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Abstract

The purpose of this paper is to present a new fictitious domain approach inspired by
the extended finite element method introduced by Moës, Dolbow and Belytschko in [18].
An optimal method is obtained thanks to an additional stabilization technique. Some a
priori estimates are established and numerical experiments illustrate different aspects of the
method. The presentation is made on a simple Poisson problem with mixed Neumann and
Dirichlet boundary conditions. The extension to other problems or boundary conditions is
quite straightforward.

Keywords: Xfem, fictitious domain, approximation of elliptic problems, stabilization tech-
nique.

Introduction

The extended finite element method (Xfem) was introduced by Moës, Dolbow and Belytschko in
[18] and developed in many papers such as [5, 16, 19, 23, 28]. The first application of Xfem was
done in structural mechanics when dealing with cracked domains. The specificity of the method
is that it combines a level-set representation of the geometry of the crack (introduced in [25]) with
an enrichment of a finite element space by singular and discontinuous functions. The enrichment
of a finite element space with a singular function has been studied earlier by Strang and Fix
in [26]. The originality of Xfem consists in a particular way of defining the enrichment via the
multiplication by a partition of unity provided by basis functions of a Lagrange finite element
method. Several strategies can be considered in order to extend or improve the original Xfem.
Some of these strategies are presented in [16]. An a priori error estimate of a variant of Xfem for
cracked domains is presented in [5].

In this work we adapt the techniques of Xfem to develop a new method allowing computations
in domains whose boundaries are independent of the mesh. A similar attempt was done in
[17, 27]. Our goal is to develop a fully optimal method. It can be considered as a fictitious
domain type method. Its advantage, compared to existing ones (see for instance [11, 13]), is its
ability to easily treat complex boundary conditions. The elementary matrices however have to be
computed taking into account the geometry of the real boundary (in a nonlinear framework this
disadvantage disappears since the tangent stiffness matrix has to be frequently re-computed).

Therefore, this method can be of interest for computational domains having moving bound-
aries or boundaries with a complex geometry and various conditions on them (Dirichlet, Neumann,
Signorini, ...). In this paper, only Dirichlet and Neumann boundary conditions are considered. An
extension to more complex boundary data is straightforward, at least from the implementation
point of view.
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Czech Republic, Jaroslav.Haslinger@mff.cuni.cz
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The outline of this paper is as follows. In Section 1, we introduce the model problem which is
represented by a simple Poisson equation with Neumann and Dirichlet boundary conditions. In
Section 2 we describe the new method for a model problem without any stabilization. Section 3
is devoted to a convergence analysis of this approach. An abstract result is obtained which gives
a convergence rate of order

√
h under reasonable regularity assumptions on the solution even

for high order finite elements. The main part of this paper is Section 4 where a new stabilized
method is introduced. Under appropriate assumptions we prove the stability of this formulation
as well as optimal error estimates. In Section 5 we briefly mention details on the computational
implementation. Numerical experiments for a model example with different choices of finite
element spaces are presented in Section 6. The paper is completed with three appendices with
proofs of trace theorems needed in the text.

1 Setting of the problem

We present a new approach for numerical realization of elliptic problems. The theoretical pre-
sentation is made for a two or three-dimensional simply connected bounded domain Ω with a
sufficiently smooth boundary. Let Ω̃ ⊂ R

d (d = 2 or d = 3) be a rectangular or parallelepiped
domain (the fictitious domain) containing Ω in its interior. We consider that the boundary Γ of
Ω is split into two parts Γ

N
and Γ

D
(see Fig. 1). It is assumed that Γ

D
has a nonzero (d − 1)-

dimensional Lebesgue measure.

.
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Figure 1: Fictitious and real domains.

Let us consider the following problem in Ω:

Find u : Ω 7→ R such that

−∆u = f in Ω, (1)

u = 0 on Γ
D
, (2)

∂nu = g on Γ
N
, (3)

where f ∈ L2(Ω), g ∈ L2(Γ
N

) are given data and n is the outward unit normal vector to Γ. The
weak formulation of such a problem is well-known and reads as follows:

{
Find u ∈ V0 such that
a(u, v) = l(v) ∀v ∈ V0,

(4)

where
V = H1(Ω), V0 = {v ∈ V : v = 0 on Γ

D
},
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a(u, v) =

∫

Ω
∇u.∇vdΩ, l(v) =

∫

Ω
fvdΩ +

∫

Γ
N

gvdΓ.

It is also well-known that this problem can be expressed by means of the following mixed formu-
lation:





Find u ∈ V and λ ∈W such that
a(u, v) + 〈λ, v〉W,X = l(v) ∀v ∈ V,
〈µ, u〉W,X = 0 ∀µ ∈W,

(5)

where X = {w ∈ L2(Γ
D
) : ∃v ∈ V such that w = v|Γ

D

}, W = X ′ and 〈µ, v〉W,X denotes the
duality pairing between W and X. Let

V #
0 = {v ∈ V :

∫

Γ
D

vdΓ = 0}.

