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It has been shown that the uniformly minimum variance unbiased (UMVU) estimator of the generalized variance always exists for any natural exponential family. In practice, however, this estimator is often di¢ cult to obtain. This paper explicitly identi…es the results in complete bivariate and symmetric multivariate gamma models, which are diagonal quadratic exponential families. For the non-independent multivariate gamma models, it is then pointed out that the UMVU and the maximum likelihood estimators are not proportional as conjectured for models belonging in certain quadratic exponential families.

Introduction

Generalized variance estimators have been, for a long time, based on the determinant of the sample covariance matrix. Generally biased, some of properties of the sample generalized variance are known, in particular, under the normal distribution hypothesis. See e.g. [START_REF] Iliopoulos | On improved interval estimation for the generalized variance[END_REF] and [START_REF] Rousseeuw | A fast algorithm for the minimum covariance determinant estimator[END_REF] and references therein.

In the context of natural exponential families (NEFs) on R d which include many usual distributions (Kotz et al. [START_REF] Kotz | Continuous Multivariate Distributions[END_REF], Chap. 54), a common estimator of the generalized variance is obtained by considering the key result in Kokonendji and Seshadri [START_REF] Kokonendji | On the determinant of the second derivative of a Laplace transform[END_REF] which we recall in the following proposition; see also [START_REF] Kokonendji | Estimateurs de la variance généralisée pour des familles exponentielles non gaussiennes[END_REF] and [START_REF] Kokonendji | Comparing UMVU and ML estimators of the generalized variance for natural exponential families[END_REF] for this complete version. Let M(R d ) denotes the set of -…nite positive measures on R d not concentrated on an a¢ ne subspace of R d , with the Laplace transform of given by

L ( ) = Z R d exp( T x) (dx)
and such that the interior ( ) of the domain f 2 R d ; L ( ) < 1g is non-empty. De…ning the cumulant function as K ( ) = log L ( ), the NEF generated by 2 M(R d ), denoted by F = F ( ), is the family of probability measures fP ; (dx) = exp[ | x K ( )] (dx); 2 ( )g. by the map (x 1 ; :::; x n ) 7 ! x 1 + ::: + x n ;

(ii) the Laplace transform of n is given by

L n ( ) = (L ( )) n det K 00 ( ) ; 2 ( ) (1) 
where K 00 ( ) = @ 2 K ( )=(@ T @ ) is the Hessian matrix of K ( );

(iii) there exists C n : R d ! R such that

n (dx) = C n (x) n (dx) ; (2) 
where n denotes the n-th convolution power of .

We also recall that any NEF can be reparametrized in terms of the mean m such that

m = m ( ) = E (X) = @K ( ) @ = K 0 ( );
where X is a random vector distributed according to a P ; in F . The mean domain M F = K 0 ( ( )) depends only on F , and not on the choice of the generating measure of F ; so we can write F = fP(m; F ) ; m 2 M F g. The function V F (m) = V ar (m) (X) = K 00 ( (m)); m 2 M F is called the variance function of the family F . Here ( ) denotes the inverse of the mapping m ( ) = K 0 ( ). The pair (V F ( ); M F ) characterizes F within the class of all NEFs.

Thus, the authors ( [START_REF] Kokonendji | Estimateurs de la variance généralisée pour des familles exponentielles non gaussiennes[END_REF], [START_REF] Kokonendji | Comparing UMVU and ML estimators of the generalized variance for natural exponential families[END_REF] and [START_REF] Kokonendji | On the determinant of the second derivative of a Laplace transform[END_REF]) of Proposition 1 have shown that

C n nX n = C n (X 1 + ::: + X n ) (3) 
is the uniformly minimum variance unbiased (UMVU) estimator of the generalized variance det V F (m) = det K 00 ( ) based on n d + 1 observations X 1 ; :::; X n of P(m; F ). Obviously, the crucial problem of this estimator (3) is to exhibit C n ( ) de…ned in [START_REF] Bar-Lev | The diagonal multivariate natural exponential families and their classi…cation[END_REF]. In the previous papers we only …nd the explicit expressions of C n ( ) for NEFs having homogeneous and simple quadratic variance functions of Casalis ([5] and [START_REF] Casalis | The 2d + 4 simple quadratic natural exponential families on R d[END_REF]). Pommeret [START_REF] Pommeret | A construction of the UMVU estimator for simple quadratic natural exponential families[END_REF] provides another construction of the generalized variance UMVU estimator which is limited to the simple quadratic NEFs. Moreover, in order to compare the UMVU estimator C n (nX n ) to the maximum likelihood (ML) estimator det V F (X n ) of det V F (m), Kokonendji and Pommeret [START_REF] Kokonendji | Comparing UMVU and ML estimators of the generalized variance for natural exponential families[END_REF] have conjectured the following proportionality which holds for all homogeneous and simple quadratic NEFs:

