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A Bilateral Obstacle Problem for a Class of Degenerate Parabolic-Hyperbolic Operators

We investigate some inner bilateral obstacle problems for a class of strongly degenerate parabolic-hyperbolic quasilinear operators associated with homogeneous Dirichlet data in a multidimensional bounded domain. We first introduce the concept of an entropy process solution, more convenient and generalizing the notion of an entropy solution. Moreover, the boundary conditions are expressed by using the background of Divergence Measure Fields. We ensure that proposed definition warrants uniqueness. The existence of an entropy process solution is obtained through the vanishing viscosity and penalization methods.

Introduction 1.Mathematical framework

Obstacle problems for conservation laws in physics and mechanics have been studied by many authors [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF][START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Rodrigues | Obstacle problems in mathematical physics[END_REF],... In this work, we are especially interested in the second-order quasilinear operator stemming from the theory of fluid flows through porous media:

P(t, x, .) : u → ∂ t u + p i=1 ∂ xi ϕ i (t, x, u) + ψ(t, x, u) -∆φ(u),
where φ is a nondecreasing function; especially φ ′ may vanish on nonempty intervals of R. Let us given two thresholds a and b that are fixed reals such that a ≤ 0 ≤ b. For any positive T , the bilateral obstacle problem for P on the bounded domain Ω of R p , p ≥ 1, may be formally described through the free boundary problem: find a measurable function u on ]0, T [×Ω such that        a ≤ u ≤ b in ]0, T [×Ω, P(t, x, u) = 0 on [a < u < b], P(t, x, u) ≤ 0 on [a < u = b], P(t, x, u) ≥ 0 on [a = u < b], u = 0 on ]0, T [×∂Ω, u(0, .) = u 0 on Ω,

where u 0 is a measurable function on Ω such that a ≤ u 0 ≤ b a.e. in Ω.

On the one hand, we emphasize that without any assumption on the sign of the source term for P a bilateral obstacle condition on initial data does not a priori pass on to the associated solution. On the other hand, entropy formulations for the Dirichlet problem to strongly degenerate parabolic-hyperbolic operators have been introduced by J.Carrillo in 1999 ( [START_REF] Carrillo | Entropy solutions for nonlinear degenerate problems[END_REF]). Since then, numerous works have been achieved on this matter [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF][START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF][START_REF] Michel | Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods[END_REF][START_REF] Rouvre | Formulation forte entropique de lois scalaires hyperboliques-paraboliques dégénérées[END_REF][START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF]... Here, we first provide in Subsection 1.3 the definition of an entropy solution to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF]. However, since we release the smoothness assumptions on the convective term ϕ and the reactive one ψ it is more convenient to introduce the concept of an entropy process solution to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF]. This notion, highlighted in [START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF] for the Dirichlet to P, may be considered as an extension to the second order of the framework due to R.Eymard, T.Gallouët & R.Herbin in [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF]. The uniqueness of an entropy process solution to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF] is stated in Section 2 and its existence is obtained in Section 3 via the vanishing viscosity method and by relaxing the bilateral obstacle condition. These two results provide the existence on an entropy solution to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF] and warrant the strong convergence in L q (]0, T [×Ω), 1 ≤ q < +∞, of the sequence of approximate solutions.

Main notations and assumptions on data

The reaction term ψ is a continuous function on [0, T ] × Ω × [a, b]. In addition ψ is Lipschitzian with respect to its third variable with a constant M ψ , uniformly with respect to (t, x) in ]0, T [×Ω. The flux term ϕ is a W 1,+∞ -class vector-valued function on ]0, T [×Ω×]a, b[ such that for all i in {1, .., p}, ∂ xi ϕ i is Lipschitzian with respect to its third variable with a constant M ∂x i ϕi , uniformly with respect to (t, x) in ]0, T [×Ω. Thus we can set M ϕ = max i∈{1,..,p} M ∂x i ϕi and define for any t of [0, T ],

M (t) = max(-a, b)e K1 t + K 2 K 1 e K2 t -1 , (2) 
where K 1 = M ψ + M ϕ and K 2 = max [0,T ]× Ω |ψ(t, x, 0) + Divϕ(t, x, 0)|. The diffusive term φ is a nondecreasing W 1,+∞ (]a, b[)-class function such that φ(0) = 0. We note E = {l ∈ R, {l} = φ -1 ({φ(l)})}. Hence, if φ -1 0 denotes a generalized inverse of φ, the hypo-inverse for example defined through ∀r ∈ Imφ, φ -1 0 (r) = Inf φ -1 ({r}), then φ(E) is the set of points where φ -1 0 is continuous ( [START_REF] Carrillo | Entropy solutions for nonlinear degenerate problems[END_REF]). We assume that Ω is a bounded subset of R p such that Γ = ∂Ω is Lipschitzdeformable (see [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF][START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF][START_REF] Chen | On the theory of divergence-measure fields and its applications[END_REF][START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF]...). Then the space of L 2 -Divergence Measure fields on Q -denoted DM 2 (Q) -is given by

DM 2 (Q) = V = (v 0 , v 1 , .., v p ) ∈ (L 2 (Q)) p+1 , Div (t,x) V ∈ M b (Q) , where M b (Q) is the space of bounded Radon measures on Q. For any V in DM 2 (Q), it is useful to define a linear application Λ V on H 1 (Q)∩L ∞ (Q)∩C(Q)
through the following generalized Gauss-Green formula coming from [START_REF] Chen | On the theory of divergence-measure fields and its applications[END_REF]:

Λ V (ξ) := V, ξ ∂ = Q V.(∂ t ξ, ∇ξ)dxdt + Q ξ d[Div (t,x) V ], (3) 
where d[Div (t,x) V ] denotes the Borelian measure on Q associated with the bounded Radon measure Div (t,x) V . In addition the next property holds (see [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF]): let V be an element of DM 2 (Q) such that v 0 is continuous at t = 0 and t = T with respect to the L 1 (Ω)-norm then, for any ξ in

H 1 (Q) ∩ L ∞ (Q) ∩ C(Q), lim ̺→0 + Q V ξ.(0, ∇ρ ̺ )dxdt = Ω v 0 (T, x)ξ(0, x)dx - Ω v 0 (0, x)ξ(0, x)dx -V, ξ ∂ , (4) 
for any boundary-layer sequence (ρ

̺ ) ̺>0 , i.e. a sequence of C 2 (Ω) ∩ C(Ω)-class functions such that lim ρ→0 + ρ ̺ = 1 pointwise in Ω, 0 ≤ ρ ̺ ≤ 1 in Ω, ρ ̺ = 0 on Γ. In (4), if ξ belongs to L 2 (0, T ; H 1 0 (Ω)
) the right-hand side is equal to 0. We will consider "sgn λ " the approximation of the function "sgn" given for any positive parameter λ and nonnegative real x by:

sgn λ (x) = min x λ , 1 and sgn λ (-x) = -sgn λ (x).
To simplify the writing, we refer to the notations

F(u, k) = sgn(u -k){ϕ(t, x, u) -ϕ(t, x, k)}, G(u, k) = sgn(u -k)Div x ϕ(t, x, k) + ψ(t, x, u), U k = (|u -k|, -∇|φ(u) -φ(k)| + F(u, k)) , ∇ζ = (∂ t ζ, ∇ζ) .
Eventually, for any n in N ⋆ , H n stands for the n-dimensional Hausdorff measure and for all s of ]0, T ], Q s is the cylinder ]0, s[×Ω, Σ s =]0, s[×Γ with the convention Q = Q T and Σ = Σ T . The outer normal of Ω is denoted ν.

