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Abstract

We investigate some inner bilateral obstacle problems for a class of

strongly degenerate parabolic-hyperbolic quasilinear operators associated

with homogeneous Dirichlet data in a multidimensional bounded domain.

We first introduce the concept of an entropy process solution, more con-

venient and generalizing the notion of an entropy solution. Moreover, the

boundary conditions are expressed by using the background of Divergence

Measure Fields. We ensure that proposed definition warrants uniqueness.

The existence of an entropy process solution is obtained through the van-

ishing viscosity and penalization methods.

1 Introduction

1.1 Mathematical framework

Obstacle problems for conservation laws in physics and mechanics have been
studied by many authors [6, 12, 16],... In this work, we are especially interested
in the second-order quasilinear operator stemming from the theory of fluid flows
through porous media:

P(t, x, .) : u → ∂tu +

p∑

i=1

∂xi
ϕi(t, x, u) + ψ(t, x, u) − ∆φ(u),

where φ is a nondecreasing function; especially φ′ may vanish on nonempty
intervals of R. Let us given two thresholds a and b that are fixed reals such
that a ≤ 0 ≤ b. For any positive T , the bilateral obstacle problem for P on the
bounded domain Ω of Rp, p ≥ 1, may be formally described through the free
boundary problem: find a measurable function u on ]0, T [×Ω such that






a ≤ u ≤ b in ]0, T [×Ω,

P(t, x, u) = 0 on [a < u < b],
P(t, x, u) ≤ 0 on [a < u = b], P(t, x, u) ≥ 0 on [a = u < b],
u = 0 on ]0, T [×∂Ω, u(0, .) = u0 on Ω,

(1)

where u0 is a measurable function on Ω such that a ≤ u0 ≤ b a.e. in Ω.
On the one hand, we emphasize that without any assumption on the sign

of the source term for P a bilateral obstacle condition on initial data does not
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a priori pass on to the associated solution. On the other hand, entropy for-
mulations for the Dirichlet problem to strongly degenerate parabolic-hyperbolic
operators have been introduced by J.Carrillo in 1999 ([2]). Since then, numer-
ous works have been achieved on this matter [1, 13, 14, 17, 18]... Here, we first
provide in Subsection 1.3 the definition of an entropy solution to (1). However,
since we release the smoothness assumptions on the convective term ϕ and the
reactive one ψ it is more convenient to introduce the concept of an entropy
process solution to (1). This notion, highlighted in [18] for the Dirichlet to P,
may be considered as an extension to the second order of the framework due to
R.Eymard, T.Gallouët & R.Herbin in [7]. The uniqueness of an entropy process
solution to (1) is stated in Section 2 and its existence is obtained in Section 3
via the vanishing viscosity method and by relaxing the bilateral obstacle condi-
tion. These two results provide the existence on an entropy solution to (1) and
warrant the strong convergence in Lq(]0, T [×Ω), 1 ≤ q < +∞, of the sequence
of approximate solutions.

1.2 Main notations and assumptions on data

The reaction term ψ is a continuous function on [0, T ] × Ω̄ × [a, b]. In addition
ψ is Lipschitzian with respect to its third variable with a constant Mψ, uni-
formly with respect to (t, x) in ]0, T [×Ω. The flux term ϕ is a W 1,+∞-class
vector-valued function on ]0, T [×Ω×]a, b[ such that for all i in {1, .., p}, ∂xi

ϕi is
Lipschitzian with respect to its third variable with a constant M∂xi

ϕi
, uniformly

with respect to (t, x) in ]0, T [×Ω. Thus we can set Mϕ = max
i∈{1,..,p}

M∂xi
ϕi

and

define for any t of [0, T ],

M(t) = max(−a, b)eK1 t +
K2

K1

(
eK2 t − 1

)
, (2)

where K1 = Mψ + Mϕ and K2 = max
[0,T ]×Ω̄

|ψ(t, x, 0) + Divϕ(t, x, 0)|.

The diffusive term φ is a nondecreasing W 1,+∞(]a, b[)-class function such
that φ(0) = 0. We note E = {l ∈ R, {l} = φ−1({φ(l)})}. Hence, if φ−1

0 denotes
a generalized inverse of φ, the hypo-inverse for example defined through

∀r ∈ Imφ, φ−1
0 (r) = Infφ−1({r}),

then φ(E) is the set of points where φ−1
0 is continuous ([2]).

We assume that Ω is a bounded subset of Rp such that Γ = ∂Ω is Lipschitz-
deformable (see [1, 3, 4, 13]...). Then the space of L2-Divergence Measure fields
on Q - denoted DM2(Q) - is given by

DM2(Q) =
{
V = (v0, v1, .., vp) ∈ (L2(Q))p+1, Div(t,x)V ∈ Mb(Q)

}
,

where Mb(Q) is the space of bounded Radon measures on Q. For any V in
DM2(Q), it is useful to define a linear application ΛV on H1(Q)∩L∞(Q)∩C(Q)
through the following generalized Gauss-Green formula coming from [4]:

ΛV (ξ) := 〈V, ξ〉∂ =

∫

Q

V.(∂tξ,∇ξ)dxdt +

∫

Q

ξ d[Div(t,x)V ], (3)
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where d[Div(t,x)V ] denotes the Borelian measure on Q associated with the
bounded Radon measure Div(t,x)V . In addition the next property holds (see
[13]): let V be an element of DM2(Q) such that v0 is continuous at t = 0 and
t = T with respect to the L1(Ω)-norm then, for any ξ in H1(Q)∩L∞(Q)∩C(Q),

lim
̺→0+

∫

Q

V ξ.(0,∇ρ̺)dxdt

=

∫

Ω

v0(T, x)ξ(0, x)dx −
∫

Ω

v0(0, x)ξ(0, x)dx − 〈V, ξ〉∂ , (4)

for any boundary-layer sequence (ρ̺)̺>0, i.e. a sequence of C2(Ω) ∩ C(Ω)-class
functions such that limρ→0+ ρ̺ = 1 pointwise in Ω, 0 ≤ ρ̺ ≤ 1 in Ω, ρ̺ = 0 on
Γ. In (4), if ξ belongs to L2(0, T ; H1

0 (Ω)) the right-hand side is equal to 0.

We will consider ”sgnλ” the approximation of the function ”sgn” given for
any positive parameter λ and nonnegative real x by:

sgnλ(x) = min
(x

λ
, 1

)
and sgnλ(−x) = −sgnλ(x).

To simplify the writing, we refer to the notations

F(u, k) = sgn(u − k){ϕ(t, x, u) − ϕ(t, x, k)},
G(u, k) = sgn(u − k)Divxϕ(t, x, k) + ψ(t, x, u),

Uk = (|u − k|,−∇|φ(u) − φ(k)| + F(u, k)) , ∇ζ = (∂tζ,∇ζ) .