there exists n > 0 such that C n (nX n ) = n det V F (X n ) if and only if there exists (a; b; c) 2 R R d R such that the canonical generalized variance is det K 00 ( ) = exp n aK ( ) + b T + c o ; 2 ( ) : (4) 
The condition ( 4) is used by Consonni et al. [START_REF] Consonni | Reference priors for exponential families with simple quadratic variance function[END_REF] for references prior analysis of the simple quadratic NEFs and by Kokonendji and Masmoudi [START_REF] Kokonendji | A characterization of Poisson-Gaussian families by generalized variance[END_REF] (with a = 0) for starting the characterization of the corresponding NEFs. We note in passing that if or F = F ( ) is in…nitely divisible then there exists a positive measure = ( ) such that L ( ) = det K 00 ( ), for all 2 ( ) [START_REF] Hassairi | Generalized variance and exponential families[END_REF].

Motivated by the recent result of Bernardo¤ [START_REF] Bernardo¤ | Which multivariate gamma distributions are in…nitely divisible?[END_REF] "Which multivariate gamma distributions are in…nitely divisible?" and the use of a multivariate gamma NEF for mixing Poisson distribution by Ferrari et al. [START_REF] Ferrari | Exponential families of mixed Poisson distributions[END_REF], this paper is devoted to the UMVU and ML estimators of some generalized variances under the multivariate gamma hypothesis. Considered by the previous authors to be the natural multivariate extension of the real gamma NEF, the following multivariate gamma models belong to the diagonal quadratic NEFs in the sense of Bar-Lev et al. [START_REF] Bar-Lev | The diagonal multivariate natural exponential families and their classi…cation[END_REF] (see Proposition 2) and, however, does not hold the condition (4) of proportionality between UMVU and ML estimators of the generalized variance for certain quadratic NEFs. The present paper is structured as follows. In Section 2, de…nition and variance function of d-dimensional gamma NEFs are given. In Section 3, particular cases of the generalized variance for a bivariate and a symmetric multivariate gamma families are presented. In Section 4, the UMVU estimator of the generalized variance in the bivariate case is pointed out and compared to the corresponding ML estimator. We shall show that these two estimators are not proportional. In Section 5, symmetric multivariate gamma models are considered. We shall observe that its corresponding bivariate is trivially a particular case of the one of the previous section. Finally, Section 6 concludes on independent multivariate case. To make easy the reading of the results all proofs are collected in the Appendix.

Multivariate gamma NEFs

For d = 1, for and a > 0 the real gamma distribution with shape parameter and scale parameter a is ;a (dx) =

x 1 e x=a a ( )

1 (0;1) (x)dx:
This is an element of the univariate gamma NEF F = F ( ) generated by (dx) = ( ( )) 1 x 1 1 (0;1) (x)dx, which is characterized by its variance function V F (m) = m 2 = , m 2 (0; 1) = M F (see Morris [START_REF] Morris | Natural exponential families with quadratic variance functions[END_REF]). We also note F = F ( ;a ). The Laplace transform of ;a is L ;a ( ) = (1 a ) for a suitable .

For d > 1, we consider the multivariate gamma distribution de…ned by its Laplace transform (P ( )) , > 0, where

P ( ) = X S f1;:::;dg a S Y i2S i (5) 
is an a¢ ne polynomial in = ( 1 ; :::; d ) (i.e., @ 2 P=@ 2 i = 0 for i = 1; :::; d) with suitable a S 2 R and a ? = 1. We denote this distribution by ;P . For simplicity, if S = fi 1 ; :::; i k g then we shall write a fi 1 ;:::;i k g = a i 1 :::i k . The associated multivariate gamma NEF F = F ( ;P ) is such that ;P must belong to M(R d ). This study on the pair ( ; P ) of ;P is a di¢ cult problem and only su¢ cient or necessary conditions are known. In Bernardo¤ [START_REF] Bernardo¤ | Which multivariate gamma distributions are in…nitely divisible?[END_REF] the necessary and su¢ cient conditions for existence and in…nite divisibility of 1;P are found, with the restriction to a 1:::d 6 = 0 in [START_REF] Casalis | Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique[END_REF].

Let us present three important examples:

-A bivariate case (d = 2) which is in…nitely divisible is de…ned with > 0 and

P ( 1 ; 2 ) = 1 + a 1 1 + a 2 2 + a 12 1 2 (6) 
for a 1 , a 2 and a 12 > 0 such that a 1 a 2 a 12 0. If

a 12 = a 1 a 2 (i.e. P ( 1 ; 2 ) = (1 + a 1 1 )(1 + a 2 2 )) then the corresponding ;P is the distribution of the random variable X = (Y 1 ; Y 2 )
where Y 1 and Y 2 are independent real random variables with respective distribution ;a i for i = 1; 2.