Then a(., .) is coercive on V #
0 (a direct consequence of Peetre-Tartar lemma, see [10] for instance),

i.e. there exists α > 0 such that

a(v, v) ≥ α‖v‖2
V ∀v ∈ V #

0 . (6)

From this, the existence and uniqueness of a solution to Problem (5) follows. In addition, λ =
−∂nu on Γ

D
. Problem (5) is also equivalent to the problem of finding a saddle point of the

following Lagrangian on V ×W :

L(v, µ) =
1

2
a(v, v) + 〈µ, v〉W,X − l(v). (7)

2 The new fictitious domain method

The new fictitious domain approach which will be studied in this paper requires the introduction
of two finite dimensional finite element spaces Ṽ h ⊂ H1(Ω̃) and W̃ h ⊂ L2(Ω̃) on the fictitious
domain Ω̃. As Ω̃ can be a rectangular or parallelepiped domain, the ones can be defined on the
same structured mesh T h (see Fig. 2). Note that in the following, we only use the fact that the
family of meshes is quasi-uniform (in the classical sense of Ciarlet [6, 7]). Next we shall suppose
that

Ṽ h = {vh ∈ C(Ω̃) : vh
|T ∈ P (T ) ∀T ∈ T h}, (8)

where P (T ) is a finite dimensional space of regular functions such that P (T ) ⊇ Pk(T ) for some
k ≥ 1, integer. The mesh parameter h stands for h = max

T∈T h
h

T
where h

T
is the diameter of T .

.

Γ
N

Γ
D

.

Figure 2: Example of a structured mesh.
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Then one can build
V h := Ṽ h

|Ω , and W h := W̃ h
|Γ

D

which are natural discretizations of V and W , respectively. An approximation of Problem (5) is
defined as follows: 




Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫

Γ
D

λhvhdΓ = l(vh) ∀vh ∈ V h,
∫

Γ
D

µhuhdΓ = 0 ∀µh ∈W h.

(9)

3 Convergence analysis

Let us define the following space:

V h
0 = {vh ∈ V h :

∫

Γ
D

µhvhdΓ = 0 ∀µh ∈W h}. (10)

This space can be viewed to be a (nonconforming) discretization of V0. In addition, we shall

suppose that W̃ h and Ṽ h are chosen in such a way that the following two conditions are satisfied
for every h > 0:

1|Γ
D

∈W h, (11)

µh ∈W h :

∫

Γ
D

µhvhdΓ = 0 ∀vh ∈ V h =⇒ µh = 0. (12)

Lemma 1 The bilinear form a(·, ·) is uniformly V h
0 -elliptic, i.e. there exists α > 0 independent

of h such that
a(vh, vh) ≥ α‖vh‖V ∀vh ∈ V h

0 .

Proof. It follows from the fact that V h
0 ⊂ V #

0 . �

Proposition 1 Suppose that (11) and (12) are satisfied. Then the solution (uh, λh) to Problem

(9) is unique and there exists a constant C > 0 independent of Ṽ h and W̃ h such that (3)

‖uh‖V ≤ C‖l‖H−1(Ω).

Proof. Since 1|Γ
D

∈ W h, it follows from the last equality in (9) that uh ∈ V #
0 . The existence

and uniqueness of (uh, λh) now follows from (12) and Lemma 1. The announced estimate comes
from the fact that a(uh, uh) = l(uh).

�

We prove now the following abstract result (the extension of Cea’s lemma).

Lemma 2 Let (u, λ) and (uh, λh) be the solution to Problems (5) and (9), respectively. Suppose

that (11) and (12) are satisfied. Then there exists a constant C > 0 independent of Ṽ h and W̃ h

such that

‖u− uh‖V ≤ C

(
inf

vh∈V h
0

‖u− vh‖V + sup
vh∈V h

0
,vh 6=0

|a(u, vh) − l(vh)|
‖vh‖V

)
.

3In what follows, the symbol C will be used to denote a generic positive constant which does not depend on h

and which can take different values at different places of its appearance.
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Proof. For a given function vh ∈ V h
0 one has:

α‖uh − vh‖2
V ≤ a(uh − vh, uh − vh)

= a(u− vh, uh − vh) + l(uh − vh) − a(u, uh − vh).

Thus

‖uh − vh‖V ≤ C‖u− vh‖V + sup
wh∈V h

0
,wh 6=0

|a(u,wh) − l(wh)|
‖wh‖V

.

From the triangle inequality ‖u− uh‖V ≤ ‖u− vh‖V + ‖uh − vh‖V we obtain the result.
�

Remark 1 The term sup
vh∈V h

0
,vh 6=0

|a(u, vh) − l(vh)|
‖vh‖V

is called a consistency error.

