Patricia Bouyer
email: bouyer@lsv.ens-cachan.fr

Nicolas Markey
email: markey@lsv.ens-cachan.fr

J O Ël Ouaknine

Philippe Schnoebelen

James Worrell

C P Bouyer

PH. SCHNOEBELEN J Ouaknine

J Schnoebelen

Worrell

ON TERMINATION FOR FAULTY CHANNEL MACHINES

Keywords:

A channel machine consists of a finite controller together with several fifo channels; the controller can read messages from the head of a channel and write messages to the tail of a channel. In this paper, we focus on channel machines with insertion errors, i.e., machines in whose channels messages can spontaneously appear. Such devices have been previously introduced in the study of Metric Temporal Logic. We consider the termination problem: are all the computations of a given insertion channel machine finite? We show that this problem has non-elementary, yet primitive recursive complexity.

Introduction

Many of the recent developments in the area of automated verification, both theoretical and practical, have focussed on infinite-state systems. Although such systems are not, in general, amenable to fully algorithmic analysis, a number of important classes of models with decidable problems have been identified. Several of these classes, such as Petri nets, process algebras, process rewrite systems, faulty channel machines, timed automata, and many more, are instances of well-structured transition systems, for which various problems are decidable-see [START_REF] Finkel | Well structured transition systems everywhere![END_REF] for a comprehensive survey.

Well-structured transition systems are predicated on the existence of 'compatible wellquasi orders', which guarantee, for example, that certain fixed-point computations will terminate, etc. Unfortunately, these properties are often non-constructive in nature, so that although convergence is guaranteed, the rate of convergence is not necessarily known. As a result, the computational complexity of problems involving well-structured transition systems often remains open. that a given channel contains no occurrence of a particular message, as defined and studied in [START_REF] Ouaknine | On metric temporal logic and faulty Turing machines[END_REF]. Emptiness and occurrence testing provide some measure of control over insertion errors, since once a message has been inserted into a channel, it remains there until it is read off it.

Our main focus in this paper is the complexity of the termination problem for insertion channel machines: given such a machine, are all of its computations finite? We show that termination is non-elementary, yet primitive recursive. This result is quite surprising, as the closely related problems of reachability and recurrent reachability are respectively nonprimitive recursive and undecidable. Moreover, the mere decidability of termination for insertion channel machines follows from the theory of well-structured transition systems, in a manner quite similar to that for lossy channel machines. In the latter case, however, termination is non-primitive recursive, as shown in [START_REF] Schnoebelen | Verifying lossy channel systems has nonprimitive recursive complexity[END_REF]. Obtaining a primitive recursive upper bound for insertion channel machines has therefore required us to abandon the wellstructure and pursue an entirely new approach.

On the practical side, one of the main motivations for studying termination of insertion channel machines arises from the safety fragment of Metric Temporal Logic. Safety MTL was shown to be decidable in [START_REF] Ouaknine | Safety metric temporal logic is fully decidable[END_REF], although no non-trivial bounds on the complexity could be established at the time. It is not difficult, however, to show that (non-)termination for insertion channel machines reduces (in polynomial time) to satisfiability for Safety MTL; the latter, therefore, is also non-elementary. We note that in a similar vein, a lower bound for the complexity of satisfiability of an extension of Linear Temporal Logic was given in [START_REF] Lazić | Safely freezing LTL[END_REF], via a reduction from the termination problem for counter machines with incrementation errors.

Decision Problems for Faulty Channel Machines: A Brief Survey

In this section, we briefly review some key decision problems for lossy and insertion channel machines (the latter equipped with either emptiness or occurrence testing). Apart from the results on termination and structural termination for insertion channel machines, which are presented in the following sections, all results that appear here are either known or follow easily from known facts. Our presentation is therefore breezy and terse. Background material on well-structured transition systems can be found in [START_REF] Finkel | Well structured transition systems everywhere![END_REF].