-A symmetric multivariate case, also in…nitely divisible, is de…ned with > 0 and

P ( ) = 1 1 a + 1 a d Y i=1 (1 + a i ); a 2 (0; 1) (7) 
for i < 1=a, i = 1; :::; d and

d Q i=1 (1 a i ) > 1 a [4].
-A line multivariate case with > 0 and

P ( ) = 1 + d X i=1 a i i ; a i > 0
is the distribution ;P of the random variable X = (a 1 Y; :::; a d Y ) where Y is a real random variable with distribution ;1 [START_REF] Ferrari | Exponential families of mixed Poisson distributions[END_REF].

The following preliminary result shows that all multivariate gamma NEFs have a diagonal quadratic variance function (see also Bar-Lev et al. [START_REF] Bar-Lev | The diagonal multivariate natural exponential families and their classi…cation[END_REF]).

Proposition 2 Let P be an a¢ ne polynomial (5) in d variables and > 0.

If F is a multivariate gamma NEF associated with ( ; P ) then its variance function V F (m) = (V i;j ) i;j=1;:::;d , m = (m 1 ; :::

; m d ) 2 M F satis…es V i;i = m 2 i = and P ( ) @ 2 P ( ) @ i @ j @P ( ) @ i @P ( ) @ j ! V i;j m i m j 2 + @ 2 P ( ) @ i @ j ! 2 V i;j = 0; i 6 = j (8) 
which does not depend on i and j .

In the sequel, we only investigate the generalized variance det V F (m) in the in…nitely divisible cases of the bivariate and symmetric multivariate gamma NEFs. Since the o¤-diagonal elements V i;j of V F (m) are di¢ cult to exhibit via equation ( 8) for some a¢ ne polynomials P given in (5), these particular cases ( 6) and ( 7) shall su¢ ce for instance to illustrate the problem of UMVU and ML estimators presented in the Introduction.

3 Generalized variance for some multivariate gamma NEFs

We here show two results of the generalized variance in the multivariate gamma NEFs for which we investigate their estimators in the next sections.

The …rst concerns the bivariate case.

Proposition 3 Let P ( 1 ; 2 ) = 1 + a 1 1 + a 2 2 + a 12 1 2 be the associated a¢ ne polynomial (6) of the bivariate gamma NEF F = F ( ;P ) with > 0.

We denote

b 12 = (a 1 a 2 a 12 ) =a 2 12 0. Then, for m = (m 1 ; m 2 ) 2 M F = (0; 1) 2 , if b 12 = 0 we have det V F (m) = m 2 1 m 2 2 = 2 and, if b 12 > 0 the gener- alized variance is det V F (m) = 2 2b 2 12 2 4 1 + 2b 12 m 1 m 2 2 ! 1 + 4b 12 m 1 m 2 2 ! 1=2 1 + 4b 12 m 1 m 2 2 ! 3 5
and tends to m 2 1 m 2 2 = 2 when b 12 tends to 0.

The second result is devoted to the symmetric multivariate gamma NEFs.

Proposition 4 Let P ( ) = 1 1=a+(1=a)(1+a 1 ):::(1+a d ) be the associated a¢ ne polynomial [START_REF] Consonni | Reference priors for exponential families with simple quadratic variance function[END_REF] of the symmetric multivariate gamma NEF F = F ( ;P ) with > 0. Then, for m = (m 1 ; :::

; m d ) 2 M F , det V F (m) = a d 1 (ds a (d 1)) s d (m 1 : : : m d ) 2
where s = m i (1 a i ), i = 1; : : : ; d is the unique real non-negative solution of the equation of degree d and following Hochstadt [START_REF] Hochstadt | Les Fonctions de la Physique Mathématique[END_REF] (p. 77) its unique real non-negative solution can be expressed as

s d as d 1 (1 a)m 1 : : : m d = 0: (9) 
y(u) = 1 d 1 X r=0 ( 1) r r(d 1)+1 d r(d 1)+1 d + 1 r ( u) r r! = 1 d 1 X r=0 1 r 1 d + (r 1) 1 r 1 d u r r! = 1 + u d + 1 d 1 X r=2 " r 1 Y k=1 1 r d + k # u r r! ; juj < d (d 1) (1 d)=d :
For example, when d = 2 we have y(u) = u=2 + (1 + u 2 =4) 1=2 and the Taylor expansion provides the corresponding above result.