Corollary 1 Under the assumptions of Lemma 2, there exists a constant C > 0 independent of
Ṽ h and W̃ h such that

‖u− uh‖V ≤ C

(
inf

vh∈V h
0

‖u− vh‖V + inf
µh∈W h

‖λ− µh‖W

)
. (13)

Proof. Since u is a solution to Problem (5) one has:

a(u, vh) = l(vh) − 〈λ, vh〉W,X ∀vh ∈ V h
0 .

The definition of V h
0 yields:

a(u, vh) − l(vh) = −〈λ, vh〉W,X = 〈µh − λ, vh〉W,X ∀vh ∈ V h
0 ∀µh ∈W h,

so that
|a(u, vh) − l(vh)| ≤ inf

µh∈W h
‖λ− µh‖W ‖vh‖V ∀vh ∈ V h

0 .

This, together with Lemma 2 gives (13).
�

We establish now the following convergence result.

Proposition 2 Suppose that (11) and (12) are satisfied and, in addition, let the system {V h
0 },

{W h}, h→ 0+ be dense in V0 and L2(Γ
D
), respectively. Then

uh → u in V, h→ 0+,

where u and uh are the first components of the solution to (5) and (9), respectively.

Proof. From Proposition 1 it follows that

‖uh‖V ≤ C ∀h > 0.

Thus there exists a subsequence, still denoted by the same symbol and an element u ∈ V such
that

uh ⇀ u in V, h→ 0+. (14)

Since {W h} is dense in L2(Γ
D
), for any µ ∈ L2(Γ

D
) there exists a sequence {µh}, µh ∈W h such

that
µh → µ in L2(Γ

D
), h→ 0+. (15)
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Passing to the limit in the last equality in (9), using (14) and (15) we see that

∫

Γ
D

µudΓ = 0 ∀µ ∈ L2(Γ
D
),

which is equivalent to u ∈ V0. Let v ∈ V0 be given. Then, by the assumption there exists a
sequence {vh}, vh ∈ V h

0 such that

vh → v in V, h→ 0+. (16)

Since uh solves (9) we have
a(uh, vh) = l(vh).

From this, (14) and (16) we see that

a(u, v) = l(v) ∀v ∈ V0,

i.e. u := u solves the original problem. As u is unique, the whole sequence {uh} tends weakly to
u in V . Strong convergence of {uh} to u follows from the fact that

|uh|1,Ω → |u|1,Ω,

which is easy to verify.
�

In what follows, we shall estimate the first term on the right of (13). To simplify our presen-
tation we shall consider a purely homogeneous Dirichlet problem, i.e. with Γ

D
= Γ and such that

its solution u belongs to H1+d/2+ε(Ω) ∩H1
0 (Ω) for some ε > 0 (Ω ⊂ R

d). From the embedding
theorem it immediately follows that

u ∈ C1(Ω). (17)

For δ > 0 given, we denote by Ωδ the subset of Ω:

Ωδ = {x ∈ Ω : dist(x,Γ) > δ}.

Let ηh be a sufficiently smooth cut-off function:

ηh =

{
1 in Ω \ Ω2h,
0 in Ω3h.

In Ω2h \ Ω3h the function ηh is defined in such a way that

‖∇jηh‖C(Ω) ≤
C

hj
, j = 1, 2. (18)

The solution u can be split and written in the form

u = ηhu+ (1 − ηh)u.

Next we show that
‖ηhu‖V ≤ C

√
h, h→ 0+. (19)

Indeed,
‖ηhu‖2

V = ‖u‖2
1,Ω\Ω2h

+ ‖ηhu‖2
1,Ω2h\Ω3h

. (20)

From (17) it immediately follows that

‖u‖2
1,Ω\Ω2h

≤ Ch, h→ 0+.
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To get the estimate of the second term on the right of (20) it is sufficient to estimate the respective
seminorm. It holds:

|ηhu|21,Ω2h\Ω3h
≤ C

(∫

Ω2h\Ω3h

|∇ηh|2u2dΩ +

∫

Ω2h\Ω3h

η2
h|∇u|2dΩ

)

≤ Ch, h→ 0+, (21)

making use of (18) and the elementary estimate

max
x∈Ω2h\Ω3h

|u(x)| ≤ Ch, (22)

which holds in view of the fact that u = 0 on Γ. From (21) and (22) we obtain (19).

Let V h
00 be a subset of Vh containing functions vanishing in a vicinity of Γ. More precisely,

V h
00 = {vh ∈ V h : vh(a) = 0 ∀a ∈ N h},

where N h is the set of those nodes of T h which lie in Ω \ Ω3h/2. Observe that V h
00 ⊂ V h

0 .