The reachability problem asks whether a given distinguished control state of a channel machine is reachable. This problem was shown to be non-primitive recursive for lossy channel machines in [START_REF] Schnoebelen | Verifying lossy channel systems has nonprimitive recursive complexity[END_REF]; it is likewise non-primitive recursive for insertion channel machines via a straightforward reduction from the latter [START_REF] Ouaknine | On the decidability of Metric Temporal Logic[END_REF].

The termination problem asks whether all computations of a channel machine are finite, starting from the initial control state and empty channel contents. This problem was shown to be non-primitive recursive for lossy channel machines in [START_REF] Schnoebelen | Verifying lossy channel systems has nonprimitive recursive complexity[END_REF]. For insertion channel machines, we prove that termination is non-elementary in Section 4 and primitive recursive in Section 5.

The structural termination problem asks whether all computations of a channel machine are finite, starting from the initial control state but regardless of the initial channel contents. This problem was shown to be undecidable for lossy channel machines in [START_REF] Mayr | Undecidable problems in unreliable computations[END_REF]. For insertion channel machines, it is easy to see that termination and structural termination coincide, so that the latter is also non-elementary primitive-recursive decidable. Given a channel machine S and two distinguished control states p and q of S, a response property is an assertion that every p state is always eventually followed by a q state in any infinite computation of S. Note that a counterexample to a response property is a computation that eventually visits p and forever avoids q afterwards. The undecidability of response properties for lossy channel machines follows easily from that of structural termination, as the reader may wish to verify.

Lossy

In the case of insertion channel machines, response properties are decidable, albeit at non-primitive recursive cost (by reduction from reachability). For decidability one first shows using the theory of well-structured transition systems that the set of all reachable configurations, the set of p-configurations, and the set of configurations that have infinite q-avoiding computations are all effectively computable. It then suffices to check whether their mutual intersection is empty.

The recurrence problem asks, given a channel machine and a distinguished control state, whether the machine has a computation that visits the distinguished state infinitely often. It is undecidable for lossy channel machines by reduction from response, and was shown to be undecidable for insertion channel machines in [START_REF] Ouaknine | On metric temporal logic and faulty Turing machines[END_REF].

Finally, CTL and LTL model checking for both lossy and insertion channel machines are undecidable, which can be established along the same lines as the undecidability of recurrence.

These results are summarised in Figure 1.

Definitions

A channel machine is a tuple S = (Q, init , Σ, C, ∆), where Q is a finite set of control states, init ∈ Q is the initial control state, Σ is a finite channel alphabet, C is a finite set of channel names, and ∆ ⊆ Q×L×Q is the transition relation, where L = {c!a, c?a, c=∅, a / ∈c : c ∈ C, a ∈ Σ} is the set of transition labels. Intuitively, label c!a denotes the writing of message a to tail of channel c, label c?a denotes the reading of message a from the head of channel c, label c=∅ tests channel c for emptiness, and label a / ∈c tests channel c for the absence (non-occurrence) of message a.

We first define an error-free operational semantics for channel machines. Given S as above, a configuration of S is a pair (q, U), where q ∈ Q is the control state and U ∈ (Σ *) C gives the contents of each channel. Let us write Conf for the set of possible configurations of S. The rules in ∆ induce an L-labelled transition relation on Conf , as follows:

(1) (q, c!a, q ′) ∈ ∆ yields a transition (q, U)

c!a -→ (q ′ , U ′), where U ′ (c) = U (c)•a and U ′ (d) = U (d) for d = c.
In other words, the channel machine moves from control state q to control state q ′ , writing message a to the tail of channel c and leaving all other channels unchanged.

(2) (q, c?a, q ′) ∈ ∆ yields a transition (q, U)

c?a -→ (q ′ , U ′), where U (c) = a•U ′ (c) and U ′ (d) = U (d) for d = c.
In other words, the channel machine reads message a from the head of channel c while moving from control state q to control state q ′ , leaving all other channels unchanged.