Eventually, for any n in N⋆, Hn stands for the n-dimensional Hausdorff
measure and for all s of ]0, T ], Qs is the cylinder ]0, s[×Ω, Σs =]0, s[×Γ with
the convention Q = QT and Σ = ΣT . The outer normal of Ω is denoted ν.

1.3 Two concepts of weak solutions

The existence of possible internal and boundary layers leads us to propose a
mathematical formulation for (1) through an entropy inequality inside the stud-
ied field - using the classical Kruzhkov entropy pairs - and on its boundary; the
latter is viewed as an extension to the second order of the F.Otto’s formulation
provided in [15] for hyperbolic first-order operators and uses - as in [1, 13, 18] -
the mathematical framework of Measure-Divergence Fields. In addition, to take
into account the bilateral obstacle condition we only consider the Kruzhkov
pairs for a parameter k that has to belong to the bounded interval [a, b]. That
is why, by referring to a preliminary study of the positiveness obstacle problem
for P in [11], it will be said that:

Definition 1. A measurable function u on Q is an entropy solution to (1) if:

a ≤ u ≤ b a.e. in Q, (5)

φ(u) ∈ L2(0, T ; H1
0 (Ω)), ∂tφ(u) ∈ L2

loc(0, T ; L2(Ω)),
∂tu ∈ L2(0, T ; H−1(Ω)),

(6)

∀k ∈ [a, b], Uk ∈ DM2(Q), (7)
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∀k ∈ [a, b], ∀ξ ∈ D(] −∞, T [×Ω), ξ ≥ 0,

∫

Q

(
Uk.∇ξdxdt − G(u, k)ξ

)
dxdt +

∫

Ω

|u0 − k|ξ(0, .)dx ≥ 0, (8)

∀ξ ∈ L∞(Q) ∩ H1(Q) ∩ C(Q), ξ ≥ 0, ξ(T, .) = ξ(0, .) = 0, ∀k ∈ [a, b],

∫

Σ

F(k, 0).νξdHp ≤ 〈Uk, ξ〉∂ + 〈U0, ξ〉∂ . (9)

Remark 1. Considering k = a and ξ in D(Q), ξ ≥ 0, in (8) leads to:

∫

Q

((u − a)∂tξ −∇φ(u).∇ξ + F(u, a).∇ξ − G(u, a)ξ)dxdt ≥ 0.

We observe that a.e. in Q, F(u, a) = ϕ(t, x, u) − ϕ(t, x, a). So thanks to some
integrations by parts one gets:

−〈P(t, x, u), ξ〉D′(Q),D(Q)+

∫

Q

(1−sgn(u−a))(Divϕ(t, x, a)+ψ(t, x, u))ξdxdt ≥ 0.

Assume now that u is smooth enough so that P(t, x, u) belongs to L1(Q) and
let us choose ξ = (u − a)+ζ with ζ in D(Q), ζ ≥ 0. Since (1 − sgn(u −
a))(Divϕ(t, x, a) + ψ(t, x, u))(u − a)+ = 0 a.e. on Q, we obtain

∫

Q

P(t, x, u)(u − a)+ζdxdt ≤ 0.

That means P(t, x, u)(u − a)+ ≤ 0 a.e. on Q. The same reasoning with k = b

leads to P(t, x, u)(u − b)− ≥ 0 a.e. in Q that formally provides (1).

However, one of the feature of this work in comparison with [11] is to release
the assumptions of regularity for ϕ and ψ. So for the existence property stated
in Section 3 through the vanishing viscosity and penalization methods, we can
only refer to an L∞(Q)-estimate of approximate solutions. That is why we
lean on the original presentation of R.Eymard, T.Gallouët & R.Herbin in [7]
for first-order quasilinear hyperbolic operators that consists - by using the basic
tools of Young measure [5] - in introducing a free variable α living on ]0, 1[
and a new measurable and bounded unknown ]0, 1[×Q, π ≡ π(α, t, x), that
fulfills an entropy formulation on ]0, 1[×Q and called an entropy process solution.
We adapt this concept when dealing with second order quasilinear operators
associated with a forced bilateral constraint. From now, to simplify the writing,
we set Q =]0, 1[×Q and dq = dαdxdt:

Definition 2. Let π be in L∞(]0, 1[×Q) and u(t, x) =

1∫

0

π(α, t, x)dα. We say

that π is an entropy process solution to (1) if:

a ≤ π ≤ b a.e. in Q, (10)
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for a.e. (t, x) in Q,φ(π(α, t, x)) = φ(u(t, x)) for a.e. α in ]0, 1[, (11)

the smoothness properties (6) hold and:

∀k ∈ [a, b], Πk ∈ DM2(Q), (12)

∀k ∈ [a, b], ∀ξ ∈ D(] −∞, T [×Ω), ξ ≥ 0,

∫

Q

Πk.∇ξdxdt −
∫

Q

G(π, k)ξdq +

∫

Ω

|u0 − k|ξ(0, .)dx ≥ 0. (13)

∀ξ ∈ L∞(Q) ∩ H1(Q) ∩ C(Q), ξ(T, .) = ξ(0, .) = 0, ξ ≥ 0, ∀k ∈ [a, b],

∫

Σ

F(k, 0).νξdHp ≤ 〈Πk, ξ〉∂ + 〈Π0, ξ〉∂ , (14)

where

Πk =




1∫

0

|π(α, ., .) − k|dα,

1∫

0

(−∇|φ(π)(α, ., .) − φ(k)| + F(π(α, ., .), k)) dα



 .

The concept of an entropy process solution generalize that of an entropy
solution since an entropy process solution independent from the variable α is
an entropy solution. But the first notion is more convenient that the second
one, mainly because it requires a few estimates of approximate solutions and so
an existence result is easier to obtain. Moreover, the existence and uniqueness
of an entropy solution results from the existence and uniqueness of an entropy
process solution. First by reasoning as F.Otto in [15], we may announce:

Proposition 1. An entropy process solution π to (1) fulfills:

ess lim
t→0+

∫

]0,1[×Ω

|π(α, t, x) − u0(x)|dαdx = 0. (15)

2 The Uniqueness Theorem

The proof basically relies on a inner comparison property which is an extension
to second-order operators of the usual hyperbolic method of doubling variables
due to S.N.Kuzhkov [9]; the contribution of diffusive terms being controlled
thanks to an energy inequality in the same spirit as in the original paper of
J.Carrillo [2]. To do so, we need some preliminary lemma. The first one takes
into account that φ′ may vanish on a nonnegligible subset of R:

Lemma 1.

(i) ∀k ∈ E and a.e. on Q,

sgn(u − k) = sgn(φ(u) − φ(k)) = sgn(π(α, ., .) − k) for a.e. α in ]0, 1[.