By ΠT v we denote the standard P -Lagrange interpolate of v on an element T ∈ T h, T ⊂ Ω.
Since P ⊇ Pk(k ≥ 1) we know that

‖v − ΠT v‖1,T ≤ Ch
T
‖v‖2,T , (23)

holds for any v ∈ H2(T ), T ∈ T h and T ⊂ Ω.

Proposition 3 Suppose that Ṽ h is defined by (8), let (11) and (12) be satisfied and, in addition

inf
µh∈W h

‖λ− µh‖W ≤ Chβ, for some β ≥ 1/2. (24)

Let the solution u of (4) with Γ = Γ
D

be such that u ∈ H1+d/2+ε(Ω) ∩H1
0 (Ω), ε > 0. Then

‖u− uh‖V ≤ C
√
h, h→ 0+.

Proof. It is sufficient to estimate the first term on the right of (13). It holds:

inf
vh∈V h

0

‖u− vh‖V ≤ inf
vh∈V h

00

‖u− vh‖V = inf
vh∈V h

00

‖ηhu+ (1 − ηh)u− vh‖V

≤ ‖ηhu‖V + ‖(1 − ηh)u− vh‖V ∀vh ∈ V h
00.

We construct vh as follows:

vh|T = ΠT ((1 − ηh)u|T ) if T ⊂ Ω,

otherwise we set vh = 0. It is readily seen that vh ∈ V h
00 and from (23) it follows that

‖(1 − ηh)u− vh‖V ≤ Ch‖(1 − ηh)u‖2,Ω ≤ Ch‖u‖2,Ω + Ch‖ηhu‖2,Ω. (25)

A direct computation shows that

‖ηhu‖2,Ω ≤ C√
h
, h→ 0+. (26)

Indeed, the H2(Ω)-seminorm can be estimated by

|ηhu|22,Ω ≤ C

(
‖∇2ηh‖2

C(Ω)

∫

Ω2h\Ω3h

u2dΩ +

∫

Ω2h\Ω3h

|∇ηh|2|∇u|2dΩ + |u|22,Ω

)
≤ C

h
,
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as follows from (18) and (22). Using (26) in (25) we see that

‖(1 − ηh)u− vh‖V ≤ C
√
h, h→ 0+.

From this and (19) we finally arrive at

inf
vh∈V h

0

‖u− vh‖V ≤ C
√
h.

�

The convergence rate given by the previous proposition is only of order
√
h. The numerical

experiments of Section 6 show that this result, based on the classical formulation is optimal, in
general. The aim of the next section is to propose a stabilization technique to overcome this
limitation.

4 A stabilized formulation

In this section we adapt a stabilization technique presented by Barbosa and Hughes in [2, 3] in
order to recover an optimal rate of convergence. Note that the link between this stabilization
technique and the former Nitsche’s method [20] has been established in [24]. Moreover it has
been recently used to interface problems with nonmatching meshes in [4] and to elastostatic
contact problems in [14]. We present its symmetric version although the nonsymmetric one can
be considered in the same way. This technique is based on the addition of a supplementary term
involving the normal derivative on Γ

D
. In fact, we need a little bit more general definition. Let

us suppose that we have at our disposal an operator

Rh : V h −→ L2(Γ
D
),

which approximates the normal derivative on Γ
D

(i.e. for vh ∈ V h converging to a sufficiently
smooth function v, Rh(vh) tends to ∂nv in an appropriate sense). Several choices of Rh will be
proposed later. We suppose that the following estimate holds for this operator:

h1/2‖Rh(vh)‖0,Γ
D
≤ C‖∇vh‖0,Ω ∀vh ∈ V h, ∀h > 0. (27)

To obtain the stabilized problem we replace the Lagrangian (7) by the following one

Lh(vh, µh) = L(vh, µh) − γ

2

∫

Γ
D

(µh +Rh(vh))2dΓ, vh ∈ V h, µh ∈W h,

where for the sake of simplicity γ := hγ0 is chosen to be a positive constant over Ω (for non-
uniform meshes, an element dependent parameter γ = h

T
γ0 is a better choice).

The corresponding discrete problem reads as follows:





Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫

Γ
D

λhvhdΓ − γ

∫

Γ
D

(λh +Rh(uh))Rh(vh)dΓ = l(vh) ∀vh ∈ V h,
∫

Γ
D

µhuhdΓ − γ

∫

Γ
D

(λh +Rh(uh))µhdΓ = 0 ∀µh ∈W h.

(28)

As in [2], let us define the form Bh : (V h ×W h)2 −→ R by

Bh(uh, λh; vh, µh) := a(uh, vh)+

∫

Γ
D

λhvhdΓ+

∫

Γ
D

µhuhdΓ−γ
∫

Γ
D

(λh +Rh(uh))(µh +Rh(vh))dΓ.
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Then, (28) is equivalent to

{
Find uh ∈ V h and λh ∈W h such that
Bh(uh, λh; vh, µh) = l(vh), ∀(vh, µh) ∈ V h ×W h.