4 Generalized variance estimators for bivariate gamma NEF Following Bernardo¤ [START_REF] Bernardo¤ | Lois Multinomiales Négatives Indé…niment Divisibles et Lois Gamma Multivariées Indé…niment Divisibles[END_REF] and with the notations of Proposition 3 the density of the bivariate gamma distribution ;P can be written, for x = (x 1 ; x 2 ), as

;P (dx) = (x 1 x 2 ) 1 a 12 ( ( )) 2 exp a 2 x 1 + a 1 x 2 a 12 0 F 1 ( ; b 12 x 1 x 2 ) 1 (0;1) 2 (x) dx (10 
) where 0 F q (b 1 ; : : : ; b q ; z) is the generalized hypergeometric function de…ned by

0 F q (b 1 ; : : : ; b q ; z) = 1 X k=0 (b 1 ) ::: (b q ) (b 1 + k) ::: (b q + k) z k k! :
We now show its UMVU generalized variance estimator.

Theorem 5 Let X 1 ; :::; X n be i.i.d. sample from the bivariate gamma distribution ;P of (10) for …xed > 0. With the notations of Proposition 3, we assume n 3 and b 12 > 0, then the UMVU estimator

C n nX n = C n (X 1 + ::: + X n ) of det V F (m) is such that, for (x 1 ; x 2 ) 2 (0; 1) 2 , C n (x 1 ; x 2 ) = (x 1 x 2 ) 2 n 2 ( n + 1) 2 1 0 F 1 ( n; b 12 x 1 x 2 ) ( 0 F 1 ( n + 2; b 12 x 1 x 2 ) + 2b 12 x 1 x 2 ( n + 2) 2 0 F 1 ( n + 3; b 12 x 1 x 2 ) ) = x 1 x 2 n ( n + 1) b 12 1 I n 1 [2(b 12 x 1 x 2 ) 1=2 ] ( I n+1 h 2(b 12 x 1 x 2 ) 1=2 i + 2(b 12 x 1 x 2 ) 1=2 n + 2 I n+2 h 2(b 12 x 1 x 2 ) 1=2 i )
;

where I is the modi…ed Bessel function with index such that

1 X k=0 1 ( + k) z k k! = 1 ( ) 0 F 1 ( ; z) = z (1 )=2 I 1 2z 1=2 : (11) 
From Proposition 3 the ML estimator of det V F (m) is det V F X n . The following proposition gives the ratio of the previous two estimators.

Proposition 6 Under the assumptions of Theorem 5 the ratio of the estimators C n nX n and det V F X n of det V F (m) is, for …xed > 0 and n 3,

C n nX n det V F X n = 2p 3 (t 2 + 2p 2 ) (p + 2) (p + 1) t 3 2 4 1 + t 2 2p 2 ! 1 + t 2 p 2 ! 1=2 + 1 3 5 I p (t) I p 1 (t) pt t 2 + 2p 2 ! where p = n and t = 2n(b 12 X 1 X 2 ) 1=2 with X n = (X 1 ; X 2 ).
We observe that the ratio C n nX n = det V F X n depends on the components of the sample mean X n = (X 1 ; X 2 ). Graphically it is shown by Maple that C n nX n = det V F X n < 1 (Fig. 1). Also, it is pointed out in the proof of Theorem 5 that the canonical generalized variance is a sum of two exponential terms. This means that the equation ( 4) does not hold for non-independent bivariate gamma distributions (b 12 > 0). Thus, the conjecture of proportionality is not contradicted in this case. The following theorem states its UMVU generalized variance estimator.

Theorem 7 Let X 1 ; :::; X n be i.i.d. sample from the symmetric multivariate gamma distribution ;P of (12) for …xed > 0. With the notations of Proposition 4, we assume n 3, then the UMVU estimator For d = 2 the formula becomes

C n nX n = C n (X 1 + ::: + X n ) of det V F (m) is such that C n (x) = d (x 1 : : : x d ) 2 0 F d 1 (n ; : : : ; n ; (1 a)a d x 1 : : : x d ) d 1 X k=0 d 1 k ! (k + 1) " (n ) (n + 2 + k) # d h ( 1 
C n (x) = ( x 1 x 2 ) 2 n 2 ( n + 1) 2 1 0 F 1 (n ; (1 a)a 2 x 1 x 2 ) ( 0 F 1 n + 2; x 1 x 2 a 2 =(1 a) ! + 2(1 a)x 1 x 2 a 2 ( n + 2) 2 0 F 1 n + 3; x 1 x 2 a 2 =(1 a) !)
; which is the particular case of the bivariate gamma models (6) with a 1 = a 2 = 1, a 12 = a and then b 12 = (1 a)=a 2 . These symmetric multivariate gamma models are non-independent.

The ML estimator of det V F (m) is det V F X n by using Proposition 4. However, the comparison study of these two estimators may be just more complex to write.