(ii) ∇φ(π) = 0 a.e. on Qπ
0 ≡ {(α, t, x) ∈ Q, π(α, t, x) 6∈ E}
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Proof.

For the first equality in (i) we remark that when k belongs to E, if u(t, x) > k

then φ(u(t, x)) > φ(k). This way the second equality is a consequence of (11)
and uses the same reasoning as for the first equality with π in the place of u.
The point (ii) is already emphasized ([2]) with the setting of entropy solutions.
It uses the monotony of φ−1

0 so that Imφ\φ(E) - the set of points where φ−1
0 is

discontinuous - is a countable (and thus a Lebesgue-negligible) subset of R.

The second lemma may be viewed as an inequality version of the energy
equality stated by J.Carrillo in [2]. It permits to determine the sign of diffu-
sive terms appearing in the method of doubling variables. We prove that this
inequality is fulfilled by any entropy process solution to (1) but only for k in
E. We emphasize that in [11] the forthcoming relation (16) results from an un-
derlying formulation of the unilateral obstacle problem for P through a strong
variational inequality (in the sense of J.L.Lions in [12]). But here, in the con-
text of the bilateral obstacle problem, we have not been able to establish such
a formulation and so we directly start from (13). Indeed:

Lemma 2. Let π be an entropy process solution to (1). Then, for any real k of
[a, b] ∩ E, for any nonnegative function ζ of D(Q),

∫

Q

Πk.∇ζdxdt −
∫

Q

G(π, k)ζdq ≥ lim sup
λ→0+

∫

Q

sgn′
λ(φ(π) − φ(k))[∇φ(π)]2ζdq.

Proof. We consider (13) for any nonnegative ξ in D(Q) and, thanks to a
density argument, for any nonnegative ξ in H1

0 (Q) so as to choose the test-
function ξ = ζ|sgnλ(φ(u) − φ(k))| with ζ in D(Q), ζ ≥ 0. Let us perform the
following transformations (by setting Sλ(v) = sgnλ(φ(v) − φ(k))):
• For the evolution term,

∫

Q

|π − k|∂tξdq = I1 + I2 where,

I1 =

∫

Q

|π − k||Sλ(u)|∂tζdq,

I2 =

∫

Q

|π − k|ζsgn′
λ(φ(u) − φ(k))sgn(φ(u) − φ(k))∂tφ(u)dq.

In I2 we have taken into account that sgn(Sλ(u)) = sgn(φ(u) − φ(k)) a.e. on
Q when k belongs to E. But due to Lemma 1 (i), |π − k| = sgn(u − k)(π − k)
a.e. on Q and sgn(φ(u)−φ(k)) = sgn(u−k) a.e. on Q. So the integration with
respect to α may be calculated. It comes:

I2 =

∫

Q

ζsgn′
λ(φ(u) − φ(k))(u − k)∂tφ(u)dxdt

=

∫

Q

∂t(ζSλ(u))(u − k)dxdt −
∫

Q

∂tζSλ(u)(u − k)dxdt.
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Since ∂tu is an element of L2(0, T ;H−1(Ω)),

∫

Q

∂t(ζSλ(u))(u − k)dxdt = −
T∫

0

〈∂tu,Sλ(u)ζ〉H−1,H1
0
dt.

An integration by parts in time using the Mignot-Bamberger formula ([8]) gives

−
T∫

0

〈∂tu,Sλ(u)ζ〉H−1,H1
0
dt =

∫

Q




u∫

k

Sλ(τ)dτ



 ∂tζdxdt.

We now take the λ-limit through the Lebesgue dominated convergence Theorem
in I1 and I2. Since k belongs to E, I2 goes to 0+ (Lemma 1 (i)).
• For the diffusive term, considering that sgn(Sλ(π)) = sgn(φ(π) − φ(k)) a.e.
on Q provides

−
∫

Q

∇|φ(π) − φ(k)|.∇ξdq

= −
∫

Q

[∇|φ(π) − φ(k)|.∇ζ] |Sλ(π)|dq −
∫

Q

sgn′
λ(φ(π) − φ(k))[∇φ(π)]2ζdq.

• Concerning the convective term, as a consequence of (11), we write:
∫

Q

F(π, k).∇ξdq =

∫

Q

[F(π, k).∇ζ] |Sλ(π)|dq +

∫

Q

ζF(π, k).∇|Sλ(π)|dq.

To take the λ-limit, we transform the second term in the right-hand side by by
taking into account that due to Lemma 1 (i), sgn(Sλ(π)) = sgn(φ(π)−φ(k)) =
sgn(π − k) a.e. on Q. It comes

∫

Q

ζF(π, k).∇|Sλ(π)|dq

=

∫

Q

ζsgn′
λ(φ(π) − φ(k)){ϕ(t, x, π) − ϕ(t, x, k)}.∇φ(π)dq.

Now, we introduce the vector-valued function

Hλ(t, x, r) =

r∫

φ(k)

[ϕ(t, x, φ−1
0 (τ)) − ϕ(t, x, k)]sgn′

λ(τ − φ(k))dτ,

so that thanks to Lemma 1 (ii),
∫

Q

ζsgn′
λ(φ(π) − φ(k)){ϕ(t, x, π) − ϕ(t, x, k)}∇φ(π)dq

=

∫

Q

ζDivHλ(t, x, φ(π))dq

−
∫

Q

ζ

φ(π)∫

φ(k)

(
Divxϕ(t, x, φ−1

0 (τ)) − Divxϕ(t, x, k)
)
sgn′

λ(τ − φ(k))dτdq,
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The first term is integrated by parts and for the second one we come back to
the definition of sgn′

λ to obtain:
∫

Q

ζF(π, k).∇|sgnλ(φ(π) − φ(k))|dq

= −
∫

Q

1

λ

∫

I

(
[ϕ(t, x, φ−1

0 (τ)) − ϕ(t, x, k)].∇ζdτ
)
dq

−
∫

Q

1

λ

∫

I

(
Divx[ϕ(t, x, φ−1

0 (τ)) − ϕ(t, x, k)]ζdτ
)
dq,

where I = I(φ(π), φ(k))∩ [φ(k)−λ, φ(k)+λ] and I(r, p) = [min(r, p),max(r, p)]
for all (r, p) of R2. Since k belongs to E, the generalized function φ−1

0 is con-
tinuous in φ(k) ([2]). This way, the previous integral goes to 0 when λ tends to
0+. The study of the reaction term does not present any difficulty.

This way the next Kuzhkov-type relation holds:

Proposition 2. Let π1 and π2 satisfying (6,10,11,13). Then for any nonnega-
tive Ψ of D(Q × Q):

−
∫

Q×Q

|π1 − π̃2|(∂t + ∂t̃)Ψ − (∇x + ∇x̃)|φ(u1) − φ(ũ2)|.(∇x + ∇x̃)Ψdqdq̃

−
∫

Q×Q

(
F(π1, π̃2).∇xΨ + F̃(π̃2, π1).∇x̃Ψ

)
dqdq̃

+

∫

Q×Q

(G(π1, π̃2) + G̃(π̃2, π1))Ψdqdq̃ ≤ 0.

