d < 1. Thus the conjecture of pro-

portionality between UMVU and ML estimators holds for the independent
multivariate gamma models, because the canonical generalized variance veri-
�es (4) with a = 2=�, b = 0, c = log(�da21 : : : a

2
d). For �xed n and � we think

that this coe¢ cient �n is the upper-bound for any sample of the multivariate
gamma models.

In general, for non-independent multivariate gamma NEFs, the canonical gen-
eralized variance detK 00


�;P
(�) is on one hand a sum of exponential terms as

in the right side member of (4) and, on the other hand, the UMVU and the
ML estimators are not proportional. The bivariate and the symmetric multi-
variate gamma NEFs treated in this paper cover a wide spectrum of di¤erent
situations of gamma distributions (5), which include many other multivariate
gamma distributions proposed in the literature (e.g. Kotz et al. [16], Chap.
48 and references therein). Finally, the conjecture of proportionality always
holds for canonical generalized variance satisfying (4).

Appendix: Proofs

Proof of Proposition 2. Let K�(�) = �� logP (��). The means mi =
@K�(�)=@�i are

mi =
�

P (��) �
@P (��)
@�i

; i = 1; :::d:

For i = j the diagonal elements Vi;i = @2K�(�)=@�
2
i of VF (m) are

Vi;i =
�

(P (��))2

 
@P (��)
@�i

!2
=
m2
i

�
; i = 1; :::; d;

10



because P is an a¢ ne polynomial with @2P=@�2i = 0 for all i = 1; :::; d.

For i 6= j the o¤-diagonal elements Vi;j = @2K�(�)=(@�i@�j) of VF (m) are,
successively,

Vi;j =
�

(P (��))2

"
�P (��) @

2P (��)
@�i@�j

+
@P (��)
@�i

@P (��)
@�j

#
(13)

=
��

P (��) �
@2P (��)
@�i@�j

+
mimj

�
: (14)

Note that
@

@�i

@2P (��)
@�i@�j

=
@

@�j

@2P (��)
@�i@�j

= 0

and

0 =
@

@�i

h
(P (��))2 Vi;j

i
= �

"
@P (��)
@�i

@2P (��)
@�i@�j

� @P (��)
@�i

@2P (��)
@�i@�j

#

=
@

@�j

h
(P (��))2 Vi;j

i
:

Thus P (��) (Vi;j�mimj=�) and (P (��))2 Vi;j do not depend on the variables
�i and �j. From (14) we can write

Vi;j �
mimj

�
=

��
P (��)

@2P (��)
@�i@�j

and then �
Vi;j �

mimj

�

�2
=

�2

(P (��))2

 
@2P (��)
@�i@�j

!2
:

Replacing the denominator (P (��))2 of the last equality by its expression
from (13), we therefore obtain

 
P (��) @

2P (��)
@�i@�j

� @P (��)
@�i

@P (��)
@�j

!�
Vi;j �

mimj

�

�2
= ��

 
@2P (��)
@�i@�j

!2
Vi;j

which is equivalent to (8). It also follows that the above equation does not
depend on �i and �j. �

Proof of Proposition 3. We �rst apply Proposition 2 with P (�1; �2) =
1 + a1�1 + a2�2 + a12�1�2 to get VF (m) = (Vi;j)i;j=1;2, where Vi;i = m

2
i =� and

V1;2 = V2;1 satis�es the corresponding equation (8):

b12

�
V1;2 �

m1m2

�

�2
� �V1;2 = 0 (15)

form1 = �(a1+a12�2)=P (��1;��2) andm2 = �(a2+a12�1)=P (��1;��2) > 0.

11



For b12 = 0 in (15) we obviously have V1;2 = 0 and, then, detVF (m) =
m2
1m

2
2=�

2.

For b12 > 0, and since �
2 + 4b12m1m2 > 0, the equation (15) has for solutions

V1;2(") =
m1m2

�
+

�

2b12

241 + " 1 + 4b12m1m2

�2

!1=235 ; " = �1:
The solution V1;2 = V1;2(+1) is associated to the negative de�nite matrix
VF (m) = (Vi;j)i;j=1;2 because its corresponding determinant is clearly

detVF (m) =
�
m1m2

�

�2
�
8<:m1m2

�
+

�

2b12

241 +  1 + 4b12m1m2

�2

!1=2359=;
2

< 0:

Thus, the positive de�nite matrix VF (m) = (Vi;j)i;j=1;2 which is associated to
the adequate solution of (15) is obtained with V1;2 = V1;2(�1). From this it
may be deduced the result as follows:

detVF (m)=
�
m1m2

�

�2
�
8<:m1m2

�
+

�

2b12

241�  1 + 4b12m1m2

�2

!1=2359=;
2

=

24 ��
2b12

+
�

2b12

 
1 +

4b12m1m2

�2

!1=235
�
242m1m2

�
+

�

2b12
� �

2b12

 
1 +

4b12m1m2

�2

!1=235
=

 
�2

2b212
+
m1m2

b12

! 
1 +

4b12m1m2

�2

!1=2
�
 
�2

2b212
+
2m1m2

b12

!
:

Moreover, since (1 + 4b12m1m2=�
2)1=2 = 1 + 2b12m1m2=�

2 � 2b212m2
1m

2
2=�

4 +
o(b212) we can write detVF (m) = m

2
1m

2
2=�

2+ o(1), and the proposition is then
proven. �

Proof of Proposition 4. By a direct calculation of VF (m) = (Vi;j)i;j=1;:::;d
we �rst express the means mi = @K
�;P (�) =@�i = @[�� logP (��)]=@�i with
P (�) = 1� 1=a+ (1=a)(1 + a�1):::(1 + a�d), � 2 �(
�;P ), as

mi =
�

P (��)

dY
k=1;k 6=i

(1� a�k) =
��aQdk=1;k 6=i(1� a�k)
1� a�Qdk=1(1� a�k) ; i = 1; : : : ; d:

To de�ne �(�) in terms of m we can solve the previous system of equations
mi = mi(�); i = 1; :::; d as follows: letting m1(1 � a�1) = mi(1 � a�i); i =

12



2; : : : ; d, we obtain

md

dY
k=1

(1� a�k)� �a
d�1Y
k=1

(1� a�k)� (1� a)md = 0;

which is equivalent to

dY
k=1

mk(1� a�k)� �a
d�1Y
k=1

mk(1� a�k)� (1� a)
dY
k=1

mk = 0

and, �nally,

(m1(1� a�1))d � �a (m1(1� a�1))d�1 � (1� a)
dY
k=1

mk = 0:

This proves the condition (9) resolved by Hochstadt [10] (p. 77).

Then, the diagonal elements Vi;i = @2K
�;P (�) =@�
2
i ; i = 1; :::; d are

Vi;i =
@

@�i

24 �

P (��)

dY
k=1;k 6=i

(1� a�k)
35 = �

(P (��))2

24 dY
k=1;k 6=i

(1� a�k)
352 = m2

i

�
;

and the o¤-diagonal elements Vi;j = @2K
�;P (�) =(@�i@�j); i 6= j are

Vi;j =
@

@�j

24 �

P (��)

dY
k=1;k 6=i

(1� a�k)
35

=
��a

P (��) (1� a�i)

dY
k=1;k 6=j

(1� a�k) +
�

(P (��))2
dY

k=1;k 6=i
(1� a�k)

dY
k=1;k 6=j

(1� a�k)

=
�amj

1� a�i
+
mimj

�

=
�
1

�
� a
s

�
mimj; i 6= j;

where s > 0 is the solution of (9).

Now, letting 1d = (1; :::; 1) the d-unit vector of Rd and Id = diag(1; :::; 1) the
(d�d) unit matrix. Using the standard rules of the determinant calculus (e.g.

13



Muir [18]) we successively obtain the desired result

detVF (m) = (m1 : : :md)
2 det

�
1

�
1Td 1d +

a

s

�
Id � 1Td 1d

��
= (m1 : : :md)

2
�
1

�
+ (d� 1)

�
1

�
� a
s

���
1

�
�
�
1

�
� a
s

��d�1
= (m1 : : :md)

2 a
d�1fs+ (d� 1) (s� a�)g

�sd

= (m1 : : :md)
2 a

d�1(ds� a� (d� 1))
�sd

: �

Proof of Theorem 5. We apply Proposition 1 (ii) and (iii) with � = 
�;P ,
� > 0 and P (�1; �2) = 1+ a1�1+ a2�2+ a12�1�2. Since @2K
�;P (�1; �2) =@�

2
i =

@2 [�� logP (��1;��2)] =@�2i = �(�ai+a12�ic)=(P (��1;��2))2, i = 1 = ic�1,
i = 2 = ic+1 and @2K
�;P (�1; �2) =(@�1@�2) = �(a1a2+ a12)=(P (��1;��2))2,
we successively have

detK 00

�;P

(�1; �2) = det
�
@2K
�;P (�1; �2) =(@�i@�j)

�
i;j=1;2

= �2a12(a
2
12�1�2 � a12a1�1 � a12a2�2 � a12 + 2a1a2)(P (��1;��2))�3

= �2
n
a212 (P (��1;��2))