Concluding remarks

A very standard case of the generalized variance estimators is to consider the univariate (d = 1) situation where the sample size is n = d + 1. See e.g. Antoniadis et al. [START_REF] Antoniadis | Wavelet shrinkage for natural exponential families with cubic variance functions[END_REF] for the practical use in wavelet shrinkage.

The standard multivariate case (d > 1) for the gamma models can be seen through the independent multivariate gamma NEF F = F ( ;P ) with > 0 and

P ( ) = d Y i=1 (1 a i i ); a i > 0:
Recall that the density of ;P can be written as

;P (dx) = (x 1 : : : x d ) 1 (a 1 : : : a d ) ( ( )) d exp x 1 a 1 + ::: + x d a d 1 (0;1) d (x) (dx) :
It is easy to check the corresponding ingredients: the generalized variance is

det V F (m) = det diag m 2 1 ; :::; m 2 d ! = m 2 1 :::m 2 d d ; m 2 (0; 1) d ; the UMVU function (2) is C n (x) = (x 1 : : : x d ) 2 n d (n + 1) d , and the ratio C n (nX)= det V F (X) is n = [n =(n + 1)] d < 1.
Thus the conjecture of proportionality between UMVU and ML estimators holds for the independent multivariate gamma models, because the canonical generalized variance veri-…es (4) with a = 2= , b = 0, c = log( d a 2

1 : : : a 2 d ). For …xed n and we think that this coe¢ cient n is the upper-bound for any sample of the multivariate gamma models.

In general, for non-independent multivariate gamma NEFs, the canonical generalized variance det K 00

;P ( ) is on one hand a sum of exponential terms as in the right side member of (4) and, on the other hand, the UMVU and the ML estimators are not proportional. The bivariate and the symmetric multivariate gamma NEFs treated in this paper cover a wide spectrum of di¤erent situations of gamma distributions [START_REF] Casalis | Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique[END_REF], which include many other multivariate gamma distributions proposed in the literature (e.g. Kotz et al. [START_REF] Kotz | Continuous Multivariate Distributions[END_REF], Chap. 48 and references therein). Finally, the conjecture of proportionality always holds for canonical generalized variance satisfying (4).

Appendix: Proofs

Proof of Proposition 2. Let K ( ) = log P ( ). The means m i = @K ( )=@ i are m i = P ( ) @P ( ) @ i ; i = 1; :::d:

For i = j the diagonal elements V i;i = @ 2 K ( )=@ 2 i of V F (m) are V i;i = (P ( )) 2 @P ( ) @ i ! 2 = m 2 
i ; i = 1; :::; d;

because P is an a¢ ne polynomial with @ 2 P=@ 2 i = 0 for all i = 1; :::; d.

For i 6 = j the o¤-diagonal elements V i;j = @ 2 K ( )=(@ i @ j ) of V F (m) are, successively,

V i;j = (P ( )) 2 " P ( ) @ 2 P ( ) @ i @ j + @P ( ) @ i @P ( ) @ j #

= P ( ) @ 2 P ( )

@ i @ j + m i m j : (14) 
Note that @ @ i @ 2 P ( ) @ i @ j = @ @ j @ 2 P ( ) @ i @ j = 0 and 0 = @ @ i h (P ( )) 2 V i;j i = " @P ( ) @ i @ 2 P ( ) @ i @ j @P ( ) @ i @ 2 P ( )

@ i @ j # = @ @ j h (P ( )) 2 V i;j i :
Thus P ( ) (V i;j m i m j = ) and (P ( )) 2 V i;j do not depend on the variables i and j . From ( 14) we can write V i;j m i m j = P ( ) @ 2 P ( ) @ i @ j and then

V i;j m i m j 2 = 2 (P ( )) 2 @ 2 P ( ) @ i @ j ! 2 :
Replacing the denominator (P ( )) 2 of the last equality by its expression from (13), we therefore obtain P ( ) @ 2 P ( ) @ i @ j @P ( )

@ i @P ( ) @ j ! V i;j m i m j 2 = @ 2 P ( ) @ i @ j ! 2 V i;j
which is equivalent to [START_REF] Ferrari | Exponential families of mixed Poisson distributions[END_REF]. It also follows that the above equation does not depend on i and j .

Proof of Proposition 3. We …rst apply Proposition 2 with P ( 1 ; 2 ) = 1 + a 1 1 + a 2 2 + a 12 1 2 to get V F (m) = (V i;j ) i;j=1;2 , where V i;i = m 2 i = and V 1;2 = V 2;1 satis…es the corresponding equation ( 8):

b 12 V 1;2 m 1 m 2 2 V 1;2 = 0 (15) 
for m 1 = (a 1 +a 12 2 )=P ( 1 ; 2 ) and m 2 = (a 2 +a 12 1 )=P ( 1 ; 2 ) > 0.