Proof. To simplify we set dq̃ = dα̃dx̃dt̃ and we add a ”tilde” superscript to
any function in ”tilde” variables. On the one hand in (16) written in variables
(α, t, x) for π1 we take k(α̃, t̃, x̃) = π̃2 for a.e. (α̃, t̃, x̃) in Q \ Qπ̃2

0 , so that
k(α̃, t̃, x̃) belongs to E. On the other hand in (13) written in variables (α, t, x)
for π1, we take k(α̃, t̃, x̃) = π̃2 for a.e. (α̃, t̃, x̃) in Qũ2

0 . Each inequality obtained
is integrated with respect to the variables α̃, t̃ and x̃ on the corresponding
domain. We add and use a version of the Fatou’s Lemma to deal with the
”lim sup” in the right-hand side. Indeed we observe by coming back to the
proof of Lemma 2 for λ fixed, that the function

k 7→
∫

Q

sgn′
λ(φ(π) − φ(k))[∇φ(π)]2ζdq

is uniformly bounded with respect to λ and k in [a, b]. Finally it comes for π1:

−
∫

Q×Q

|π1 − π̃2|Ψt dqdq̃ +

∫

Q×Q

[∇x|φ(π1) − φ(π̃2)| − F(π1, π̃2)] .∇xΨ dqdq̃

+

∫

Q×Q

G(π1, π̃2)Ψ dqdq̃

≤ − lim sup
λ→0+

∫

Q

sgn′
λ(φ(π1) − φ(π̃2))[∇φ(π1)]

2Ψ dqdq̃,
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where in the right-had side we have used the lemma 1 (ii) to rewrite the inte-
gration field under the form Q = Q\Qπ1

0 ×Q\Qπ̃2

0 . Besides, we integrate over
Q the Gauss-Green formula:

∫

Q

∇xφ(u1).∇x̃[sgnλ(φ(u1) − φ(ũ2))Ψ] dt̃dx̃ = 0 a.e. (t, x) in Q.

By developing the partial derivatives and taking into account that φ(u2) is an
element of L2(0, T ;H1

0 (Ω)), the λ-limit provides the next equality:

∫

Q×Q

sgn(φ(π1) − φ(π̃2))∇xφ(π1).∇x̃Ψ dqdq̃

= lim
λ→0+

∫

Q×Q

sgn′
λ(φ(π1) − φ(π̃2))∇xφ(π1).∇x̃φ(π̃2)Ψ dqdq̃

= lim
λ→0+

∫

Q

sgn′
λ(φ(π1) − φ(π̃2))∇xφ(π1).∇x̃φ(π̃2)Ψ dqdq̃.

We apply the same reasoning with π̃2 and bring the results together to obtain:

−
∫

Q×Q

|π1 − π̃2|(∂t + ∂t̃)Ψ − (∇x + ∇x̃)|φ(π1) − φ(π̃2)|.(∇x + ∇x̃)Ψdqdq̃

−
∫

Q×Q

(
F(π1, π̃2).∇xΨ + F̃(π̃2, π1).∇x̃Ψ

)
dqdq̃

+

∫

Q×Q

(G(π1, π̃2) + G̃(π̃2, π1))Ψdqdq̃

≤ − lim sup
λ→0+

∫

Q

sgn′
λ(φ(π1) − φ(π̃2)) [∇xφ(π1) −∇x̃φ(π̃2)]

2
Ψ dqdq̃.

The desired inequality follows.

From Proposition 2 we may state the main result of this section, that is
the T -Lipschitzian dependence in L1 of an entropy process solution to (1) with
respect to the corresponding initial data. For the treatment of boundary terms,
the proof follows C.Mascia, A.Porretta & A.Terracina’s one ([13]) but it needs
to be transcribed in the framework of entropy process solutions. It leads to:

Theorem 1. If π1 and π2 are two entropy process solutions to (1) corresponding
to initial data u0,1 and u0,2 respectively then for a.e. t of [0, T ],

∫

]0,1[2×Ω

|π1(α, t, x) − π2(α̃, t, x)| dxdαdα̃ ≤ eMψ t

∫

Ω

|u0,1 − u0,2| dx.

Proof. In Proposition 2 we choose Ψ = ξ(t, x, t̃, x̃)ρl(x)ρm(x̃) for any boundary-
layer sequences (ρl)l>0 and (ρm)m>0 and any nonnegative ξ in D((]0, T [×Ω)2).

9



We develop the partial derivatives and we argue that due to (3) and (4),

lim
m→0+



 lim
l→0+




∫

Q×Q

(
∇x|φ(π1) − φ(π̃2)| − F(π1, π̃2)

)
ξρm∇xρldqdq̃









=

∫

Q

〈Π1
π̃2

, ξ〉∂dq̃,

where Π1
π̃2

refers to Ππ̃2
with π = π1. Similarly

lim
m→0+



 lim
l→0+




∫

Q×Q

(
∇x̃|φ(π1) − φ(π̃2)| − F̃(π̃2, π1)

)
ξρl∇x̃ρmdqdq̃









=

∫

Q

〈Π̃2
π1

, ξ〉∂dq,

and we obtain:

−
∫

Q×Q

Π1
π̃2

.∇(t,x)ξdxdtdx̃dt̃ +

∫

Q×Q

G(π1, π̃2)ξdqdq̃

+

∫

Q×Q

(∇x|φ(π1) − φ(π̃2)|.∇x̃ξ + ∇x̃|φ(π1) − φ(π̃2)|.∇xξ)dqdq̃

−
∫

Q×Q

Π̃2
π1

.∇(t̃,x̃)ξdxdtdx̃dt̃ +

∫

Q×Q

G̃(π̃2, π1)ξdqdq̃

≤ −
∫

Q

〈Π1
π̃2

, ξ〉∂dq̃ −
∫

Q

〈Π̃2
π1

, ξ〉∂dq − I1 − I2, (16)

where

I1 = lim
m→0+

∫

Q×Q

ξ∇x|φ(π1) − φ(π̃2)|.∇x̃ρmdqdq̃,

I2 = lim
l→0+

∫

Q×Q

ξ∇x̃|φ(π1) − φ(π̃2)|.∇xρldqdq̃.

An integration by parts with respect to x and then with respect to x̃ allows us
to express the limit with respect to m in I1. Indeed:

lim
m→0+

∫

Q×Q

ξ∇x|φ(π1)−φ(π̃2)|.∇x̃ρmdqdq̃ =

∫

Q×Q

Divx̃[|φ(π1)−φ(π̃2)|.∇xξ]dqdq̃.