(29)

Moreover, this formulation is consistent in the sense that the solution (u, λ) to problem (5) satisfies

Bh(u, λ; vh, µh) = l(vh), ∀vh ∈ V h, ∀µh ∈W h, (30)

provided that λ ∈ L2(Γ
D
) with Bh having the same definition as Bh but replacing Rh(u) by ∂nu.

The following hypothesis on the approximation property of W h will be needed to get an
abstract result. Let P h : L2(Γ

D
) −→ W h be the L2-projection on W h. We suppose that there

exists a constant C > 0 independent of h such that

‖P hv − v‖0,Γ
D
≤ Ch1/2‖v‖1/2,Γ

D
, ∀v ∈ H1/2(Γ

D
). (31)

This allows to establish the following “inf-sup” property of Bh.

Lemma 3 Let hypotheses (11), (27) and (31) be satisfied. Then for γ0 > 0 sufficiently small
there exists a constant C > 0 independent of h such that

sup
(0,0)6=(zh,ηh)∈V h×W h

Bh(vh, µh; zh, ηh)

|‖(zh, ηh)‖|
≥ C|‖(vh, µh)‖|, (32)

where |‖(zh, ηh)‖|2 := ‖zh‖2
V + h−1‖zh‖2

0,Γ
D

+ h‖ηh‖2
0,Γ

D
.

Proof. The proof is an adaptation of the one in [24], Lemma 5. First of all, for (vh, µh) ∈ V h×W h

arbitrary, γ0 > 0 sufficiently small and from (27) one has

Bh(vh, µh; vh,−µh) = ‖∇vh‖2
0,Ω + γ0h‖µh‖2

0,Γ
D
− γ0h‖Rh(vh)‖2

0,Γ
D

≥ C(‖∇vh‖2
0,Ω + h‖µh‖2

0,Γ
D

). (33)

Next, from (27) and the Young inequality we get for µh := h−1P hvh:

Bh(vh, µh; 0, µh) =

∫

Γ
D

µhvhdΓ − γ

∫

Γ
D

(µh +Rh(vh))µhdΓ

≥ h−1‖P hvh‖2
0,Γ

D
− C(‖∇vh‖0,Ω + h1/2‖µh‖0,Γ

D
)h−1/2‖P hvh‖0,Γ

D

≥ h−1‖P hvh‖2
0,Γ

D
− C2

2
(‖∇vh‖0,Ω + h1/2‖µh‖0,Γ

D
)2 − h−1

2
‖P hvh‖2

0,Γ
D

≥ h−1

2
‖P hvh‖2

0,Γ
D
− C(‖∇vh‖2

0,Ω + h‖µh‖2
0,Γ

D
). (34)

We now take (zh, ηh) = (vh,−µh + δµh) in (32) with δ > 0. Using (33), (34) and δ sufficiently
small one has:

Bh(vh, µh; zh, ηh) = Bh(vh, µh, vh,−µh) + δBh(vh, µh, 0, µh)

≥ C(‖∇vh‖2
0,Ω + h−1‖P hvh‖2

0,Γ
D

+ h‖µh‖2
0,Γ

D
). (35)

Since {1} ⊂W h then for the L2-projection of vh on {1} we obtain:

‖P hvh‖2
0,Γ

D
≥
∫

Γ
D

(
1

|Γ
D
|

∫

Γ
D

vhdΓ)2dΓ =
1

|Γ
D
|(
∫

Γ
D

vhdΓ)2. (36)
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Let β > 0 be sufficiently small. Then it holds:

‖∇vh‖2
0,Ω + h−1‖P hvh‖2

0,Γ
D

= ‖∇vh‖2
0,Ω + (1 − β)h−1‖P hvh‖2

0,Γ
D

+ βh−1‖P hvh − vh + vh‖2
0,Γ

D

≥ ‖∇vh‖2
0,Ω + (1 − β)

1

|Γ
D
|diam(Ω)

(

∫

Γ
D

vhdΓ)2 (37)

+βh−1(‖vh‖2
0,Γ

D
− ‖P hvh − vh‖2

0,Γ
D

)

≥ C(‖vh‖2
V + βh−1(‖vh‖2

0,Γ
D
− h‖vh‖2

1/2,Γ
D

))

≥ C(‖vh‖2
V + h−1‖vh‖2

0,Γ
D

), (38)

where we used (31), the fact that (‖∇vh‖2
0,Ω+(1−β)

1

|Γ
D
|diam(Ω)

(
∫
Γ

D

vhdΓ)2)1/2 is an equivalent

norm on V and the trace theorem. Finally, one obtains (32) combining (35) and (38) together
with the fact that |‖(zh, ηh)‖| ≤ C|‖(vh, µh)‖|. �

Remark 2 The inf-sup condition straightforwardly ensures the existence and uniqueness of a
solution to the discrete problem (28) for γ0 > 0 sufficiently small.