For b 12 = 0 in (15) we obviously have V 1;2 = 0 and, then,

det V F (m) = m 2 1 m 2 2 = 2 .
For b 12 > 0, and since 2 + 4b 12 m 1 m 2 > 0, the equation ( 15) has for solutions 5 ; " = 1:

V 1;2 (") = m 1 m 2 + 2b 12 2 4 1 + " 1 + 4b 12 m 1 m 2 2 ! 1=2 3 
The solution V 1;2 = V 1;2 (+1) is associated to the negative de…nite matrix V F (m) = (V i;j ) i;j=1;2 because its corresponding determinant is clearly det V F (m) = m 1 m 2 2

<

:

m 1 m 2 + 2b 12 2 4 1 + 1 + 4b 12 m 1 m 2 2 ! 1=2 3 5 9 = ; 2 < 0:
Thus, the positive de…nite matrix V F (m) = (V i;j ) i;j=1;2 which is associated to the adequate solution of ( 15) is obtained with ). From this it may be deduced the result as follows:

V 1;2 = V 1;2 ( 1 
det V F (m) = m 1 m 2 2

<

:

m 1 m 2 + 2b 12 2 4 1 1 + 4b 12 m 1 m 2 2 ! 1=2 3 5 9 = 
;

2 = 2 4 2b 12 + 2b 12 1 + 4b 12 m 1 m 2 2 ! 1=2 3 5 2 4 2m 1 m 2 + 2b 12 2b 12 1 + 4b 12 m 1 m 2 2 ! 1=2 3 5 = 2 2b 2 12 + m 1 m 2 b 12 ! 1 + 4b 12 m 1 m 2 2 ! 1=2 2 2b 2 12 + 2m 1 m 2 b 12 ! : Moreover, since (1 + 4b 12 m 1 m 2 = 2 ) 1=2 = 1 + 2b 12 m 1 m 2 = 2 2b 2 12 m 2 1 m 2 2 = 4 + o(b 2 12 ) we can write det V F (m) = m 2 1 m 2 2 = 2 + o(1)
, and the proposition is then proven.

Proof of Proposition 4. By a direct calculation of V F (m) = (V i;j ) i;j=1;:::;d we …rst express the means m i = @K ;P ( ) =@ i = @[ log P ( )]=@ i with P ( ) = 1 1=a + (1=a)(1 + a 1 ):::(1 + a d ), 2 ( ;P ), as

m i = P ( ) d Y k=1;k6 =i (1 a k ) = a Q d k=1;k6 =i (1 a k ) 1 a Q d k=1 (1 a k ) ; i = 1; : : : ; d:
To de…ne ( ) in terms of m we can solve the previous system of equations m i = m i ( ); i = 1; :::; d as follows: letting m 1 (1 a 1 ) = m i (1 a i ); i = 2; : : : ; d, we obtain

m d d Y k=1 (1 a k ) a d 1 Y k=1 (1 a k ) (1 a)m d = 0; which is equivalent to d Y k=1 m k (1 a k ) a d 1 Y k=1 m k (1 a k ) (1 a) d Y k=1 m k = 0
and, …nally,

(m 1 (1 a 1 )) d a (m 1 (1 a 1 )) d 1 (1 a) d Y k=1 m k = 0:
This proves the condition (9) resolved by Hochstadt [START_REF] Hochstadt | Les Fonctions de la Physique Mathématique[END_REF] (p. 77).

Then, the diagonal elements V i;i = @ 2 K ;P ( ) =@ 2 i ; i = 1; :::; d are and the o¤-diagonal elements V i;j = @ 2 K ;P ( ) =(@ i @ j ); i 6 = j are

V i;i = @ @ i 2 
V i;j = @ @ j 2 4 P ( ) d Y k=1;k6 =i (1 a k ) 3 5 = a P ( ) (1 a i ) d Y k=1;k6 =j (1 a k ) + (P ( )) 2 d Y k=1;k6 =i (1 a k ) d Y k=1;k6 (1 a k ) = am j 1 a i + m i m j = 1 a s m i m j ; i 6 = j;
where s > 0 is the solution of (9). Proof of Theorem 5. We apply Proposition 1 (ii) and (iii) with = ;P , > 0 and P ( 1 