An integration by parts with respect to x̃ and then with respect to x provides:

I1 = −
∫

Q×Σ

∇x|φ(π1)|.ν̃ξdqdHp

(t̃,x̃)
.
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With the same arguments,

I2 = −
∫

Q×Σ

∇x̃|φ(π̃2)|.νξdq̃dHp
(t,x).

We take now into account (14) for π1 and π̃2 to have a majoration of the right-
hand side of (16) in terms of:

∫

Q×Σ

(
∇x|φ(π1)| − F̃(π1, 0)

)
.ν̃ξdqdHp

(t̃,x̃)
+

∫

Q

〈Π1
0, ξ〉∂dq̃

+

∫

Q×Σ

(∇x̃|φ(π̃2)| − F(π̃2, 0)) .νξdq̃dHp
(t,x) +

∫

Q

〈Π̃2
0, ξ〉∂dq. (17)

We choose ξn = Wn(x − x̃)wn(t − t̃)γ where γ is a nonnegative element of
D(]0, T [), (Wn)n and (wn)n are the standard mollifier sequences on Rp and R.
In addition, n is large enough so that for any t̃ in ]0, T [, t 7→ γ(t)wn(t − t̃) and
for any t in ]0, T [, t̃ 7→ γ(t)wn(t − t̃) belongs to D(]0, T [). We take the limit
with respect to n in (17) by referring to [13] providing that each line goes to 0.
For the left-hand side of (16), we use classical techniques and the fact that

(∂t + ∂t̃)ξn = γ′(t)Wn(x − x̃)wn(t − t̃) and (∇x + ∇x̃)ξn = 0.

Eventually it comes,

−
∫

Q×]0,1[

|π1 − π2|γ′(t)dqdα̃ ≤ Mψ

∫

Q×]0,1[

|π1 − π2|γdqdα̃,

for any nonnegative γ in D(]0, T [) and so, by density, for any nonnegative γ

in H1
0 (]0, T [). Now the conclusion is classical: it uses for γ a Lipschitzian and

piecewise linear approximation of I[0,τ ], for a.e. τ in ]0, T [, the initial condition
(15) for π1 and π2 and the Gronwall Lemma.

When u0,1 = u0,2 a.e. on Ω, we deduce (see [7] or [5] in the framework of
Young measure solutions) the existence of a measurable function χ on Q, such
that π1(α, t, x) = π2(α̃, t, x) = χ(t, x) for a.e. α and α̃ in ]0, 1[ and for a.e.
(t, x) in Q. Thus in Definition 2 the integrations with respect to the Lebesgue
measure on ]0, 1[ may be performed. So that χ = u a.e. on Q and u is namely
an entropy solution to (1) in the sense of Definition 1. As a consequence,

Corollary 1. If (1) has an entropy process solution then it has an entropy
solution. In addition, if u1 and u2 are two entropy solutions corresponding to
initial data u0,1 and u0,2 respectively, then for a.e. t in ]0, T [:

∫

Ω

|u1(t, x) − u2(t, x)| dx ≤ eMψ t

∫

Ω

|u0,1 − u0,2| dx.

3 The Viscosity and Penalization Methods

Our aim is to obtain an existence result for (1) by introducing some diffusion on
the whole domain and by relaxing the bilateral obstacle condition. This leads

11



us to introduce first, for any function f (or f(t, x, .)), the Lipschitz bounded
extension f⋆ of f outside [a, b] defined through:

f⋆(u) = f(u) if u ∈ [a, b], f⋆(u) = f(a) if u ≤ a, f⋆(u) = f(b) if u ≥ b,

and similarly for f⋆(t, x, .) (in this case, observe that ∂xi
f⋆ = (∂xi

f)⋆). Now for
any positive parameter δ intended to tend to 0+ - so that it will be supposed
less or equal than a fixed value δ0 - we define φ⋆

δ = φ⋆ + δIdR a bilipschitzian
function and we consider the nondegenerate penalized parabolic operator

Pδ(t, x, .) : u → ∂tu +

p∑

i=1

∂xi
ϕ⋆

i (t, x, u) + ψ⋆(t, x, u) − ∆φ⋆
δ(u) + βδ(u),

with βδ(z) =
1

δ
(−(z − a)− + (z − b)+). We consider the resulting problem: find

a measurable and bounded function uδ on Q satisfying

{
Pδ(t, x, uδ) = 0 on Q,

uδ = 0 on ]0, T [×∂Ω, uδ(0, .) = uδ
0 on Ω,

(18)

where uδ
0 is a regularization of u0 obtained by the mean of mollifiers, so that:

∀δ > 0, uδ
0 ∈ D(Ω), a ≤ uδ

0 ≤ b a.e. in Ω, lim
δ→0+

uδ
0 = u0 in L1(Ω).

3.1 Some a priori estimates

We know (see for example [10]) that for a fixed positive δ, the problem (18) has
a unique weak solution uδ in L∞(Q) ∩ H1(Q) ∩ L∞(0, T ; H1

0 (Ω)) with φ⋆
δ(uδ)

in L2(0, T ; H2(Ω)). In this section, we are mainly interested in the δ-uniform a
priori estimations for the sequence (uδ)δ>0. Indeed,

Proposition 3. There exist some constants C1, C2 and C3 independent from
δ such that

∀t ∈ [0, T ], |uδ(t, .)| ≤ M(t) a.e. in Ω, (19)

1

δ
‖(uδ − a)−‖L2(Q) +

1

δ
‖(uδ − b)+‖L2(Q) ≤ C1 (20)

‖φ̂⋆
δ(uδ)‖L2(0,T ;H1

0
(Ω)) + ‖∂tuδ‖L2(0,T ;H−1(Ω)) ≤ C2, (21)

‖
√

t ∂tφ̂
⋆
δ(uδ)‖L2(Q) ≤ C3, (22)

where M(t) is defined by (2) and φ̂⋆
δ(x) =

x∫

0

(φ⋆
δ
′(τ))1/2 dτ .

Remark 2. We have not been able to establish any δ-uniform estimates for
(uδ)δ>0 in W 1,1(Q) or even in BV (Q) as in [11] for the positiveness obsta-
cle problem for P when ϕ is a W 2,+∞-class vector-valued function and ψ a
W 1,+∞-class function. Furthermore even if we have enough compactness for
(φ⋆

δ(uδ))δ>0, we cannot take advantage of it since (φ⋆)−1 may not exist. So to
describe the behavior of (uδ)δ>0 when δ goes to 0+ we can only refer to (19),
which leads to consider the notion of an entropy process solution to (1).