(3) (q, c=∅, q ′) ∈ ∆ yields a transition (q, U) c=∅ -→ (q ′ , U), provided U (c) is the empty word. In other words, the transition is only enabled if channel c is empty; all channel contents remain the same. (4) (q, a / ∈c, q ′) ∈ ∆ yields a transition (q, U)

a / ∈c -→ (q ′ , U), provided a does not occur in U (c). In other words, the transition is only enabled if channel c contains no occurrence of message a; all channels remain unchanged. If the only transitions allowed are those listed above, then we call S an error-free channel machine. This machine model is easily seen to be Turing powerful [START_REF] Brand | On communicating finite-state machines[END_REF]. As discussed earlier, however, we are interested in channel machines with (potential) insertion errors; intuitively, such errors are modelled by postulating that channels may at any time acquire additional messages interspersed throughout their current contents.

For our purposes, it is convenient to adopt the lazy model of insertion errors, given next. Slightly different models, such as those of [START_REF] Cécé | Unreliable channels are easier to verify than perfect channels[END_REF][START_REF] Ouaknine | On metric temporal logic and faulty Turing machines[END_REF], have also appeared in the literature. As the reader may easily check, all these models are equivalent insofar as reachability and termination properties are concerned.

The lazy operational semantics for channel machines with insertion errors simply augments the transition relation on Conf with the following rule:

(5) (q, c?a, q ′) ∈ ∆ yields a transition (q, U) c?a -→ (q ′ , U). In other words, insertion errors occur 'just in time', immediately prior to a read operation; all channel contents remain unchanged. The channel machines defined above are called insertion channel machines with occurrence testing, or ICMOT s. We will also consider insertion channel machines with emptiness testing, or ICMET s. The latter are simply ICMOTs without any occurrence-testing transitions (i.e., transitions labelled with a / ∈c). A run of an insertion channel machine is a finite or infinite sequence of transitions of the form σ 0

l 0 -→ σ 1 l 1 -→ . .
. that is consistent with the lazy operational semantics. The run is said to start from the initial configuration if the first control state is init and all channels are initially empty.

Our main focus in this paper is the study of the complexity of the termination problem: given an insertion channel machine S, are all runs of S starting from the initial configuration finite?

Termination is Non-Elementary

In this section, we show that the termination problem for insertion channel machines-ICMETs and ICMOTs-is non-elementary. More precisely, we show that the termination problem for ICMETs of size n in the worst case requires time at least 2⇑Ω(log n). 1 Note that the same immediately follows for ICMOTs.

Our proof proceeds by reduction from the termination problem for two-counter machines in which the counters are tetrationally bounded; the result then follows from standard facts in complexity theory (see, e.g., [START_REF] Hopcroft | Introduction to Automata Theory, Languages and Computation[END_REF]).

Without insertion errors, it is clear that a channel machine can directly simulate a two-counter machine simply by storing the values of the counters on one of its channels. To simulate a counter machine in the presence of insertion errors, however, we require periodic integrity checks to ensure that the representation of the counter values has not been corrupted. Below we give a simulation that follows the 'yardstick' construction of Meyer and Stockmeyer [START_REF] Stockmeyer | Word problems requiring exponential time: Preliminary report[END_REF][START_REF] Lazić | Nets with tokens which carry data[END_REF]: roughly speaking, we use an m-bounded counter to check the integrity of a 2 m -bounded counter. Proof. Let us say that a counter is m-bounded if it can take values in {0, 1, . . . , m -1}. We assume that such a counter u comes equipped with procedures Inc(u), Dec(u), Reset(u), and IsZero(u), where Inc and Dec operate modulo m, and increment, resp. decrement, the counter. We show how to simulate a deterministic counter machine M of size n equipped with two 2⇑n-bounded counters by an ICMET S of size 2 O(n) . We use this simulation to reduce the termination problem for M to the termination problem for S.