Now, we can prove the following abstract error estimate.

Theorem 1 Let (11), (27) and (31) be satisfied and γ0 > 0 be sufficiently small. If (u, λ) is the
solution to Problem (5) such that λ ∈ L2(Γ

D
) then there exists a constant C > 0 independent of

h and (u, λ) such that the following estimate holds:

|‖(u− uh, λ− λh)‖| ≤ C inf
vh∈V h,µh∈W h

(
|‖(u− vh, λ− µh)‖| + h1/2‖Rh(vh) − ∂nu‖0,Γ

D

)
.

Proof. From (30) it follows that

Bh(u, λ, zh, ηh) = Bh(uh, λh, zh, ηh) ∀(zh, ηh) ∈ V h ×W h.

Thus for any (vh, µh) ∈ V h ×W h one has

Bh(vh, µh, zh, ηh) − Bh(u, λ, zh, ηh) = Bh(vh − uh, µh − λh, zh, ηh) ∀(zh, ηh) ∈ V h ×W h.

A direct computation leads to

Bh(vh, µh; zh, ηh)−Bh(u, λ; zh, ηh) ≤ C(|‖(u−vh, λ−µh)‖|+h1/2‖Rh(vh)−∂nu‖0,Γ
D

)|‖(zh, ηh)‖|.

Further

|‖(u− uh, λ− λh)‖| ≤ |‖(u − vh, λ− µh)‖| + |‖(vh − uh, µh − λh)‖|

≤ |‖(u − vh, λ− µh)‖| + C sup
(0,0)6=(zh,ηh)∈V h×W h

Bh(vh − uh, µh − λh; zh, ηh)

|‖(zh, ηh)‖|
≤ C(|‖(u− vh, λ− µh)‖| + h1/2‖Rh(vh) − ∂nu‖0,Γ

D
)

holds for any (vh, µh) ∈ V h ×W h. �

In the rest of this section we show how to use the abstract result of Theorem 1 to establish
an optimal a priori error estimate for the following standard finite element spaces:

Ṽ h = {vh ∈ C(Ω̃) : vh
|T ∈ Pku

(T ) ∀T ∈ T h}, ku ≥ 1, (39)

10



W̃ h = {µh ∈ L2(Ω̃) : µh
|T ∈ Pkλ

(T ) ∀T ∈ T h}, kλ ≥ 0. (40)

In order to estimate the boundary terms, we shall need the following classical estimate which is
satisfied for any T ∈ T h and any w ∈ H1(T ) provided that Γ

D
is smooth enough (see Appendix A

for the proof):

‖w‖2
0,Γ

D
∩T ≤ C(h−1

T
‖w‖2

0,T + h
T
‖w‖2

1,T ). (41)

Let k = min(ku, kλ + 1) and consider two continuous extension operators:

T k
u : Hk+1(Ω) −→ Hk+1(Ω̃),

T k
λ : Hk−1/2(Γ

D
) −→ Hk(Ω̃),

where Hk−1/2(Γ
D
) stands for the space of traces on Γ

D
of functions from Hk(Ω). Due to

Calderón’s extension theorem, it is always possible to build such operators provided that the
domain Ω has the uniform cone property (see [1] for instance). This allows us to define the

following interpolation operators on Ṽ h and W̃ h:

Π̃k,h
u (v) := Πk,h(T k

u (v)) ∀v ∈ Hk+1(Ω),

Π̃k,h
λ (µ) := Πk−1,h(T k

λ (µ)) ∀µ ∈ Hk−1/2(Γ
D
),

where Πk,h stands for the standard Lagrange interpolation operator by piecewise polynomial
functions of degree less or equal k defined on the mesh T h. An exception has to be done for k = 1
when the Lagrange interpolation operator will be replaced by Clément’s one for the interpolation
of the multiplier since functions from H1(Ω̃) are not generally continuous (see [8]). Due to the
known approximation properties of these operators on regular families of meshes (see [7] and [8]),
one has for any v ∈ Hk+1(Ω):

‖Π̃k,h
u (v) − v‖V ≤ ‖Π̃k,h

u (v) − T k
u (v)‖

1,eΩ

≤ Chk‖T k
u (v)‖

k+1,eΩ
≤ Chk‖v‖k+1,Ω

and for any µ ∈ Hk−1/2(Γ
D
) taking into account (41):

‖Π̃k,h
λ (µ) − µ‖2

0,Γ
D

≤ C
∑

T∈T h

(h−1‖Π̃k,h
λ (µ) − T k

λ (µ)‖2
0,T + h‖Π̃k,h

λ (µ) − T k
λ (µ)‖2

1,T )

≤ Ch2k−1‖T k
λ (µ)‖2

k,eΩ
≤ Ch2k−1‖µ‖2

k−1/2,Γ
D
.