12



Proof of Proposition 3 - With the notations of Section 1.2, Mψ⋆ = Mψ and
M∂xi

ϕ⋆
i

= M∂xi
ϕi

. So the standard maximum principle for uδ ensures (19), the
independence with respect to δ resulting from the monotonicity of the penalized

operator βδ. For (20), we treat each term separately: to estimate
1

δ
(uδ −b)+ we

take the L2(Q)-scalar product between (18) and
1

δ
(uδ − b)+. We observe that

1

δ

∫

Q

∂tuδ(uδ − b)+dxdt =
1

2δ

∫

Q

∂t[(uδ − b)+]2dxdt =
1

2δ

∫

Ω

[(uδ − b)+]2(T, x)dx,

since a ≤ uδ
0 ≤ b a.e. on Ω. So the contribution of the evolution term is

nonnegative and it is the same for the diffusive one, thanks to the Green formula.
For the convective and reactive integrals, due to the definition of ϕ

⋆ and ψ⋆,

1

δ

∫

Q

(Divϕ
⋆(t, x, uδ) + ψ(t, x, uδ))(uδ − b)+dxdt

=
1

δ

∫

Q

(Divϕ(t, x, b) + ψ(t, x, b))(uδ − b)+dxdt

≤ 1

2
‖ϕ(t, x, b) + ψ(t, x, b)‖2

L2(Q) +
1

2
‖1

δ
(uδ − b)+‖2

L2(Q)dxdt.

Eventually, we remark that

1

δ

∫

Q

βδ(uδ)(uδ − b)+dxdt = ‖1

δ
(uδ − b)+‖2

L2(Q).

So we conclude the existence of a constant C, independent from δ, such that

The previous techniques with −1

δ
(uδ − a)− provide (20).

The energy estimate (21) results from the L2(Q)-scalar product between (18)
and uδ. Since βδ(uδ)uδ is nonnegative a.e. in Q, it warrants thanks to (19) a

δ-uniform bound for ∇φ̂⋆
δ(uδ) in L2(Q)p. Then by coming back to the definition

of the norm in L2(0, T ;H−1(Ω)) and referring to (20) we derive the estimation
of ∂tuδ. Let us focus on (22). We take the L2(Q)-scalar product between (18)
and t∂tφ

⋆
δ(uδ). This way,

∫

Q

t∂tuδ∂tφ
⋆
δ(uδ)dxdt =

1

2
‖
√

t∂tφ̂
⋆
δ(uδ)‖2

L2(Q).

For the diffusive integral, since w = φ⋆
δ(uδ) belongs to the functional space

W(0, T ) ≡ {v ∈ L2(0, T ;H1
0 (Ω) ∩ H2(Ω)); ∂tv ∈ L2(Q)}, we use the density of

D([0, T ];H1
0 (Ω)∩H2(Ω)) into W(0, T ) to carry out calculations with a sequence

(wk)k of mollified functions with respect to the time variable. It comes:

−
∫

Q

t∆wk∂twkdxdt =

∫

Q

t∇wk.∂t∇wkdxdt =

∫

Q

t

2
∂t [∇wk]

2
dxdt

= −1

2

∫

Q

[∇wk]
2
dxdt +

∫

Ω

T

2
[∇wk]

2
(T, x)dx.
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Then, we pass to the limit with k to obtain
∫

Q

t∆φ⋆
δ(uδ)∂tφ

⋆
δ(uδ)dxdt =

1

2

∫

Q

[∇φ⋆
δ(uδ)]

2
dxdt −

∫

Ω

T

2
[∇φ⋆

δ(uδ)]
2
(T, x)dx

≤ 1

2

∫

Q

[∇φ⋆
δ(uδ)]

2
dxdt ≤ C,

where C is a constant independent from δ thanks to (19) and (21).
We develop the partial derivatives in the convective term to write:

∫

Q

tDivxϕ⋆(t, x, uδ)∂tφ
⋆
δ(uδ)dxdt

=

∫

Q

p∑

i=1

(
∂uϕ⋆

i (t, x, uδ)
√

t∂xi
φ̂⋆

δ(uδ)
√

t∂tφ̂
⋆
δ(uδ)

)
dxdt

+

∫

Q

p∑

i=1

(
∂xi

ϕ⋆
i (t, x, uδ)

√
t

√
(φ⋆

δ)
′(uδ)

√
t∂tφ̂

⋆
δ(uδ)

)
dxdt.

The Young inequality with p = 2 and (19) prove that:
∫

Q

tDivxϕ⋆
i (t, x, uδ)∂tφ

⋆
δ(uδ)dxdt ≤ C‖∇φ̂⋆

δ(uδ)‖2
L2(Q)p +

1

4
‖
√

t∂tφ̂
⋆
δ(uδ)‖2

L2(Q).

Again, with the Young inequality and (19):
∫

Q

tψ⋆(t, x, uδ)∂tφ
⋆
δ(uδ)dxdt ≤ C +

1

4
‖
√

t∂tφ̂
⋆
δ(uδ)‖2

L2(Q),

where C doest not depend on δ thanks to (19). It is the same for the penalized

term since, due to (20),
1

δ
(uδ − a)− and

1

δ
(uδ − b)+ are bounded in L2(Q) uni-

formly with respect to δ, that completes the proof of Proposition 3.

We give now a formulation of boundary conditions for the solutions to the
nondegenerate relaxed problem that will be the starting point to derive the
formulation of boundary conditions for the solution to (1) by taking the limit
with respect to δ. In what follows F⋆, G⋆ and U⋆

k,δ refer to F, G and Uk with
ϕ

⋆, ψ⋆ and φ⋆
δ in the place of ϕ, ψ and φδ respectively. This way, by arguing

as in [11, 18], we prove that:

Proposition 4. For any δ, the next compatibility condition holds on Σ:
∫

Σ

F(0, k).νξdHp ≤
〈
U⋆

k,δ, ξ
〉

∂
+

〈
U⋆

0,δ, ξ
〉

∂
, (23)

for all nonnegative ξ in L∞(Q) ∩ H1(Q) ∩ C(Q), ξ(T, .) = ξ(0, .) = 0 and any
real k. Moreover there exists a constant C4, independent from δ such that

‖Div(t,x)U
⋆
k,δ‖Mb(Q) ≤ C4. (24)
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Proof.