�2 + 2a312b12 (P (��1;��2))
�3
o

= exp
�
2

�
K
�;P (�1; �2) + 2 log a12 + 2 log �

�
+ exp

�
3

�
K
�;P (�1; �2) + log(2b12) + 3 log a12 + 2 log �

�
= L�2a212
2;P+2�2a312b12
3;P (�1; �2) :

Then, the associated measure �n = �n(
�;P ) de�ned by its Laplace transform
L�n(�1; �2) = (L
�;P (�1; �2))

n detK 00

�;P

(�1; �2) can be written �n = �
2a212
�n+2;P+

2�2a312b12
�n+3;P . From (10) we write

�n (dx) = �
2
�
a212
�n+2;P + 2a

3
12b12
�n+3;P

�
(dx)

=
�2 (x1x2)

�n+1

a�n12 [� (�n+ 2)]
2 exp

�
�a2x1 + a1x2

a12

�

�
(
0F1 (�n+ 2; b12x1x2) +

2b12x1x2

(�n+ 2)2
0F1 (�n+ 3; b12x1x2)

)
� 1(0;1)2 (x) (dx) :

and


�n�;P (dx)=
�n;P (dx)

=
(x1x2)

�n�1

a�n12 [� (�n)]
2 exp

�
�a2x1 + a1x2

a12

�
0F1(�n; b12x1x2)1(0;1)2 (x) dx;

14



which easily lead to the �rst expression of Cn(�) by usingCn (x) = �n (dx) =
�n�;P (dx).
The second expression of Cn(�) in terms of the modi�ed Bessel function I� is
therefore deduce from the �rst one by using (11) (see Watson [21]). �

Proof of Proposition 6. From Theorem 5 and Proposition 3 we write the
ratio as follows:

Cn
�
nXn

�
detVF

�
Xn

� = n�X1X2

(n�+ 1)b12
� 1

I�n�1
h
2n(b12X1X2)1=2

i
�
(
I�n+1

h
2n(b12X1X2)

1=2
i
+
2n(b12X1X2)

1=2

�n+ 2
I�n+2

h
2n(b12X1X2)

1=2
i)

�
8<: �2

2b212

24 1 + 2b12X1X2

�2

! 
1 +

4b12X1X2

�2

!1=2
�
 
1 +

4b12X1X2

�2

!359=;
�1

=
2n�

(�n+ 1)

 
2(b12X1X2)

1=2

2�

!2
1

I�n�1
h
2n(b12X1X2)1=2

i
�
(
I�n+1

h
2n(b12X1X2)

1=2
i
+
2n(b12X1X2)

1=2

�n+ 2
I�n+2

h
2n(b12X1X2)

1=2
i)

�
24 1 + 2b12X1X2

�2

! 
1 +

4b12X1X2

�2

!1=2
�
 
1 +

4b12X1X2

�2

!35�1 :
Denoting p = n� and t = 2n(b12X1X2)

1=2 we rewrite this ratio as:

Cn
�
nXn

�
detVF

�
Xn

� = 2p

(p+ 1) (p+ 2)

 
t

2p

!2
(p+ 2) Ip+1 (t) + tIp+2 (t)

Ip�1 (t)

�
24 1 + t2

2p2

! 
1 +

t2

p2

!1=2
�
 
1 +

t2

p2

!35�1

=
2p3

(p+ 1) (p+ 2) t2

24 1 + t2

2p2

! 
1 +

t2

p2

!�1=2
+ 1

35
� (p+ 2) Ip+1 (t) + tIp+2 (t)

Ip�1 (t)
:

To obtain the desired result we simplify the expression

(p+ 2) Ip+1 (t) + tIp+2 (t)

Ip�1 (t)

by using the following identity:

Ip�1 (t)� Ip+1 (t) =
2p

t
Ip (t) (16)
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(e.g. Watson [21], p. 79). Indeed, substituting p+ 1 to p and multiplying by t
in (16) we have

tIp (t) = 2 (p+ 1) Ip+1 (t) + tIp+2 (t) ;

that is

(p+ 2) Ip+1 (t) + tIp+2 (t) = tIp (t)� pIp+1 (t) :

Thus we successively obtain

(p+ 2) Ip+1 (t) + tIp+2 (t)

Ip�1 (t)
=
tIp (t)� pIp+1 (t)

Ip�1 (t)

=
tIp (t)� p [Ip�1 (t)� 2pIp (t) =t]

Ip�1 (t)

=
1

t

"�
t2 + 2p2

� Ip (t)