Two concepts of weak solutions

The existence of possible internal and boundary layers leads us to propose a mathematical formulation for (1) through an entropy inequality inside the studied field -using the classical Kruzhkov entropy pairs -and on its boundary; the latter is viewed as an extension to the second order of the F.Otto's formulation provided in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] for hyperbolic first-order operators and uses -as in [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF][START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF][START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF] the mathematical framework of Measure-Divergence Fields. In addition, to take into account the bilateral obstacle condition we only consider the Kruzhkov pairs for a parameter k that has to belong to the bounded interval [a, b]. That is why, by referring to a preliminary study of the positiveness obstacle problem for P in [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF], it will be said that:

Definition 1. A measurable function u on Q is an entropy solution to (1) if: a ≤ u ≤ b a.e. in Q, (5) 
φ(u) ∈ L 2 (0, T ; H 1 0 (Ω)), ∂ t φ(u) ∈ L 2 loc (0, T ; L 2 (Ω)), ∂ t u ∈ L 2 (0, T ; H -1 (Ω)), ( 6 
) ∀k ∈ [a, b], U k ∈ DM 2 (Q), ( 7 
) ∀k ∈ [a, b], ∀ξ ∈ D(] -∞, T [×Ω), ξ ≥ 0, Q U k .∇ξdxdt -G(u, k)ξ dxdt + Ω |u 0 -k|ξ(0, .)dx ≥ 0, ( 8 
)
∀ξ ∈ L ∞ (Q) ∩ H 1 (Q) ∩ C(Q), ξ ≥ 0, ξ(T, .) = ξ(0, .) = 0, ∀k ∈ [a, b], Σ F(k, 0).νξdH p ≤ U k , ξ ∂ + U 0 , ξ ∂ . (9) 
Remark 1. Considering k = a and ξ in D(Q), ξ ≥ 0, in [START_REF] Gagneux | Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière[END_REF] leads to:

Q ((u -a)∂ t ξ -∇φ(u).∇ξ + F(u, a).∇ξ -G(u, a)ξ)dxdt ≥ 0.
We observe that a.e. in Q, F(u, a) = ϕ(t, x, u)ϕ(t, x, a). So thanks to some integrations by parts one gets:

-P(t, x, u), ξ D ′ (Q),D(Q) + Q (1-sgn(u-a))(Divϕ(t, x, a)+ψ(t, x, u))ξdxdt ≥ 0.
Assume now that u is smooth enough so that P(t, x, u) belongs to L 1 (Q) and let us choose ξ = (ua)

+ ζ with ζ in D(Q), ζ ≥ 0. Since (1 -sgn(u - a))(Divϕ(t, x, a) + ψ(t, x, u))(u -a) + = 0 a.e. on Q, we obtain Q P(t, x, u)(u -a) + ζdxdt ≤ 0.
That means P(t, x, u)(ua) + ≤ 0 a.e. on Q. The same reasoning with k = b leads to P(t, x, u)(ub) -≥ 0 a.e. in Q that formally provides [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF].

However, one of the feature of this work in comparison with [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF] is to release the assumptions of regularity for ϕ and ψ. So for the existence property stated in Section 3 through the vanishing viscosity and penalization methods, we can only refer to an L ∞ (Q)-estimate of approximate solutions. That is why we lean on the original presentation of R.Eymard, T.Gallouët & R.Herbin in [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF] for first-order quasilinear hyperbolic operators that consists -by using the basic tools of Young measure [START_REF] Diperna | Measure-valued solutions to conservation laws[END_REF] -in introducing a free variable α living on ]0, 1[ and a new measurable and bounded unknown ]0, 1[×Q, π ≡ π(α, t, x), that fulfills an entropy formulation on ]0, 1[×Q and called an entropy process solution. We adapt this concept when dealing with second order quasilinear operators associated with a forced bilateral constraint. From now, to simplify the writing, we set Q =]0, 1[×Q and dq = dαdxdt: Definition 2. Let π be in L ∞ (]0, 1[×Q) and u(t, x) = 1 0 π(α, t, x)dα. We say that π is an entropy process solution to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF] if:

a ≤ π ≤ b a.e. in Q, ( 10 
)
for a.e. (t, x) in Q, φ(π(α, t, x)) = φ(u(t, x)) for a.e. α in ]0, 1[, [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF] the smoothness properties [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] hold and:

∀k ∈ [a, b], Π k ∈ DM 2 (Q), ( 12 
) ∀k ∈ [a, b], ∀ξ ∈ D(] -∞, T [×Ω), ξ ≥ 0, Q Π k .∇ξdxdt - Q G(π, k)ξdq + Ω |u 0 -k|ξ(0, .)dx ≥ 0. ( 13 
) ∀ξ ∈ L ∞ (Q) ∩ H 1 (Q) ∩ C(Q), ξ(T, .) = ξ(0, .) = 0, ξ ≥ 0, ∀k ∈ [a, b], Σ F(k, 0).νξdH p ≤ Π k , ξ ∂ + Π 0 , ξ ∂ , (14) 
where

Π k =   1 0 |π(α, ., .) -k|dα, 1 0 (-∇|φ(π)(α, ., .) -φ(k)| + F(π(α, ., .), k)) dα   .
The concept of an entropy process solution generalize that of an entropy solution since an entropy process solution independent from the variable α is an entropy solution. But the first notion is more convenient that the second one, mainly because it requires a few estimates of approximate solutions and so an existence result is easier to obtain. Moreover, the existence and uniqueness of an entropy solution results from the existence and uniqueness of an entropy process solution. First by reasoning as F.Otto in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF], we may announce: Proposition 1. An entropy process solution π to (1) fulfills:

ess lim t→0 + ]0,1[×Ω |π(α, t, x) -u 0 (x)|dαdx = 0. ( 15 
)
2 The Uniqueness Theorem