; 2 ) = 1 + a 1 1 + a 2 2 + a 12 1 2 . Since @ 2 K ;P ( 1 ; 2 ) =@ 2 i = @ 2 [ log P ( 1 ; 2 )] =@ 2 i = ( a i +a 12 i c )=(P ( 1 ; 2 )) 2 , i = 1 = i c 1, i = 2 = i c + 1 and @ 2 K ;P ( 1 ; 2 ) =(@ 1 @ 2 ) = (a 1 a 2 + a 12 )=(P ( 1 ; 2 ))
(dx) = 2 (x 1 x 2 ) n+1 a n 12 [ ( n + 2)] 2 exp a 2 x 1 + a 1 x 2 a 12 ( 0 F 1 ( n + 2; b 12 x 1 x 2 ) + 2b 12 x 1 x 2 ( n + 2) 2 0 F 1 ( n + 3; b 12 x 1 x 2 ) ) 1 (0;1) 2 (x) (dx) :
and

n ;P (dx) = n;P (dx) = (x 1 x 2 ) n 1 a n 12 [ ( n)] 2 exp a 2 x 1 + a 1 x 2 a 12 0 F 1 ( n; b 12 x 1 x 2 )1 (0;1) 2 (x) dx;
which easily lead to the …rst expression of C n ( ) by using C n (x) = n (dx) = n ;P (dx). The second expression of C n ( ) in terms of the modi…ed Bessel function I is therefore deduce from the …rst one by using [START_REF] Iliopoulos | On improved interval estimation for the generalized variance[END_REF] (see Watson [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]).

Proof of Proposition 6. From Theorem 5 and Proposition 3 we write the ratio as follows:

C n nX n det V F X n = n X 1 X 2 (n + 1)b 12 1 I n 1 h 2n(b 12 X 1 X 2 ) 1=2 i ( I n+1 h 2n(b 12 X 1 X 2 ) 1=2 i + 2n(b 12 X 1 X 2 ) 1=2 n + 2 I n+2 h 2n(b 12 X 1 X 2 ) 1=2 i ) 8 < : 2 2b 2 12 2 4 1 + 2b 12 X 1 X 2 2 ! 1 + 4b 12 X 1 X 2 2 ! 1=2 1 + 4b 12 X 1 X 2 2 ! 3 5 9 = ; 1 = 2n ( n + 1) 2(b 12 X 1 X 2 ) 1=2 2 ! 2 1 I n 1 h 2n(b 12 X 1 X 2 ) 1=2 i ( I n+1 h 2n(b 12 X 1 X 2 ) 1=2 i + 2n(b 12 X 1 X 2 ) 1=2 n + 2 I n+2 h 2n(b 12 X 1 X 2 ) 1=2 i ) 2 4 1 + 2b 12 X 1 X 2 2 ! 1 + 4b 12 X 1 X 2 2 ! 1=2 1 + 4b 12 X 1 X 2 2 ! 3 5 1 : 
Denoting p = n and t = 2n(b 12 X 1 X 2 ) 1=2 we rewrite this ratio as:

C n nX n det V F X n = 2p (p + 1) (p + 2) t 2p ! 2 (p + 2) I p+1 (t) + tI p+2 (t) I p 1 (t) 2 4 1 + t 2 2p 2 ! 1 + t 2 p 2 ! 1=2 1 + t 2 p 2 ! 3 5 1 = 2p 3 (p + 1) (p + 2) t 2 2 4 1 + t 2 2p 2 ! 1 + t 2 p 2 ! 1=2 + 1 3 5 (p + 2) I p+1 (t) + tI p+2 (t) I p 1 (t) :
To obtain the desired result we simplify the expression

(p + 2) I p+1 (t) + tI p+2 (t) I p 1 (t)
by using the following identity: 

I p 1 (t) I p+1 (t) = 2p t I p (t) (16) 
(t) = 1 t " t 2 + 2p 2 I p (t) I p 1 (t) pt # = t 2 + 2p 2 t I p (t) I p 1 (t) pt t 2 + 2p 2 ! ;
and the proposition is …nally deduced.

Proof of Theorem 7. We use Proposition 1 (ii) and (iii) with = ;P , > 0 and P ( ) = 1 1=a + (1=a)(1 + a 1 ):::(1 + a d ), 2 ( ;P ). Denoting P ( ) = P and

Q d k=1 (1 a k ) = Q d k=1 k =
we have the relation = aP + 1 a. As in the proof of Proposition 4 we consider 1 d = (1; :::; 1) and I d = diag(1; :::; 1). Then, we successively write det K 00 ;P ( ) = det @ 2 K ;P ( ) =(@ i @ j ) Finally, the expression of C n ( ) is obtained by C n (x) = n (dx) = n ;P (dx).

Proposition 1 2 (

 12 Let 2 M(R d ): Then, for all integers n d + 1; there exists a positive measure n = n ( ) on R d satisfying the three following statements: (i) the measure n is the image of 1 dx 1 )::: (dx n )

  Writing s = ((1 a)m 1 : : : m d ) 1=d y and u = a((1 a)m 1 : : : m d ) 1=d the equation (9) becomes y d uy d 1 1 = 0;

Fig. 1 :

 1 Fig.1: Graphic of the ratio z = C n nX n = det V F X n = z(t; p) with p = n and t = 2n(b 12 X 1 X 2 ) 1=2 of Proposition 6.

  a)a d x 1 : : : x d i k 0 F d 1 n + 2 + k; : : : ; n + 2 + k; (1 a)a d x 1 : : : x d ; for x = (x 1 ; :::; x d ) 2 (0; 1) d .