Ip�1 (t)
� pt

#

=
t2 + 2p2

t

 
Ip (t)

Ip�1 (t)
� pt

t2 + 2p2

!
;

and the proposition is �nally deduced. �

Proof of Theorem 7. We use Proposition 1 (ii) and (iii) with � = 
�;P ,
� > 0 and P (�) = 1� 1=a+(1=a)(1+a�1):::(1+a�d), � 2 �(
�;P ). Denoting
P (��) = P and

Qd
k=1 (1� a�k) =

Qd
k=1 �k = � we have the relation � =

aP + 1 � a. As in the proof of Proposition 4 we consider 1d = (1; :::; 1) and
Id = diag(1; :::; 1). Then, we successively write

detK 00

�;P

(�) = det
�
@2K
�;P (�) =(@�i@�j)

�
i;j=1;:::;d

= �dP�2d det

0BBBBBBBBBBBB@

�
�
�1

�2 (1�a)�
�1�j

(1�a)�
�1�d

. . .
(1�a)�
�1�j

�
�
�j

�2 (1�a)�
�j�d

. . .
(1�a)�
�1�d

(1�a)�
�j�d

�
�
�d

�2

1CCCCCCCCCCCCA
= �dP�2d�d�2 det

h
�Id + (1� a)

�
1Td 1d � Id

�i
:
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Using � = aP+ 1� a its expansion can be expressed as

detK 00

�;P

(�) = �dP�2d�d�2 f(d� 1) (1� a) +�g (�� 1 + a)d�1

= �dad�1P�(d+1) (aP+ 1� a)d�2 (aP+ d(1� a))
= �dad�1P�(d+1)

h
(aP+ 1� a)d�1 + (d� 1) (1� a) (aP+ 1� a)d�2

i
= �dad�1P�(d+1)

�
"
d�1X
k=0

 
d� 1
k

!
ak(1� a)d�1�kPk + (d� 1) (1� a)

d�2X
k=0

 
d� 2
k

!
ak(1� a)d�2�kPk

#

= �dad�1P�(d+1)
(
ad�1Pd�1 +

d�2X
k=0

" 
d� 1
k

!
+ (d� 1)

 
d� 2
k

!#
ak(1� a)d�1�kPk

)

= �d
"
a2(d�1)P�2 +

d�1X
k=1

(k + 1)

 
d� 1
k

!
a2(d�1)�k(1� a)kP�(k+2)

#

= �d
d�1X
k=0

(k + 1)

 
d� 1
k

!
a2(d�1)�k(1� a)kP�(k+2)

= L
�d
Pd�1

k=0
(k+1)(d�1k )p2(d�1)�k(1�a)k
2+k;P

(�) :

Thus, the associated measure �n = �n(
�;P ) de�ned by its Laplace transform

L�n (�) = (L
�;P (�))
n detK 00


�;P
(�) is �n = �

dPd�1
k=0 (k + 1)

�
d�1
k

�
a2(d�1)�k(1�

a)k
n�+2+k;P . Using (12) we deduce

�n (dx) = �
d
d�1X
k=0

(k + 1)

 
d� 1
k

!
a2(d�1)�k(1� a)k
n�+2+k;P (dx)

= f�d
d�1X
k=0

(k + 1)

 
d� 1
k

!
a2(d�1)�k

(1� a)ka(1�d)(n�+2+k)

(� (n�+ 2 + k))d
exp

�
�x1 + : : :+ xd

a

�
� (x1 : : : xd)n�+1+k 0Fd�1

�
n�+ 2 + k; : : : ; n�+ 2 + k; (1� a)a�dx1 : : : xd

�
g

� 1(0;1)d (x) (dx)

= f(x1 : : : xd)n�+1 a�(d�1)n��d exp
�
�x1 + : : :+ xd

a

�
�

d�1X
k=0

 
d� 1
k

!
(k + 1)

(� (n�+ 2 + k))d

�
(1� a)a�dx1 : : : xd

�k
� 0Fd�1

�
n�+ 2 + k; : : : ; n�+ 2 + k; (1� a)a�dx1 : : : xd

�
g1(0;1)d (x) (dx)

and


�n�;P (dx)=
n�;P (dx)

=
(x1 : : : xd)

n��1

a(d�1)n� (� (n�))d
exp

�
�x1 + : : :+ xd

a

�
� 0Fd�1

�
n�; : : : ; n�; (1� a)a�dx1 : : : xd

�
1(0;1)d (x) (dx) :
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Finally, the expression of Cn(�) is obtained by Cn (x) = �n (dx) =
�n�;P (dx). �
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