The proof basically relies on a inner comparison property which is an extension to second-order operators of the usual hyperbolic method of doubling variables due to S.N.Kuzhkov [START_REF] Kuzhkov | First order quasilinear equations in several independent variables[END_REF]; the contribution of diffusive terms being controlled thanks to an energy inequality in the same spirit as in the original paper of J.Carrillo [START_REF] Carrillo | Entropy solutions for nonlinear degenerate problems[END_REF]. To do so, we need some preliminary lemma. The first one takes into account that φ ′ may vanish on a nonnegligible subset of R:

Lemma 1. (i) ∀k ∈ E and a.e. on Q, sgn(u -k) = sgn(φ(u) -φ(k)) = sgn(π(α, ., .) -k) for a.e. α in ]0, 1[. (ii) ∇φ(π) = 0 a.e. on Q π 0 ≡ {(α, t, x) ∈ Q, π(α, t, x) ∈ E} Proof.
For the first equality in (i) we remark that when k belongs to E, if u(t, x) > k then φ(u(t, x)) > φ(k). This way the second equality is a consequence of [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF] and uses the same reasoning as for the first equality with π in the place of u.

The point (ii) is already emphasized ( [START_REF] Carrillo | Entropy solutions for nonlinear degenerate problems[END_REF]) with the setting of entropy solutions. It uses the monotony of φ -1 0 so that Imφ \ φ(E) -the set of points where φ -1 0 is discontinuous -is a countable (and thus a Lebesgue-negligible) subset of R.

The second lemma may be viewed as an inequality version of the energy equality stated by J.Carrillo in [START_REF] Carrillo | Entropy solutions for nonlinear degenerate problems[END_REF]. It permits to determine the sign of diffusive terms appearing in the method of doubling variables. We prove that this inequality is fulfilled by any entropy process solution to (1) but only for k in E. We emphasize that in [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF] the forthcoming relation ( 16) results from an underlying formulation of the unilateral obstacle problem for P through a strong variational inequality (in the sense of J.L.Lions in [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]). But here, in the context of the bilateral obstacle problem, we have not been able to establish such a formulation and so we directly start from [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF]. Indeed: Lemma 2. Let π be an entropy process solution to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF]. Then, for any real

k of [a, b] ∩ E, for any nonnegative function ζ of D(Q), Q Π k .∇ζdxdt - Q G(π, k)ζdq ≥ lim sup λ→0 + Q sgn ′ λ (φ(π) -φ(k))[∇φ(π)] 2 ζdq.
Proof. We consider [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF] for any nonnegative ξ in D(Q) and, thanks to a density argument, for any nonnegative ξ in H 1 0 (Q) so as to choose the test-

function ξ = ζ|sgn λ (φ(u) -φ(k))| with ζ in D(Q), ζ ≥ 0. Let us perform the following transformations (by setting S λ (v) = sgn λ (φ(v) -φ(k))):
• For the evolution term, Q |π -k|∂ t ξdq = I 1 + I 2 where,

I 1 = Q |π -k||S λ (u)|∂ t ζdq, I 2 = Q |π -k|ζsgn ′ λ (φ(u) -φ(k))sgn(φ(u) -φ(k))∂ t φ(u)dq.
In

I 2 we have taken into account that sgn(S λ (u)) = sgn(φ(u) -φ(k)) a.e. on Q when k belongs to E. But due to Lemma 1 (i), |π -k| = sgn(u -k)(π -k) a.e. on Q and sgn(φ(u) -φ(k)) = sgn(u -k) a.
e. on Q. So the integration with respect to α may be calculated. It comes:

I 2 = Q ζsgn ′ λ (φ(u) -φ(k))(u -k)∂ t φ(u)dxdt = Q ∂ t (ζS λ (u))(u -k)dxdt - Q ∂ t ζS λ (u)(u -k)dxdt. Since ∂ t u is an element of L 2 (0, T ; H -1 (Ω)), Q ∂ t (ζS λ (u))(u -k)dxdt = - T 0 ∂ t u, S λ (u)ζ H -1 ,H 1 0 dt.
An integration by parts in time using the Mignot-Bamberger formula ( [START_REF] Gagneux | Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière[END_REF]) gives

- T 0 ∂ t u, S λ (u)ζ H -1 ,H 1 0 dt = Q   u k S λ (τ )dτ   ∂ t ζdxdt.
We now take the λ-limit through the Lebesgue dominated convergence Theorem in I 1 and I 2 . Since k belongs to E, I 2 goes to 0 + (Lemma 1 (i)).

• For the diffusive term, considering that sgn(S λ (π

)) = sgn(φ(π) -φ(k)) a.e. on Q provides - Q ∇|φ(π) -φ(k)|.∇ξdq = - Q [∇|φ(π) -φ(k)|.∇ζ] |S λ (π)|dq - Q sgn ′ λ (φ(π) -φ(k))[∇φ(π)] 2 ζdq.
• Concerning the convective term, as a consequence of (11), we write:

Q F(π, k).∇ξdq = Q [F(π, k).∇ζ] |S λ (π)|dq + Q ζF(π, k).∇|S λ (π)|dq.
To take the λ-limit, we transform the second term in the right-hand side by by taking into account that due to Lemma 1 (i), sgn(S λ (π)

) = sgn(φ(π) -φ(k)) = sgn(π -k) a.e. on Q. It comes Q ζF(π, k).∇|S λ (π)|dq = Q ζsgn ′ λ (φ(π) -φ(k)){ϕ(t, x, π) -ϕ(t, x, k)}.∇φ(π)dq.
Now, we introduce the vector-valued function

H λ (t, x, r) = r φ(k) [ϕ(t, x, φ -1 0 (τ )) -ϕ(t, x, k)]sgn ′ λ (τ -φ(k))dτ, so that thanks to Lemma 1 (ii), Q ζsgn ′ λ (φ(π) -φ(k)){ϕ(t, x, π) -ϕ(t, x, k)}∇φ(π)dq = Q ζDivH λ (t, x, φ(π))dq - Q ζ φ(π) φ(k) Div x ϕ(t, x, φ -1 0 (τ )) -Div x ϕ(t, x, k) sgn ′ λ (τ -φ(k))dτ dq,
The first term is integrated by parts and for the second one we come back to the definition of sgn ′ λ to obtain:

Q ζF(π, k).∇|sgn λ (φ(π) -φ(k))|dq = - Q 1 λ I [ϕ(t, x, φ -1 0 (τ )) -ϕ(t, x, k)].∇ζdτ dq - Q 1 λ I Div x [ϕ(t, x, φ -1 0 (τ )) -ϕ(t, x, k)]ζdτ dq,
where

I = I(φ(π), φ(k))∩[φ(k)-λ, φ(k)+λ] and I(r, p) = [min(r, p), max(r, p)] for all (r, p) of R 2 . Since k belongs to E, the generalized function φ -1 0 is con- tinuous in φ(k) ([2]
). This way, the previous integral goes to 0 when λ tends to 0 + . The study of the reaction term does not present any difficulty. This way the next Kuzhkov-type relation holds:

Proposition 2. Let π 1 and π 2 satisfying [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF][START_REF] Ladyzhenskaya | tseva, Linear and quasilinear equations of parabolic type[END_REF][START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF][START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF]. Then for any nonnegative

Ψ of D(Q × Q): - Q×Q |π 1 -π2 |(∂ t + ∂ t)Ψ -(∇ x + ∇ x)|φ(u 1 ) -φ(ũ 2 )|.(∇ x + ∇ x)Ψdqd q - Q×Q F(π 1 , π2 ).∇ x Ψ + F(π 2 , π 1 ).∇ xΨ dqdq + Q×Q (G(π 1 , π2 ) + G(π 2 , π 1 ))Ψdqdq ≤ 0.
Proof. To simplify we set dq = d αdxd t and we add a "tilde" superscript to any function in "tilde" variables. On the one hand in [START_REF] Rodrigues | Obstacle problems in mathematical physics[END_REF] written in variables (α, t, x) for π 1 we take k(α, t, x) = π2 for a.e. (α, t, x) in Q \ Q π2 0 , so that k(α, t, x) belongs to E. On the other hand in [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF] written in variables (α, t, x) for π 1 , we take k(α, t, x) = π2 for a.e. (α, t, x) in Q ũ2 0 . Each inequality obtained is integrated with respect to the variables α, t and x on the corresponding domain. We add and use a version of the Fatou's Lemma to deal with the "lim sup" in the right-hand side. Indeed we observe by coming back to the proof of Lemma 2 for λ fixed, that the function -

k → Q sgn ′ λ (φ(π) -φ(k))[∇φ(π)]
Q×Q |π 1 -π2 |Ψ t dqdq + Q×Q [∇ x |φ(π 1 ) -φ(π 2 )| -F(π 1 , π2 )] .∇ x Ψ dqdq + Q×Q G(π 1 , π2 )Ψ dqdq ≤ -lim sup λ→0 + Q sgn ′ λ (φ(π 1 ) -φ(π 2 ))[∇φ(π 1 )] 2 Ψ dqdq,
where in the right-had side we have used the lemma 1 (ii) to rewrite the integration field under the form

Q = Q \ Q π1 0 × Q \ Q π2 0 .
Besides, we integrate over Q the Gauss-Green formula:

Q ∇ x φ(u 1 ).∇ x[sgn λ (φ(u 1 ) -φ(ũ 2 ))Ψ] d tdx = 0 a.e. (t, x) in Q.
By developing the partial derivatives and taking into account that φ(u 2 ) is an element of L 2 (0, T ; H 1 0 (Ω)), the λ-limit provides the next equality:

Q×Q sgn(φ(π 1 ) -φ(π 2 ))∇ x φ(π 1 ).∇ xΨ dqdq = lim λ→0 + Q×Q sgn ′ λ (φ(π 1 ) -φ(π 2 ))∇ x φ(π 1 ).∇ xφ(π 2 )Ψ dqdq = lim λ→0 + Q sgn ′ λ (φ(π 1 ) -φ(π 2 ))∇ x φ(π 1 ).∇ xφ(π 2 )Ψ dqdq.
We apply the same reasoning with π2 and bring the results together to obtain:

- Q×Q |π 1 -π2 |(∂ t + ∂ t)Ψ -(∇ x + ∇ x)|φ(π 1 ) -φ(π 2 )|.(∇ x + ∇ x)Ψdqd q - Q×Q F(π 1 , π2 ).∇ x Ψ + F(π 2 , π 1 ).∇ xΨ dqdq + Q×Q (G(π 1 , π2 ) + G(π 2 , π 1 ))Ψdqdq ≤ -lim sup λ→0 + Q sgn ′ λ (φ(π 1 ) -φ(π 2 )) [∇ x φ(π 1 ) -∇ xφ(π 2 )] 2 Ψ dqdq.
The desired inequality follows.

From Proposition 2 we may state the main result of this section, that is the T -Lipschitzian dependence in L 1 of an entropy process solution to (1) with respect to the corresponding initial data. For the treatment of boundary terms, the proof follows C.Mascia, A.Porretta & A.Terracina's one ( [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF]) but it needs to be transcribed in the framework of entropy process solutions. It leads to:

Theorem 1. If π 1 and π 2 are two entropy process solutions to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF] corresponding to initial data u 0,1 and u 0,2 respectively then for a.e.

t of [0, T ], ]0,1[ 2 ×Ω |π 1 (α, t, x) -π 2 (α, t, x)| dxdαd α ≤ e M ψ t Ω |u 0,1 -u 0,2 | dx.
Proof. In Proposition 2 we choose Ψ = ξ(t, x, t, x)ρ l (x)ρ m (x) for any boundarylayer sequences (ρ l ) l>0 and (ρ m ) m>0 and any nonnegative ξ in D((]0, T [×Ω) 2 ).

We develop the partial derivatives and we argue that due to (3) and (4),

lim m→0 +   lim l→0+   Q×Q ∇ x |φ(π 1 ) -φ(π 2 )| -F(π 1 , π2 ) ξρ m ∇ x ρ l dqdq     = Q Π 1 π2 , ξ ∂ dq,
where Π 1 π2 refers to Π π2 with π = π 1 . Similarly

lim m→0 +   lim l→0+   Q×Q ∇ x|φ(π 1 ) -φ(π 2 )| -F(π 2 , π 1 ) ξρ l ∇ xρ m dqdq     = Q Π2 π1 , ξ ∂ dq,
and we obtain:

- Q×Q Π 1 π2 .∇ (t,x) ξdxdtdxd t + Q×Q G(π 1 , π2 )ξdqdq + Q×Q (∇ x |φ(π 1 ) -φ(π 2 )|.∇ xξ + ∇ x|φ(π 1 ) -φ(π 2 )|.∇ x ξ)dqdq - Q×Q Π2 π1 .∇ ( t,x) ξdxdtdxd t + Q×Q G(π 2 , π 1 )ξdqdq ≤ - Q Π 1 π2 , ξ ∂ dq - Q Π2 π1 , ξ ∂ dq -I 1 -I 2 , (16) 
where

I 1 = lim m→0 + Q×Q ξ∇ x |φ(π 1 ) -φ(π 2 )|.∇ xρ m dqdq, I 2 = lim l→0 + Q×Q ξ∇ x|φ(π 1 ) -φ(π 2 )|.∇ x ρ l dqdq.
An integration by parts with respect to x and then with respect to x allows us to express the limit with respect to m in I 1 . Indeed:

lim m→0 + Q×Q ξ∇ x |φ(π 1 )-φ(π 2 )|.∇ xρ m dqdq = Q×Q Div x[|φ(π 1 )-φ(π 2 )|.∇ x ξ]dqdq.
An integration by parts with respect to x and then with respect to x provides:

I 1 = - Q×Σ ∇ x |φ(π 1 )|.νξdqdH p ( t,x) .
With the same arguments,

I 2 = - Q×Σ ∇ x|φ(π 2 )|.νξdqdH p (t,x) .
We take now into account ( 14) for π 1 and π2 to have a majoration of the righthand side of ( 16) in terms of:

Q×Σ ∇ x |φ(π 1 )| -F(π 1 , 0) .νξdqdH p ( t,x) + Q Π 1 0 , ξ ∂ dq + Q×Σ (∇ x|φ(π 2 )| -F(π 2 , 0)) .νξdqdH p (t,x) + Q Π2 0 , ξ ∂ dq. (17) 
We choose ξ n = W n (x -x)w n (t -t)γ where γ is a nonnegative element of D(]0, T [), (W n ) n and (w n ) n are the standard mollifier sequences on R p and R. In addition, n is large enough so that for any t in ]0, T [, t → γ(t)w n (t -t) and for any t in ]0, T [, t → γ(t)w n (t -t) belongs to D(]0, T [). We take the limit with respect to n in ( 17) by referring to [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF] providing that each line goes to 0. For the left-hand side of ( 16), we use classical techniques and the fact that

(∂ t + ∂ t)ξ n = γ ′ (t)W n (x -x)w n (t -t) and (∇ x + ∇ x)ξ n = 0.
Eventually it comes,

- Q×]0,1[ |π 1 -π 2 |γ ′ (t)dqd α ≤ M ψ Q×]0,1[ |π 1 -π 2 |γdqd α,
for any nonnegative γ in D(]0, T [) and so, by density, for any nonnegative γ in H 1 0 (]0, T [). Now the conclusion is classical: it uses for γ a Lipschitzian and piecewise linear approximation of I [0,τ ] , for a.e. τ in ]0, T [, the initial condition (15) for π 1 and π 2 and the Gronwall Lemma.

When u 0,1 = u 0,2 a.e. on Ω, we deduce (see [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF] or [START_REF] Diperna | Measure-valued solutions to conservation laws[END_REF] in the framework of Young measure solutions) the existence of a measurable function χ on Q, such that π 1 (α, t, x) = π 2 (α, t, x) = χ(t, x) for a.e. α and α in ]0, 1[ and for a.e. (t, x) in Q. Thus in Definition 2 the integrations with respect to the Lebesgue measure on ]0, 1[ may be performed. So that χ = u a.e. on Q and u is namely an entropy solution to (1) in the sense of Definition 1. As a consequence, Corollary 1. If ( 1) has an entropy process solution then it has an entropy solution. In addition, if u 1 and u 2 are two entropy solutions corresponding to initial data u 0,1 and u 0,2 respectively, then for a.e. t in ]0, T [:

Ω |u 1 (t, x) -u 2 (t, x)| dx ≤ e M ψ t Ω |u 0,1 -u 0,2 | dx.

The Viscosity and Penalization Methods

Our aim is to obtain an existence result for (1) by introducing some diffusion on the whole domain and by relaxing the bilateral obstacle condition. This leads us to introduce first, for any function f (or f (t, x, .)), the Lipschitz bounded extension f ⋆ of f outside [a, b] defined through:

f ⋆ (u) = f (u) if u ∈ [a, b], f ⋆ (u) = f (a) if u ≤ a, f ⋆ (u) = f (b) if u ≥ b,
and similarly for f ⋆ (t, x, .) (in this case, observe that ∂ xi f ⋆ = (∂ xi f ) ⋆ ). Now for any positive parameter δ intended to tend to 0 + -so that it will be supposed less or equal than a fixed value δ 0 -we define φ ⋆ δ = φ ⋆ + δId R a bilipschitzian function and we consider the nondegenerate penalized parabolic operator

P δ (t, x, .) : u → ∂ t u + p i=1 ∂ xi ϕ ⋆ i (t, x, u) + ψ ⋆ (t, x, u) -∆φ ⋆ δ (u) + β δ (u), with β δ (z) = 1 δ (-(z -a) -+ (z -b) + ).
We consider the resulting problem: find a measurable and bounded function u δ on Q satisfying

P δ (t, x, u δ ) = 0 on Q, u δ = 0 on ]0, T [×∂Ω, u δ (0, .) = u δ 0 on Ω, ( 18 
)
where u δ 0 is a regularization of u 0 obtained by the mean of mollifiers, so that:

∀δ > 0, u δ 0 ∈ D(Ω), a ≤ u δ 0 ≤ b a.e. in Ω, lim δ→0 + u δ 0 = u 0 in L 1 (Ω).

Some a priori estimates

We know (see for example [START_REF] Ladyzhenskaya | tseva, Linear and quasilinear equations of parabolic type[END_REF]) that for a fixed positive δ, the problem (18) has a unique weak solution

u δ in L ∞ (Q) ∩ H 1 (Q) ∩ L ∞ (0, T ; H 1 0 (Ω)) with φ ⋆ δ (u δ ) in L 2 (0, T ; H 2 (Ω)).
In this section, we are mainly interested in the δ-uniform a priori estimations for the sequence (u δ ) δ>0 . Indeed, Proposition 3. There exist some constants C 1 , C 2 and C 3 independent from δ such that

∀t ∈ [0, T ], |u δ (t, .)| ≤ M (t) a.e. in Ω, (19) 1 δ (u δ -a) - L 2 (Q) + 1 δ (u δ -b) + L 2 (Q) ≤ C 1 (20) φ ⋆ δ (u δ ) L 2 (0,T ;H 1 0 (Ω)) + ∂ t u δ L 2 (0,T ;H -1 (Ω)) ≤ C 2 , (21) √ t ∂ t φ ⋆ δ (u δ ) L 2 (Q) ≤ C 3 , ( 22 
)
where M (t) is defined by ( 2) and

φ ⋆ δ (x) = x 0 (φ ⋆ δ ′ (τ )) 1/2 dτ .
Remark 2. We have not been able to establish any δ-uniform estimates for (u δ ) δ>0 in W 1,1 (Q) or even in BV (Q) as in [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF] for the positiveness obstacle problem for P when ϕ is a W 2,+∞ -class vector-valued function and ψ a W 1,+∞ -class function. Furthermore even if we have enough compactness for (φ ⋆ δ (u δ )) δ>0 , we cannot take advantage of it since (φ ⋆ ) -1 may not exist. So to describe the behavior of (u δ ) δ>0 when δ goes to 0 + we can only refer to (19), which leads to consider the notion of an entropy process solution to [START_REF] Bürger | On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration[END_REF].