Now, letting 1 d 1 = (m 1 :

 111 = (1; :::; 1) the d-unit vector of R d and I d = diag(1; :::; 1) the (d d) unit matrix. Using the standard rules of the determinant calculus (e.g. Muir [18]) we successively obtain the desired result det V F (m) = (m 1 : : : m d ) : : m d ) 2 a d 1 fs + (d 1) (s a )g s d = (m 1 : : : m d ) 2 a d 1 (ds a (d 1)) s d :

=: 1 = d a d 1 P#= d a d 1 P

 111 d P 2d d 2 det h I d + (1 a) 1 T d 1 d I d iUsing = aP + 1 a its expansion can be expressed asdet K 00 ;P ( ) = d P 2d d 2 f(d 1) (1 a) + g ( 1 + a) d (d+1) (aP + 1 a) d 2 (aP + d(1 a)) = d a d 1 P (d+1) h (aP + 1 a) d 1 + (d 1) (1 a) (aP + 1 a) d 2 i = d a d 1 P (d+1) 1 a) d 1 k P k + (d 1) (1 a) 1 a) d 2 k P k d 1) k (1 a) k P (k+2) = L d P d 1 k=0 (k+1)( d 1 k )p 2(d 1) k (1 a) k 2+k;P ( ) :Thus, the associated measure n = n ( ;P ) de…ned by its Laplace transformL n ( ) = (L ;P ( )) n det K 00 ;P ( ) is n = d P d 1 k=0 (k + 1) d 1 k a 2(d 1) k (1 a) k n +2+k;P . Using (12) we deduce d 1) k (1 a) k a (1 d)(n +2+k) ( (n + 2 + k)) d exp x 1 + : : : + x d a (x 1 : : : x d ) n +1+k 0 F d 1 n + 2 + k; : : : ; n + 2 + k; (1 a)a d x 1 : : : x d g 1 (0;1) d (x) (dx) = f(x 1 : : : x d ) n +1 a (d 1)n d exp x 1 + : : : + x d a + 2 + k)) d (1a)a d x 1 : : : x d k 0 F d 1 n + 2 + k; : : : ; n + 2 + k; (1 a)a d x 1 : : : x d g1 (0;1) d (x) (dx) and n ;P (dx) = n ;P (dx) = (x 1 : : : x d ) n 1 a (d 1)n ( (n )) d exp x 1 + : : : + x d a 0 F d 1 n ; : : : ; n ; (1 a)a d x 1 : : : x d 1 (0;1) d (x) (dx) :

  2 , we successively havedet K 00 ;P ( 1 ; 2 ) = det @ 2 K ;P ( 1 ; 2 ) =(@ i @ j ) 12 a 1 1 a 12 a 2 2 a 12 + 2a 1 a 2 )(P ( 1 ; 2 ))3 Then, the associated measure n = n ( ;P ) de…ned by its Laplace transform L n ( 1 ; 2 ) = (L ;P ( 1 ; 2 )) n det K 00 ;P ( 1 ; 2 ) can be written n = 2 a 2

			i;j=1;2
	= 2 a 12 (a 2 12 1 2 = 2 n a 2 12 (P ( 1 ; 2 )) 2 + 2a 3 12 b 12 (P ( 1 ; 2 )) 3 o
	= exp	2 K ;P ( 1 ; 2 ) + 2 log a 12 + 2 log
	+ exp	3 K ;P ( 1 ; 2 ) + log(2b 12 ) + 3 log a 12 + 2 log
	= L 2 a 2 12 2;P +2 2 a 3 12 b 12 3;P ( 1 ; 2 ) :
			12	n+2;P +
	2 2 a 3 12 b 12 n+3;P . From (10) we write
	n (dx) = 2 a 2 12	n+2;P + 2a 3 12 b 12 n+3;P

a

  (e.g. Watson[START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF], p. 79). Indeed, substituting p + 1 to p and multiplying by t in[START_REF] Kotz | Continuous Multivariate Distributions[END_REF] we have tI p (t) = 2 (p + 1) I p+1 (t) + tI p+2 (t) ;

	that is		
	(p + 2) I p+1 (t) + tI p+2 (t) = tI p (t) pI p+1 (t) :
	Thus we successively obtain		
	(p + 2) I p+1 (t) + tI p+2 (t) I p 1 (t)	=	tI p (t) pI p+1 (t) I p 1 (t)
		=	tI

p (t) p [I p 1 (t) 2pI p (t) =t] I p 1
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