By induction, assume that we have constructed an ICMET S k that can simulate the operations of a 2⇑k-bounded counter u k . We assume that S k correctly implements the operations Inc(u k), Dec(u k), Reset(u k), and IsZero(u k) (in particular, we assume that the simulation of these operations by S k is guaranteed to terminate). We describe an ICMET S k+1 that implements a 2⇑(k + 1)-bounded counter u k+1 . S k+1 incorporates S k , and thus can use the above-mentioned operations on the counter u k as subroutines. In addition, S k+1 has two extra channels c and d on which the value of counter u k+1 is stored in binary. We give a high-level description.

We say that a configuration of S k+1 is clean if channel c has size 2⇑k and channel d is empty. We ensure that all procedures on counter u k+1 operate correctly when they are invoked in clean configurations of S k+1 , and that they also yield clean configurations upon completion. In fact, we only give details for the procedure Inc(u k+1)-see Figure 2; the others should be clear from this example.

Since the counter u k is assumed to work correctly, the above procedure is guaranteed to terminate, having produced the correct result, in the absence of any insertion errors on channels c or d. On the other hand, insertion errors on either of these channels will be detected by one of the two emptiness tests, either immediately or in the next procedure to act on them.

The initialisation of the induction is handled using an ICMET S 1 with no channel (in other words, a finite automaton) of size 2, which can simulate a 2-bounded counter (i.e., a single bit). The finite control of the counter machine, likewise, is duplicated using a further channel-less ICMET.

Using a product construction, it is straightforward to conflate these various ICMETs into a single one, S, of size exponential in n (more precisely: of size 2 O(n)). As the reader can easily check, M has an infinite computation iff S has an infinite run. The result follows immediately. counter u k+1 is encoded in binary on channel c, with least significant bit at the head of the channel; moreover, c is assumed to comprise exactly 2⇑k bits (using padding 0s if need be). In addition, channel d is assumed to be initially empty. Upon exiting, channel c will contain the incremented value of counter u k+1 (modulo 2⇑(k + 1)) in binary, again using 2⇑k bits, and channel d will be empty. We regularly check that no insertion errors have occurred on channels c or d by making sure that they contain precisely the right number of bits. This is achieved using counter u k (which can count up to 2⇑k and is assumed to work correctly) together with emptiness tests on c and d. If an insertion error does occur during execution, the procedure will either halt, or the next procedure to handle channels c and d (i.e., any command related to counter u k+1) will halt.

Procedure

Termination is Primitive Recursive

The central result of our paper is the following:

Theorem 5.1. The termination problem for ICMOTs and ICMETs is primitive recursive. More precisely, when restricting to the class of ICMOTs or ICMETs that have at most k channels, the termination problem is in (k+1)-EXPSPACE.

Proof.

In what follows, we sketch the proof for ICMOTs, ICMETs being a special case of ICMOTs. Let us also assume that our ICMOTs do not make use of any emptiness tests; this restriction is harmless since any emptiness test can always be replaced by a sequence of occurrence tests, one for each letter of the alphabet, while preserving termination. Let S = (Q, init , Σ, C, ∆) be a fixed ICMOT without emptiness tests; in other words, S's set of transition labels is L = {c!a, c?a, a / ∈c : c ∈ C, a ∈ Σ}. Our strategy is as follows: we suppose that S has no infinite runs, and then derive an upper bound on the length of the longest possible finite run. The result follows by noting that the total number of possible runs is exponentially bounded by this maximal length.

For a subset D ⊆ C of channels, we define an equivalence ≡ D over the set Conf of configurations of S as follows:

(q, U) ≡ D (q ′ , U ′) iff q = q ′ and U (d) = U ′ (d) for every d ∈ D. (5.1)

Consider a finite run σ 0

l 0 -→ σ 1 l 1 -→ . . . l n-1 -→ σ n of S (with n ≥ 1)
, where each σ i ∈ Conf is a configuration and each l i ∈ L is a transition label. We will occasionally write σ 0 λ =⇒ σ n to denote such a run, where λ = l 0 l 1 . . . l n-1 ∈ L + .