First point - We observe that ∆|φ⋆
δ(uδ)−φ⋆

δ(k)| is a bounded Radon measure on
Q, for any real k. As in [17], this assertion comes from the Kato’s Inequality and
uses the fact that φ⋆

δ(uδ) is an element of L2(0, T ;H2(Ω)). As a consequence,
U⋆

k,δ and (0,∇|φ⋆
δ(uδ)−φ⋆

δ(k)|) belong to DM2(Q) for any real k. Thus, by using
the boundary condition for uδ and the relation (4) with ξ(T, .) = ξ(0, .) = 0, we
may successively write:

〈
U⋆

k,δ, ξ
〉

∂

= − lim
̺→0+

∫

Q

U⋆
k,δξ.(0,∇ρ̺) dxdt

= lim
̺→0+

∫

Q

ξ∇|φ⋆
δ(uδ) − φ⋆

δ(k)|.∇ρ̺dxdt − lim
̺→0+

∫

Q

ξF⋆(uδ, k).∇ρ̺ dxdt

= lim
̺→0+

∫

Q

ξ(0,∇|φ⋆
δ(uδ) − φ⋆

δ(k)|).(0,∇ρ̺) dxdt +

∫

Σ

F(0, k).νξ dHp

= −〈(0,∇|φ⋆
δ(uδ) − φ⋆

δ(k)|), ξ〉∂ +

∫

Σ

F(0, k).νξ dHp.

Let us conclude through the technical property:

Claim 1. ([18]) Let w be in L2(0, T ;H1
0 (Ω)) such that w ≥ 0 a.e. on Q and

∆w belongs to Mb(Q). Then, for any nonnegative ξ of L∞(Q)∩H1(Q)∩ C(Q)

〈(0,∇w), ξ〉∂ ≤ 0.

With w = |φ⋆
δ(uδ) − φ⋆

δ(k)| + |φ⋆
δ(uδ)| − |φ⋆

δ(k)| provides (23) since, due to (4),

−〈(0,∇|φ⋆
δ(uδ))|, ξ〉∂ =

〈
U⋆

0,δ, ξ
〉

∂

We remark now that uδ fulfills (8) with φ⋆
δ in the place of φ. Indeed for any

nonnegative function ξ of D(] − ∞, T [×Ω), we take the L2(Q)-scalar product
between (18) and the test-function sgnλ(uδ −k)ξ. As soon as k belongs to [a, b],
βδ(uδ)sgnλ(uδ − k)ξ is nonnegative. After some integration by parts it comes

(with Sλ(v) = sgnλ(v − k) and Iλ(v) =
v∫
k

Sλ(τ)dτ):

∫

Q

Iλ(uδ)∂tξdxdt +

∫

Q




uδ∫

k

∂uϕ
⋆(t, x, τ)Sλ(τ)dτ



 .∇ξdxdt

+

∫

Ω

Iλ(uδ
0)ξ(0, .)dx −

∫

Q

(Divϕ
⋆(t, x, k) + ψ⋆(t, x, uδ))Sλ(uδ)ξdxdt

−
∫

Q




uδ∫

k

[Divϕ
⋆(t, x, τ) − Divϕ

⋆(t, x, k)]S′
λ(τ)dτ



 ξdxdt

≥
∫

Q

Sλ(uδ)∇φ⋆
δ(uδ).∇ξdxdt. (25)
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For a.e. x, sgn′
λ(x) =

1

λ
I]−λ,λ[(x) and since the function z 7→ Divϕ

⋆(t, x, z)

is continuous uniformly with respect to (t, x) in Q, the third term in the left-
hand side vanishes when λ goes to 0+. Thus (8) for uδ is obtained at the λ−limit
thanks to the Lebesgue dominated convergence Theorem. We deduce that for
any real k of [a, b],

θk,δ ≡ −Div(t,x)U
⋆
k,δ − G⋆(uδ, k) (26)

is a nonnegative Radon measure on Q such that

‖θk,δ‖Mb(Q) =

∫

Q

dθk,δ = −
∫

Q

d[Div(t,x)U
⋆
k,δ] −

∫

Q

G⋆(uδ, k) dxdt.

But by using (3) and (4):

−
∫

Q

d[Div(t,x)U
⋆
k,δ]

= 〈(0,∇|φ⋆
δ(uδ) − φ⋆

δ(k)|), 1〉∂ −
∫

Σ

F(0, k).νdHp +

∫

Ω

|uδ
0 − k|dx

−
∫

Ω

|uδ(T, x) − k|dx.

Then as a consequence of (19) and since uδ
0 is uniformly bounded with respect

to δ, we claim the existence of a constant C independent from δ such that:

−
∫

Q

d[Div(t,x)U
⋆
k,δ] ≤ 〈(0,∇|φ⋆

δ(uδ) − φ⋆
δ(k)|), 1〉∂ + C.

On the one hand, the previous inequality with k = 0 and Claim 1 with w =
|φ⋆

δ(uδ)| provide

−
∫

Q

d[Div(t,x)U
⋆
0,δ] ≤ C,

that means that (θ0,δ)δ>0 given by (26) is a bounded sequence in Mb(Q) and
(Div(t,x)U

⋆
0,δ)δ>0 too. On the other hand for any k in [a, b], Claim 1 with

w = |φ⋆
δ(uδ) − φ⋆

δ(k)| + |φ⋆
δ(uδ)| − |φ⋆

δ(k)| gives:

−
∫

Q

d[Div(t,x)U
⋆
k,δ] ≤ 〈(0,−∇|φ⋆

δ(uδ)|), 1〉∂ + C.

But by referring to (3) and (4) and using the homogeneous boundary condition
for uδ, we observe that:

〈(0,−∇|φ⋆
δ(uδ)|), 1〉∂ =

〈
U⋆

0,δ, 1
〉

∂
+

∫

Ω

|uδ
0|dx −

∫

Ω

|uδ(T, x)|dx.

Thus, due to the uniform boundedness for uδ
0, there exists a constant C inde-

pendent from δ such that:

| 〈(0,−∇|φ⋆
δ(uδ)|), 1〉∂ | ≤ |

〈
U⋆

0,δ, 1
〉

∂
| + C ≤ ‖Div(t,x)U

⋆
0,δ‖Mb(Q) + C.

16



Eventually the estimate of Div(t,x)U
⋆
0,δ highlighted previously ensures that the

sequence (θk,δ)δ>0 is a uniformly bounded in Mb(Q) and so (Div(t,x)U
⋆
k,δ)δ>0

too. Relation (24) follows, which completes the proof of Proposition 4.

3.2 Convergence toward an entropy process solution

Due to Proposition 3, there exists a measurable function u on Q such that, up to
a subsequence when δ goes to 0+, (uδ)δ>0 converges toward u in L∞(Q) weak ⋆

and (∂tuδ)δ>0 weakly converges toward ∂tu in L2(0, T ;H−1(Ω)). Besides there
exists a function Φ such that, up to a subsequence, (φ⋆

δ(uδ))δ>0 goes to Φ in
L2(0, T ;H1

0 (Ω))−weak. But since (tφ⋆
δ(uδ))δ>0 is uniformly bounded in H1(Q)

with respect to δ, we may be sure that (φ⋆
δ(uδ))δ>0 strongly converges (up to a

subsequence) toward Φ in Lq(Q) for any q in [1, +∞[. In order to connect φ(u)
and Φ, we first remind some properties of bounded sequences in L∞:

Claim 2. ([7]) Let (un)n>0 be a sequence of measurable functions on an open
bounded subset O such that (un)n is uniformly bounded in the L∞(Q)-norm the
by a constant M . Then, there exists a subsequence (uϕ(n))n>0 and a measurable
and bounded function π on ]0, 1[×O such that for all continuous and bounded
functions h on O×] − M, M [,

∀ξ ∈ L1(O), lim
n→+∞

∫

O

h(ω, uϕ(n))ξdx =

∫

]0,1[×O

h(ω, π(α, ω))dαξdω.