In the same way one can derive the estimate ‖Π̃k,h
u (v) − v‖0,Γ

D
for v ∈ Hk+1(Ω) and also obtain

the estimate (31) (using Clément’s interpolation operator). Thus an a priori error estimate can
be derived provided that the following approximation property of Rh holds:

‖Rh(Π̃k,h
u (v)) − ∂nv‖0,Γ

D
≤ Chk−1/2‖v‖k+1,Ω (42)

Theorem 2 Let Ṽ h and W̃ h be defined by (39) and (40), respectively. Let (u, λ) be the solution
to Problem (5) such that u ∈ Hk+1(Ω) and λ ∈ Hk−1/2(Γ

D
) for k = min{ku, kλ + 1}. Assume

that (27) and (42) are satisfied. Then the following estimate holds:

|‖(u − uh, λ− λh)‖| ≤ Chk‖u‖k+1,Ω,

where (uh, λh) is the solution to Problem (28).

11



Remark 3 Note that for kλ ≥ 1 the use of W̃ h ∩ C(Ω̃) instead of W̃ h does not change the
result. Note also that the definition of the norm |‖(u − uh, λ − λh)‖| involves a standard error
estimate for ‖u− uh‖V . However, it does not provide an estimate of ‖λ−λh‖−1/2,Γ

D
but the one

of h1/2‖λ − λh‖0,Γ
D

. An additional optimal estimate of ‖u − uh‖0,Γ
D

is also available without
supplementary regularity assumptions. This is due to the use of the Pitkäranta technique [21].
Error estimates with natural norms instead of mesh dependent norms are also possible for the
stabilized problem (see [3]).

4.1 Case Rh(vh) = ∂nvh and an additional condition on the mesh

A natural choice for the operator Rh is of course

Rh(vh) = ∂nv
h on Γ

D
,

which corresponds to the original method of Barbosa and Hughes. In this case, unfortunately,
the stability condition (27) is verified only under an additional regularity assumption on the
intersection of the mesh with Ω. We denote by T̂ a reference element such that T = τ

T
(T̂ ) for all

T ∈ T h, where τ
T

is a regular affine transformation in R
d. The assumption on the mesh can be

expressed as follows (see [21] for a similar one):

There exists a radius ρ̂ > 0 independent of h such that for any T ∈ T h, T ∩ Ω 6= ∅
the reference element T̂ contains a ball B(ŷ

T
, ρ̂) which satisfies B(ŷ

T
, ρ̂) ⊂ τ−1

T
(T ∩ Ω)

(43)

Under this assumption, inequality (27) is satisfied for Ṽ h defined by (39) (see the proof in Ap-
pendix B). Moreover, the following lemma says that (42) is also satisfied.

Lemma 4 Let Ṽ h be defined by (39), Rh(vh) = ∂nv
h on Γ

D
and assume that (43) is satisfied.

Then (42) is satisfied as well.

Proof. Recall that k = min(ku, kλ + 1). Using (41) and standard interpolation error estimates
one has for any v ∈ Hk+1(Ω):

‖Rh(Π̃k,h
u (v)) − ∂nv‖2

0,Γ
D

≤
∑

T∈T h

‖∇Π̃k,h
u (v) −∇v‖2

0,Γ
D
∩T

≤ C
∑

T∈T h

(h−1‖∇Π̃k,h
u (v) −∇T k

u (v)‖2
0,T + h‖∇Π̃k,h

u (v) −∇T k
u (v)‖2

1,T )

≤ C
∑

T∈T h

(
h−1(hk‖T k

u (v)‖k+1,T )2 + h(hk−1‖T k
u (v)‖k+1,T )2

)

≤ Ch2k−1‖v‖2
k+1,Ω.

�

We can deduce that if Rh(vh) = ∂nv
h on Γ

D
, the estimate of Theorem 2 holds provided that

(43) is satisfied. This assumption however restricts the use of our fictitious domain approach.
Indeed if, for instance, one wants to approximate an evolving boundary, the intersection of el-
ements with the real domain will be arbitrary. The aim of the next section is to introduce an
operator Rh with a reinforced stability enabling us to work with an arbitrary domain.

4.2 Operator Rh with a reinforced stability

We give here an example how to construct an operator Rh ensuring both the approximation
property (42) as well as the stability property (27) for an arbitrary intersection of the mesh T h

12



with the domain Ω. The proposed construction is only local and quite simple to implement.

Let ρ̂ > 0 be an a priori given small radius (ρ̂ << 1). For each element T ∈ T h such that
T∩Ω 6= ∅, we will designate by T ′ either the element T itself if there is a ball B(ŷ

T
, ρ̂) ⊂ τ−1

T
(T∩Ω)

(a “good” element) or any neighbor element possessing this property if T itself does not satisfy
it (T is a “bad” element).