Proof of Proposition 3 -With the notations of Section 1.2, M ψ ⋆ = M ψ and M ∂x i ϕ ⋆ i = M ∂x i ϕi . So the standard maximum principle for u δ ensures (19), the independence with respect to δ resulting from the monotonicity of the penalized operator β δ . For (20), we treat each term separately: to estimate 1 δ (u δb) + we take the L 2 (Q)-scalar product between ( 18) and 1 δ (u δb) + . We observe that

1 δ Q ∂ t u δ (u δ -b) + dxdt = 1 2δ Q ∂ t [(u δ -b) + ] 2 dxdt = 1 2δ Ω [(u δ -b) + ] 2 (T, x)dx, since a ≤ u δ 0 ≤ b a.e.
on Ω. So the contribution of the evolution term is nonnegative and it is the same for the diffusive one, thanks to the Green formula. For the convective and reactive integrals, due to the definition of ϕ ⋆ and ψ ⋆ ,

1 δ Q (Divϕ ⋆ (t, x, u δ ) + ψ(t, x, u δ ))(u δ -b) + dxdt = 1 δ Q (Divϕ(t, x, b) + ψ(t, x, b))(u δ -b) + dxdt ≤ 1 2 ϕ(t, x, b) + ψ(t, x, b) 2 L 2 (Q) + 1 2 1 δ (u δ -b) + 2 L 2 (Q) dxdt.
Eventually, we remark that

1 δ Q β δ (u δ )(u δ -b) + dxdt = 1 δ (u δ -b) + 2 L 2 (Q) .
So we conclude the existence of a constant C, independent from δ, such that

The previous techniques with -1 δ (u δa) -provide (20).

The energy estimate (21) results from the L 2 (Q)-scalar product between (18) and u δ . Since β δ (u δ )u δ is nonnegative a.e. in Q, it warrants thanks to (19) a δ-uniform bound for ∇ φ ⋆ δ (u δ ) in L 2 (Q) p . Then by coming back to the definition of the norm in L 2 (0, T ; H -1 (Ω)) and referring to (20) we derive the estimation of ∂ t u δ . Let us focus on (22). We take the L 2 (Q)-scalar product between [START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF] and t∂ t φ ⋆ δ (u δ ). This way,

Q t∂ t u δ ∂ t φ ⋆ δ (u δ )dxdt = 1 2 √ t∂ t φ ⋆ δ (u δ ) 2 L 2 (Q) .
For the diffusive integral, since w = φ ⋆ δ (u δ ) belongs to the functional space

W(0, T ) ≡ {v ∈ L 2 (0, T ; H 1 0 (Ω) ∩ H 2 (Ω)); ∂ t v ∈ L 2 (Q)}, we use the density of D([0, T ]; H 1 0 (Ω) ∩ H 2 (Ω)
) into W(0, T ) to carry out calculations with a sequence (w k ) k of mollified functions with respect to the time variable. It comes:

- Q t∆w k ∂ t w k dxdt = Q t∇w k .∂ t ∇w k dxdt = Q t 2 ∂ t [∇w k ] 2 dxdt = - 1 2 Q [∇w k ] 2 dxdt + Ω T 2 [∇w k ] 2 (T, x)dx.
Then, we pass to the limit with k to obtain

Q t∆φ ⋆ δ (u δ )∂ t φ ⋆ δ (u δ )dxdt = 1 2 Q [∇φ ⋆ δ (u δ )] 2 dxdt - Ω T 2 [∇φ ⋆ δ (u δ )] 2 (T, x)dx ≤ 1 2 Q [∇φ ⋆ δ (u δ )] 2 dxdt ≤ C,
where C is a constant independent from δ thanks to ( 19) and ( 21).

We develop the partial derivatives in the convective term to write:

Q tDiv x ϕ ⋆ (t, x, u δ )∂ t φ ⋆ δ (u δ )dxdt = Q p i=1 ∂ u ϕ ⋆ i (t, x, u δ ) √ t∂ xi φ ⋆ δ (u δ ) √ t∂ t φ ⋆ δ (u δ ) dxdt + Q p i=1 ∂ xi ϕ ⋆ i (t, x, u δ ) √ t (φ ⋆ δ ) ′ (u δ ) √ t∂ t φ ⋆ δ (u δ ) dxdt.
The Young inequality with p = 2 and (19) prove that:

Q tDiv x ϕ ⋆ i (t, x, u δ )∂ t φ ⋆ δ (u δ )dxdt ≤ C ∇ φ ⋆ δ (u δ ) 2 L 2 (Q) p + 1 4 √ t∂ t φ ⋆ δ (u δ ) 2 L 2 (Q) .
Again, with the Young inequality and (19):

Q tψ ⋆ (t, x, u δ )∂ t φ ⋆ δ (u δ )dxdt ≤ C + 1 4 √ t∂ t φ ⋆ δ (u δ ) 2 L 2 (Q) ,
where C doest not depend on δ thanks to (19). It is the same for the penalized term since, due to (20), 1 δ (u δa) -and 1 δ (u δb) + are bounded in L 2 (Q) uniformly with respect to δ, that completes the proof of Proposition 3.

We give now a formulation of boundary conditions for the solutions to the nondegenerate relaxed problem that will be the starting point to derive the formulation of boundary conditions for the solution to (1) by taking the limit with respect to δ. In what follows F ⋆ , G ⋆ and U ⋆ k,δ refer to F, G and U k with ϕ ⋆ , ψ ⋆ and φ ⋆ δ in the place of ϕ, ψ and φ δ respectively. This way, by arguing as in [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF][START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF], we prove that: Proposition 4. For any δ, the next compatibility condition holds on Σ:

Σ F(0, k).νξdH p ≤ U ⋆ k,δ , ξ ∂ + U ⋆ 0,δ , ξ ∂ , ( 23 
)
for all nonnegative ξ in L ∞ (Q) ∩ H 1 (Q) ∩ C(Q), ξ(T, .
) = ξ(0, .) = 0 and any real k. Moreover there exists a constant C 4 , independent from δ such that

Div (t,x) U ⋆ k,δ M b (Q) ≤ C 4 . (24) 
Proof.