Such a result has found its first application in the approximation through the
artificial viscosity method of the Cauchy problem in Rp for a scalar conservation
law, as one can establish a uniform L∞-control of approximate solutions. It
has also been applied to the numerical analysis of transport equations since
”Finite-Volume” schemes mainly give an L∞-estimate uniformly with respect
to the mesh length of the numerical solution. Here, we refer to this concept
when the approximating sequence is (uδ)δ>0 and so there exists a function π in
L∞(]0, 1[×Q) such that thanks to (20), a ≤ π ≤ b a.e. in ]0, 1[×Q. Of course,
we also have for a.e. (t, x) in Q,

u(t, x) =

1∫

0

π(α, t, x)dα and Φ(t, x) =

1∫

0

φ(π(t, x, α))dα.

Furthermore we remark that
∫

]0,1[×Q

|φ(π(α, t, x)) − Φ(t, x)|dαdxdt = lim
δ→0+

∫

Q

|φ⋆
δ(uδ) − Φ(t, x)|dxdt = 0.

Thus we even have, for a.e. (α, t, x) of ]0, 1[×Q, φ(π(α, t, x)) = Φ(t, x). But
since φ is a nondecreasing function, for a.e. (t, x) in Q, φ−1({Φ(t, x)}) = [i1, i2],
where i1 ≤ π(., t, x) ≤ i2 a.e. in ]0, 1[. This way, by integrating from 0 to 1
it comes that φ(i1) = φ(u(t, x)) = φ(i2) = Φ(t, x) that is namely (11). The
previous developments guide us toward the next statement:

Theorem 2. - The obstacle problem (1) admits an entropy process solution.
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Proof. We have highlighted a function u and a process π such that (10,11,6)
hold. Moreover due to (24) there exists an element of Mb(Q) - identified in the
sense of distributions on Q to Div(t,x)Πk - such that up to a subsequence when
δ goes to 0+, (Div(t,x)U

⋆
k,δ)δ>0 converges toward Div(t,x)Πk in Mb(Q) weak ⋆

and (12) follows. To establish (13) we start from (25). For the left hand-side
of the δ-limit only refers to the claim 2 while for the right-hand side of (25) we
use the smoothness of uδ and the Green formula:

∫

Q

Sλ(uδ)∇φ⋆
δ(uδ).∇ξdxdt =

∫

Q

∇




uδ∫

k

Sλ(τ)(φ⋆
δ)

′(τ)dτ



 .∇ξdxdt

= −
∫

Q

Kδ(uδ)∆ξdxdt,

where Kδ is the the continuous function x →
x∫

k

Sλ(τ)(φ⋆
δ)

′(τ)dτ . We pass to

the limit with δ by arguing that |Hδ(x) − H(x)| ≤ δ|x − k| and referring to
Claim 2. It comes

∫

Q




π∫

k

Sλ(τ)dτ



 ∂tξdq +

∫

Q

π∫

k

∂uϕ(t, x, τ)Sλ(τ)dτ.∇ξdq

+

∫

Ω




u0∫

k

Sλ(τ)dτ



 ξ(0, .)dx −
∫

Q

(Divϕ(t, x, π) + ψ(t, x, π))Sλ(π)dτξdq

−
∫

Q

π∫

k

[Divϕ(t, x, τ) − Divϕ(t, x, k)]S′
λ(τ)dτξdq

≥ −
∫

Q




π∫

k

Sλ(τ)φ′(τ)dτ



 ∆ξdq.

The λ-limit relies on the Lebesgue dominated convergence Theorem and uses
the continuity, uniformly with respect to (t, x) in Q, of z 7→ Divϕ(t, x, z) to
deal with the third line in the left-hand side. Note that for the right-hand side:

lim
λ→0+

∫

Q×]0,1[




π∫

k

Sλ(τ)φ′(τ)dτ



 ∆ξdαdxdt =

∫

Q×]0,1[

|φ(π) − φ(k)|∆ξdαdxdt.

An integration by parts gives (13).

We establish (14) by passing to the δ-limit in (23) and using that:

Claim 3. - ([18]) - Let (µ̺)̺>0 be a sequence of Mb(Q), µ̺ ≥ 0, converging
toward µ in Mb(Q) weak ⋆. Then, for any nonnegative ξ of L∞(Q) ∩ C(Q),

∫

Q

ξdµ ≤ lim inf
̺→0+

∫

Q

ξdµ̺.
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This claim with the nonnegative Radon measure θk,δ defined by (26) provide
that for any nonnegative ξ of H1(Q)∩L∞(Q)∩C(Q), with ξ(T, .) = ξ(0, .) = 0,
up to a subsequence, ∫

Q

ξdθk ≤ lim inf
δ→0+

∫

Q

ξdθk,δ,

where in the sense of the bounded Radon measures on Q, θk = Div(t,x)Πk + G

with G = lim
δ→0+

G⋆(uδ, k) in L∞(Q) weak ⋆ (up to a subsequence). This way,

lim sup
δ→0+

∫

Q

ξd[Div(t,x)U
⋆
k,δ] ≤

∫

Q

ξd[Div(t,x)Πk].

Eventually, because (U⋆
k,δ)δ>0 weakly converges in L2(Q)p+1 toward Πk,

lim sup
δ→0+

〈U⋆
k,δ, ξ〉∂ =

∫

Q

Πk.∇ξdxdt + lim sup
δ→0+

∫

Q

ξd[Div(t,x)U
⋆
k,δ],

and this way, for any real k of [a, b],

lim sup
δ→0+

〈U⋆
k,δ, ξ〉∂ ≤ 〈Πk, ξ〉∂ .

Relation (14) follows, that completes the proof of Theorem 2.

As pointed out in R.Diperna’s paper [5] within the framework work of Young
measure solutions, the strong convergence of approximate solutions occurs if
and only if the process π may be identified to a function independent from the
variable α, so that the associated Young measure reduces to a Dirac mass at
almost all points of the physical domain. So, as a consequence of Theorem 2
and Corollary 1 we claim that:

Theorem 3. - The bilateral obstacle problem (1) admits a unique entropy solu-
tion that is the limit of the whole sequence (uδ)δ>0 of solutions to (18)δ>0 when
δ goes to 0+ in Lq(Q), 1 ≤ q < +∞.
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