We first state a pumping lemma of sorts, whose straightforward proof is left to the reader: Lemma 5.2. Let D ⊆ C be given, and assume that σ λ =⇒ σ ′ (with λ ∈ L +) is a run of S such that σ ≡ D σ ′ . Suppose further that, for every label a / ∈c occurring in λ, either c ∈ D, or the label c!a does not occur in λ. Then λ is repeatedly firable from σ, i.e., there exists an infinite run σ

λ =⇒ σ ′ λ =⇒ σ ′′ λ =⇒
Note that the validity of Lemma 5.2 rests crucially on (the potential for) insertion errors.

Let w i 1≤i≤n be a finite sequence, and let 0 < α ≤ 1 be a real number. A set S is said to be α-frequent in the sequence w i if the set {i : w i ∈ S} has cardinality at least αn.

The next result we need is a technical lemma guaranteeing a certain density of repeated elements in an α-frequent sequence: Lemma 5.3. Let w i 1≤i≤n be a finite sequence, and assume that S is a finite α-frequent set in w i . Then there exists a sequence of pairs of indices (i j , i ′ j) 1≤j≤ αn 2(|S|+1) such that, for all j < αn 2(|S|+1) , we have

i j < i ′ j < i j+1 , i ′ j -i j ≤ 2(|S|+1) α , and
w i j = w i ′ j ∈ S. Proof.
By assumption, w i has a subsequence of length at least αn consisting exclusively of elements of S. This subsequence, in turn, contains at least αn |S|+1 disjoint 'blocks' of length |S| + 1. By the pigeonhole principle, each of these blocks contains at least two identical elements from S, yielding a sequence of pairs of indices (i j , i ′ j) 1≤j≤ αn |S|+1 having all the required properties apart, possibly, from the requirement that i ′ ji j ≤ 2(|S|+1) α . Note also that there are, for now, twice as many pairs as required.

Consider therefore the half of those pairs whose difference is smallest, and let p be the largest such difference. Since the other half of pairs in the sequence (i j , i ′ j) have difference at least p, and since there is no overlap between indices, we have 1 2 • αn |S|+1 • p < n, from which we immediately derive that p is bounded by 2(|S|+1) α , as required. This concludes the proof of Lemma 5.3.

Recall our assumption that S has no infinite run, and let π = σ 0

l 0 -→ σ 1 l 1 -→ . . . l n-1
-→ σ n be any finite run of S, starting from the initial configuration; we seek to obtain an upper bound on n.

Given a set D ⊆ C of channels, it will be convenient to consider the sequence [π] D = [σ i] D 0≤i≤n of equivalence classes of configurations in π modulo ≡ D (ignoring the interspersed labelled transitions for now).

Let f : C → N and 0 < α ≤ 1 be given, and suppose that (5.2)

Conf f C is α-frequent in [π] C ,
We will now inductively build an increasing sequence ∅ = D 0 ⊂ D 1 ⊂ . . . ⊂ D |C| = C, as well as functions f i : D i → N and real numbers 0

< α i ≤ 1, for 0 ≤ i ≤ |C|, such that Conf f i D i is α i -frequent in [π] D i for every i ≤ |C|.
The base case is straightforward: the set

Conf f 0 ∅ = Conf ∅ is clearly 1-frequent in [π] ∅ . Let us therefore assume that Conf f D is α-frequent in [π] D for
π = σ 0 =⇒ θ 1 λ 1 =⇒ θ ′ 1 =⇒ θ 2 λ 2 =⇒ θ ′ 2 =⇒ . . . =⇒ θ h λ h =⇒ θ ′ h =⇒ σ n
with each λ j ∈ L + having length no greater than

2(γ f D +1) α
, for 1 ≤ j ≤ h. For each λ j , let OT j be the set of occurrence-test labels that occur at least once in λ j . Among these sets, let OT denote the one that appears most often. Note that there are 2 |Σ|•|C| different possible sets of occurrence-test labels, and therefore at least Following a line of reasoning entirely similar to that used in Lemma 5.3 2 , we can deduce that π contains at least

h 4•2 |Σ|•|C| = αn 8(γ f D +1)2 |Σ|•|C| non-overlapping patterns of the form θ λ =⇒ θ ′ δ =⇒ θ λ =⇒ θ′ ,
where:

• [θ] D = [θ ′] D ∈ Conf f D and [θ] D = [θ′] D ∈ Conf f D , • λ, λ ∈ L + each have length no greater than 2(γ f D +1) α ,
• δ ∈ L + has length no greater than

8(γ f D +1)2 |Σ|•|C| α
, and • the set of occurrence-test labels occurring in λ and λ in both cases is OT .

2 Formally, we could directly invoke Lemma 5.3, as follows. Write the sequence of transition labels of π as δ0λ1δ1λ2 • • • λ h δ h , with the λi as above. Next, formally replace each instance of λi whose set of occurrencetest labels is OT by a new symbol O; if needed, add dummy non-O symbols to the end of the sequence to bring its length up to n, and call the resulting sequence wi . Finally, note that the singleton set {O} is

h 2 |Σ|•|C| •n -frequent in wi .
Consider such a pattern. Observe that λ must contain at least one occurrence-test label a / ∈c with c / ∈ D and such that the label c!a occurs in λ, otherwise S would have an infinite run according to Lemma 5.2. Pick any such occurrence-test label and let us denote it a / ∈c. We now aim to bound the size of channel c in the θ configuration of our patterns. Note that since λ and λ contain the same set of occurrence-test labels, the label a / ∈c occurs in λ. That is to say, somewhere between configurations θ and θ′ , we know that channel c did not contain any occurrence of a. On the other hand, an a was written to the tail of channel c at some point between configurations θ and θ ′ , since λ contains the label c!a. For that a to be subsequently read off the channel, the whole contents of channel c must have been read from the time of the c!a transition in λ to the time of the a / ∈c transition in λ. Finally, note that, according to our lazy operational semantics, the size of a channel changes by at most 1 with each transition. It follows that the size of channel c in configuration θ is at most

|λ| + |δ| + |λ ′ | ≤ (γ f D +1)(4+8•2 |Σ|•|C|) α . Let D ′ = D ∪ {c}, and define the bounding function f ′ : D ′ → N such that f ′ (d) = f (d) for all d ∈ D, and f ′ (c) = (γ f D +1)(4+8•2 |Σ|•|C|) α
. From our lower bound on the number of special patterns, we conclude that the set Conf

f ′ D ′ is α ′ -frequent in [π] D ′ , where α ′ = α 8(γ f D +1)2 |Σ|•|C| .
We now string everything together to obtain a bound on n, the length of our original arbitrary run π. For convenience, let c 1 , c 2 , . . . , c |C| be an enumeration of the channel names in C in the order in which they are picked in the course of our proof; thus

D i = D i-1 ∪ {c i } for 1 ≤ i ≤ |C|. Correspondingly, let M i = f i (c i), for 0 ≤ i ≤ |C|,
with the convention that M 0 = 1; it is easy to see that M i is the maximum value of f i over D i , since the sequences γ f i D i and α i are monotonically increasing and decreasing respectively.

From Equation 5.1, we easily get that

γ f i D i ∈ O(|S| |S|M i),
,
where P is some polynomial (independent of S), and the total height of the tower of exponentials is |C| + 2. The ICMOT S therefore has an infinite run iff it has a run whose length exceeds the above bound. Since the lazy operational semantics is finitely branching (bounded, in fact, by the size of the transition relation), this can clearly be determined in (|C|+1)-EXPSPACE, which concludes the proof of Theorem 5.1. Theorems 4.1 and 5.1 immediately entail the following: Corollary 5.4. The structural termination problem-are all computations of the machine finite, starting from the initial control state but regardless of the initial channel contents?-is decidable for ICMETs and ICMOTs, with non-elementary but primitive-recursive complexity.