First point -We observe that ∆|φ ⋆ δ (u δ )-φ ⋆ δ (k)| is a bounded Radon measure on Q, for any real k. As in [START_REF] Rouvre | Formulation forte entropique de lois scalaires hyperboliques-paraboliques dégénérées[END_REF], this assertion comes from the Kato's Inequality and uses the fact that φ ⋆ δ (u δ ) is an element of L 2 (0, T ; H 2 (Ω)). As a consequence, U ⋆ k,δ and (0, ∇|φ ⋆ δ (u δ )-φ ⋆ δ (k)|) belong to DM 2 (Q) for any real k. Thus, by using the boundary condition for u δ and the relation (4) with ξ(T, .) = ξ(0, .) = 0, we may successively write:

U ⋆ k,δ , ξ ∂ = -lim ̺→0 + Q U ⋆ k,δ ξ.(0, ∇ρ ̺ ) dxdt = lim ̺→0 + Q ξ∇|φ ⋆ δ (u δ ) -φ ⋆ δ (k)|.∇ρ ̺ dxdt -lim ̺→0 + Q ξF ⋆ (u δ , k).∇ρ ̺ dxdt = lim ̺→0 + Q ξ(0, ∇|φ ⋆ δ (u δ ) -φ ⋆ δ (k)|).(0, ∇ρ ̺ ) dxdt + Σ F(0, k).νξ dH p = -(0, ∇|φ ⋆ δ (u δ ) -φ ⋆ δ (k)|), ξ ∂ + Σ F(0, k).νξ dH p .
Let us conclude through the technical property:

Claim 1. ( [START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF]) Let w be in L 2 (0, T ; H 1 0 (Ω)) such that w ≥ 0 a.e. on Q and ∆w belongs to M b (Q). Then, for any nonnegative

ξ of L ∞ (Q) ∩ H 1 (Q) ∩ C(Q) (0, ∇w), ξ ∂ ≤ 0. With w = |φ ⋆ δ (u δ ) -φ ⋆ δ (k)| + |φ ⋆ δ (u δ )| -|φ ⋆ δ (k)| provides (23) since, due to (4), -(0, ∇|φ ⋆ δ (u δ ))|, ξ ∂ = U ⋆ 0,δ , ξ ∂
We remark now that u δ fulfills (8) with φ ⋆ δ in the place of φ. Indeed for any nonnegative function ξ of D(] -∞, T [×Ω), we take the L 2 (Q)-scalar product between [START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF] and the test-function sgn λ (u δk)ξ. As soon as k belongs to [a, b], β δ (u δ )sgn λ (u δk)ξ is nonnegative. After some integration by parts it comes

(with S λ (v) = sgn λ (v -k) and I λ (v) = v k S λ (τ )dτ ): Q I λ (u δ )∂ t ξdxdt + Q   u δ k ∂ u ϕ ⋆ (t, x, τ )S λ (τ )dτ   .∇ξdxdt + Ω I λ (u δ 0 )ξ(0, .)dx - Q (Divϕ ⋆ (t, x, k) + ψ ⋆ (t, x, u δ )) S λ (u δ )ξdxdt - Q   u δ k [Divϕ ⋆ (t, x, τ ) -Divϕ ⋆ (t, x, k)]S ′ λ (τ )dτ   ξdxdt ≥ Q S λ (u δ )∇φ ⋆ δ (u δ ).∇ξdxdt. ( 25 
)
For a.e. x, sgn ′ λ (x) = 1 λ I ]-λ,λ[ (x) and since the function z → Divϕ ⋆ (t, x, z) is continuous uniformly with respect to (t, x) in Q, the third term in the lefthand side vanishes when λ goes to 0 + . Thus (8) for u δ is obtained at the λ-limit thanks to the Lebesgue dominated convergence Theorem. We deduce that for

any real k of [a, b], θ k,δ ≡ -Div (t,x) U ⋆ k,δ -G ⋆ (u δ , k) (26) 
is a nonnegative Radon measure on Q such that

θ k,δ M b (Q) = Q dθ k,δ = - Q d[Div (t,x) U ⋆ k,δ ] - Q G ⋆ (u δ , k) dxdt.
But by using ( 3) and ( 4):

- Q d[Div (t,x) U ⋆ k,δ ] = (0, ∇|φ ⋆ δ (u δ ) -φ ⋆ δ (k)|), 1 ∂ - Σ F(0, k).νdH p + Ω |u δ 0 -k|dx - Ω |u δ (T, x) -k|dx.
Then as a consequence of (19) and since u δ 0 is uniformly bounded with respect to δ, we claim the existence of a constant C independent from δ such that:

- Q d[Div (t,x) U ⋆ k,δ ] ≤ (0, ∇|φ ⋆ δ (u δ ) -φ ⋆ δ (k)|), 1 ∂ + C.
On the one hand, the previous inequality with k = 0 and Claim 1 with

w = |φ ⋆ δ (u δ )| provide - Q d[Div (t,x) U ⋆ 0,δ ] ≤ C,
that means that (θ 0,δ ) δ>0 given by ( 26) is a bounded sequence in M b (Q) and (Div (t,x) U ⋆ 0,δ ) δ>0 too. On the other hand for any k in [a, b], Claim 1 with

w = |φ ⋆ δ (u δ ) -φ ⋆ δ (k)| + |φ ⋆ δ (u δ )| -|φ ⋆ δ (k)| gives: - Q d[Div (t,x) U ⋆ k,δ ] ≤ (0, -∇|φ ⋆ δ (u δ )|), 1 ∂ + C.
But by referring to (3) and ( 4) and using the homogeneous boundary condition for u δ , we observe that:

(0, -∇|φ ⋆ δ (u δ )|), 1 ∂ = U ⋆ 0,δ , 1 ∂ + Ω |u δ 0 |dx - Ω |u δ (T, x)|dx.
Thus, due to the uniform boundedness for u δ 0 , there exists a constant C independent from δ such that:

| (0, -∇|φ ⋆ δ (u δ )|), 1 ∂ | ≤ | U ⋆ 0,δ , 1 ∂ | + C ≤ Div (t,x) U ⋆ 0,δ M b (Q) + C.
Eventually the estimate of Div (t,x) U ⋆ 0,δ highlighted previously ensures that the sequence (θ k,δ ) δ>0 is a uniformly bounded in M b (Q) and so (Div (t,x) U ⋆ k,δ ) δ>0 too. Relation (24) follows, which completes the proof of Proposition 4.