Conclusion

The main result of this paper is that termination for insertion channel machines with emptiness or occurrence testing has non-elementary, yet primitive recursive complexity. This result is in sharp contrast with the equivalent problem for lossy channel machines, which has non-primitive recursive complexity.

We remark that the set of configurations from which a given insertion channel machine has at least one infinite computation is finitely representable (thanks to the theory of wellstructured transition systems), and is in fact computable as the greatest fixed point of the pre-image operator. The proof of Theorem 5.1, moreover, shows that this fixed point will be reached in primitive-recursively many steps. The set of configurations from which there is an infinite computation is therefore primitive-recursively computable, in contrast with lossy channel machines for which it is not even recursive (as can be seen from the undecidability of structural termination).

Finally, another interesting difference with lossy channel machines can be highlighted by quoting a slogan from [START_REF] Schnoebelen | Verifying lossy channel systems has nonprimitive recursive complexity[END_REF]: "Lossy systems with k channels can be [polynomially] encoded into lossy systems with one channel." We can deduce from Theorems 4.1 and 5.1 that any such encoding, in the case of insertion channels machines, would require non-elementary resources to compute, if it were to preserve termination properties.

Theorem 4 . 1 .

 41 The termination problem for ICMETs and ICMOTs is non-elementary.

Figure 2 :

 2 Figure2: Procedure to increment counter u k+1 . Initially, this procedure assumes that counter u k+1 is encoded in binary on channel c, with least significant bit at the head of the channel; moreover, c is assumed to comprise exactly 2⇑k bits (using padding 0s if need be). In addition, channel d is assumed to be initially empty. Upon exiting, channel c will contain the incremented value of counter u k+1 (modulo 2⇑(k + 1)) in binary, again using 2⇑k bits, and channel d will be empty. We regularly check that no insertion errors have occurred on channels c or d by making sure that they contain precisely the right number of bits. This is achieved using counter u k (which can count up to 2⇑k and is assumed to work correctly) together with emptiness tests on c and d. If an insertion error does occur during execution, the procedure will either halt, or the next procedure to handle channels c and d (i.e., any command related to counter u k+1) will halt.

 Let us write Conf D to denote the set Conf /≡ D of equivalence classes of Conf with respect to ≡ D . Furthermore, given f : D → N a 'bounding function' for the channels in D, let Conf f D = {[(q, U)] D ∈ Conf D : |U (d)| ≤ f (d) for every d ∈ D} be the subset of Conf D consisting of those equivalence classes of configurations whose Dchannels are bounded by f . As the reader can easily verify, we have the following bound on the cardinality γ f D of Conf f D : γ f D ≤ |Q| d∈D (|Σ| + 1) f (d) .

 so that there are at least αn occurrences of configuration equivalence classes in Conf f C along [π] C . Recall that Conf f C contains γ f C elements. Observe, by Lemma 5.2, that no member of Conf f C can occur twice along [π] D , otherwise S would have an infinite run. Consequently,

 some strict subset D of C and some f : D → N and α > 0. We now computeD ′ ⊆ C strictly containing D, f ′ : D ′ → N, and α ′ > 0 such that Conf f ′ D ′ is α ′ -frequent in [π]D ′ . Thanks to our induction hypothesis and Lemma 5.3, we obtain a sequence of pairs of configurations (θ j , θ ′ j) 1≤j≤h , where h = αn 2(γ f D +1) , [θ j] D = [θ ′ j] D ∈ Conf f D , and such that

h 2

 2 |Σ|•|C| of the OT j are equal to OT .

 where |S| is any reasonable measure of the size of our ICMOT S. Combining this with our expressions for f ′ and α ′ above, we obtain that M i+1 , 1α i+1 ∈ O |S| |S| 2 M i

	α i	for 0 ≤ i ≤ |C| -1. This, in turns, lets
	us derive bounds for γ	

f |C| C and α |C| , which imply, together with Equation 5.2, that n ≤ 2

 2

The expression

2⇑m, known as tetration, denotes an exponential tower of 2s of height m.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

partially supported by a Marie Curie Fellowship.