Convergence toward an entropy process solution

Due to Proposition 3, there exists a measurable function u on Q such that, up to a subsequence when δ goes to 0 + , (u δ ) δ>0 converges toward u in L ∞ (Q) weak ⋆ and (∂ t u δ ) δ>0 weakly converges toward ∂ t u in L 2 (0, T ; H -1 (Ω)). Besides there exists a function Φ such that, up to a subsequence, (φ ⋆ δ (u δ )) δ>0 goes to Φ in L 2 (0, T ; H 1 0 (Ω))-weak. But since (tφ ⋆ δ (u δ )) δ>0 is uniformly bounded in H 1 (Q) with respect to δ, we may be sure that (φ ⋆ δ (u δ )) δ>0 strongly converges (up to a subsequence) toward Φ in L q (Q) for any q in [1, +∞[. In order to connect φ(u) and Φ, we first remind some properties of bounded sequences in L ∞ : Claim 2. ( [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF]) Let (u n ) n>0 be a sequence of measurable functions on an open bounded subset O such that (u n ) n is uniformly bounded in the L ∞ (Q)-norm the by a constant M . Then, there exists a subsequence (u ϕ(n) ) n>0 and a measurable and bounded function π on ]0, 1[×O such that for all continuous and bounded functions

h on O×] -M, M [, ∀ξ ∈ L 1 (O), lim n→+∞ O h(ω, u ϕ(n) )ξdx = ]0,1[×O h(ω, π(α, ω))dαξdω.
Such a result has found its first application in the approximation through the artificial viscosity method of the Cauchy problem in R p for a scalar conservation law, as one can establish a uniform L ∞ -control of approximate solutions. It has also been applied to the numerical analysis of transport equations since "Finite-Volume" schemes mainly give an L ∞ -estimate uniformly with respect to the mesh length of the numerical solution. Here, we refer to this concept when the approximating sequence is (u δ ) δ>0 and so there exists a function π in L ∞ (]0, 1[×Q) such that thanks to (20), a ≤ π ≤ b a.e. in ]0, 1[×Q. Of course, we also have for a.e. (t, x) in Q, u(t, x) = 1 0 π(α, t, x)dα and Φ(t, x) = 1 0 φ(π(t, x, α))dα.

Furthermore we remark that

]0,1[×Q |φ(π(α, t, x)) -Φ(t, x)|dαdxdt = lim δ→0 + Q |φ ⋆ δ (u δ ) -Φ(t, x)|dxdt = 0.
Thus we even have, for a.e. (α, t, x) of ]0, 1[×Q, φ(π(α, t, x)) = Φ(t, x). But since φ is a nondecreasing function, for a.e.

(t, x) in Q, φ -1 ({Φ(t, x)}) = [i 1 , i 2 ],
where i 1 ≤ π(., t, x) ≤ i 2 a.e. in ]0, 1[. This way, by integrating from 0 to 1 it comes that φ(i 1 ) = φ(u(t, x)) = φ(i 2 ) = Φ(t, x) that is namely [START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF]. The previous developments guide us toward the next statement:

Theorem 2. -The obstacle problem (1) admits an entropy process solution.

Proof. We have highlighted a function u and a process π such that [START_REF] Ladyzhenskaya | tseva, Linear and quasilinear equations of parabolic type[END_REF][START_REF] Lévi | The Positiveness Problem for a Class of Degenerate Parabolic-Hyperbolic Operators[END_REF][START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] hold. Moreover due to (24) there exists an element of M b (Q) -identified in the sense of distributions on Q to Div (t,x) Π k -such that up to a subsequence when δ goes to 0 + , (Div (t,x) U ⋆ k,δ ) δ>0 converges toward Div (t,x) Π k in M b (Q) weak ⋆ and ( 12) follows. To establish [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF] we start from (25). For the left hand-side of the δ-limit only refers to the claim 2 while for the right-hand side of (25) we use the smoothness of u δ and the Green formula:

Q S λ (u δ )∇φ ⋆ δ (u δ ).∇ξdxdt = Q ∇   u δ k S λ (τ )(φ ⋆ δ ) ′ (τ )dτ   .∇ξdxdt = - Q K δ (u δ )∆ξdxdt,
where K δ is the the continuous function x → An integration by parts gives [START_REF] Mascia | Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations[END_REF].

We establish [START_REF] Michel | Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods[END_REF] by passing to the δ-limit in (23) and using that: This claim with the nonnegative Radon measure θ k,δ defined by (26) provide that for any nonnegative ξ of H 1 (Q) ∩ L ∞ (Q) ∩ C(Q), with ξ(T, .) = ξ(0, .) = 0, up to a subsequence,

Q ξdθ k ≤ lim inf δ→0 + Q ξdθ k,δ ,
where in the sense of the bounded Radon measures on Q, θ k = Div (t,x) Π k + G with G = lim δ→0+ G ⋆ (u δ , k) in L ∞ (Q) weak ⋆ (up to a subsequence). This way, lim sup

δ→0 + Q ξd[Div (t,x) U ⋆ k,δ ] ≤ Q ξd[Div (t,x) Π k ].
Eventually, because (U ⋆ k,δ ) δ>0 weakly converges in L 2 (Q) p+1 toward Π k , lim sup

δ→0 + U ⋆ k,δ , ξ ∂ = Q Π k .∇ξdxdt + lim sup δ→0 + Q ξd[Div (t,x) U ⋆ k,δ ],
and this way, for any real k of [a, b],

lim sup δ→0 + U ⋆ k,δ , ξ ∂ ≤ Π k , ξ ∂ .
Relation [START_REF] Michel | Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods[END_REF] follows, that completes the proof of Theorem 2.

As pointed out in R.Diperna's paper [START_REF] Diperna | Measure-valued solutions to conservation laws[END_REF] within the framework work of Young measure solutions, the strong convergence of approximate solutions occurs if and only if the process π may be identified to a function independent from the variable α, so that the associated Young measure reduces to a Dirac mass at almost all points of the physical domain. So, as a consequence of Theorem 2 and Corollary 1 we claim that: Theorem 3. -The bilateral obstacle problem (1) admits a unique entropy solution that is the limit of the whole sequence (u δ ) δ>0 of solutions to [START_REF] Vallet | Dirichlet problem for a degenerated hyperbolic-parabolic equations[END_REF] δ>0 when δ goes to 0 + in L q (Q), 1 ≤ q < +∞.

2

 2 ζdq is uniformly bounded with respect to λ and k in [a, b]. Finally it comes for π 1 :

S∂S

  λ (τ )(φ ⋆ δ ) ′ (τ )dτ . We pass to the limit with δ by arguing that |H δ (x) -H(x)| ≤ δ|x -k| and referring to Claim 2. It comesQ u ϕ(t, x, τ )S λ (τ )dτ.∇ξdq + t, x, π) + ψ(t, x, π))S λ (π)dτ ξdq t, x, τ ) -Divϕ(t, x, k)]S ′ λ (τ )dτ ξdq ≥λ (τ )φ ′ (τ )dτ   ∆ξdq.The λ-limit relies on the Lebesgue dominated convergence Theorem and uses the continuity, uniformly with respect to (t, x) in Q, of z → Divϕ(t, x, z) to deal with the third line in the left-hand side. Note that for the right-hand side:

Claim 3 .

 3 -([18]) -Let (µ ̺ ) ̺>0 be a sequence of M b (Q), µ ̺ ≥ 0, converging toward µ in M b (Q) weak ⋆. Then, for any nonnegative ξ of L ∞ (Q) ∩ C(Q), Q ξdµ ≤ lim inf ̺→0 + Q ξdµ ̺ .