The proposed operator Rh will simply be equal to ∂nv
h
T ′,T where vh

T ′,T is either vh|T if T ′ = T

or the natural extension of vh|T ′
onto T if T ′ 6= T . Of course, ρ̂ > 0 has to be sufficiently small

such that T ′ always exists, which is not a big constraint.

.

ΓD

Ω
“good” element

“bad” element

T

T ′

.

Figure 3: The choice of T ′ for an element T having a small intersection with Ω. In this case,
it is more stable to evaluate the normal derivative from a natural extension of vh from T ′ on T
because smaller is the thickness of this intersection, poorer approximation of the normal derivative
on T ∩ ∂Ω is obtained using vh

|T .

It is not difficult to see that the stability condition (27) is satisfied with such a choice of the
operator Rh (see Appendix C for the sketch of the proof). The following lemma establishes that
(42) is also satisfied so that the estimate of Theorem 2 holds, again.

Lemma 5 Let Ṽ h be defined by (39), and Rh(vh) := ∂nv
h
T ′,T on Γ

D
. Then (42) is satisfied.

Proof. Suppose that T is a “bad” element, i.e. T ∩Ω is “thin” and let T ′ be a “good” neighbor
element as described above (see also Fig. 3). We prolong T ′ and construct the new element Td as
shown in Fig. 4. The interpolation on Td is defined by the interpolation on T ′. More precisely:

let v ∈ Hk+1
loc (Rd) and vT ′ := v|T ′

.

By ΠT ′vT ′ we denote the Pk-Lagrange interpolant of vT ′ constructed on T ′ (i.e. using degrees of
freedom in T ′) but with the domain of definition being the whole R

d. The interpolation of v on
Td is defined as:

ΠTd
v := ΠT ′vT ′|Td

.

Classical arguments based on the fact that v−ΠTd
v vanishes for all polynomials of degree less or

equal k lead to the following approximation property (see [6] for instance):

‖v − ΠTd
v‖m,Td

≤ Chk+1−m
Td

‖v‖k+1,Td
(h

Td
≤ 2h

T ′
).

13



.

l
T ′

l
T ′

T ′

Td

.

Figure 4: Prolongation of T ′.

Analogically to Lemma 6 (see Appendix A) it holds:

‖v‖2
0,Γ

D
∩Tp

≤ C(h−1
Td

‖v‖2
0,T + h

Td
‖v‖2

1,T ).

To get (42) we proceed as in Lemma 4. Only we have to sort all elements into “good” and
“bad” ones and to use either ΠT or ΠTd

.
�

5 Some practical details for implementation

The implementation of the proposed method requires to overcome a certain number of difficulties.
First of all, one has to select bases of the spaces V h and W h from the ones of Ṽ h and W̃ h. As far
as V h is concerned, the task is rather easy because it suffices to select the basis functions among
the ones of Ṽ h which are not identically equal to zero in Ω (one can eventually remove those
for which the intersection of their support with Ω is too small). It is a little more difficult to

find a basis of the space W h. Indeed, the traces on Γ
D

of basis functions of W̃ h may be linearly
dependent, especially if Γ

D
is rectilinear. A possible way how to overcome this difficulty is to

eliminate the redundant functions by analyzing the elementary mass matrices whose components

are

∫

Γ
D
∩T
ψiψjdΓ, where {ψi} are the shape functions of W̃ h.

Another difficulty concerns the numerical integration: one needs to build integration formulas
on the intersection of elements with the domain Ω as well as on the intersection of elements
with Γ

D
. Our finite element library Getfem++ [22] uses splitting of elements into simplices in a

conformal way with respect to ∂Ω and then it applies a standard integration formula on each sub-
element. If ∂Ω is curved then some curved sub-elements can be used. One obtains an integration
formula on Γ

D
by considering the faces of the sub-elements lying on Γ

D
.

The natural extension of functions on “bad” elements which is needed to obtain the fully
stabilized method described in Section 4.2 consists in seeking information in a “good” nearby
element. This can be a handicap for certain finite element codes where calculations are done
only elementwise. A possible remedy is to precompute a global discrete extension operator which
gives the solution extended to “bad” elements from the original one. Then, the matrices involving
Rh(vh) are obtained as a composition of classical matrices with this discrete extension operator.

The Xfem method is often associated with the use of some level-sets of functions defined on the
mesh. This is particularly usefull when, for instance, one needs to represent an evolving interface.
In our case such a level-set can be utilized to represent the boundary of Ω. The implementation in
Getfem++ uses this strategy. Generally, this involves an additional approximation of Ω. In our
numerical tests presented in the next section, the level-set functions are piecewise second degree
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polynomials. In this case the level-set approach has no influence on the rate of convergence of
the used finite element methods which are of the first and second order.

6 Numerical experiments

Figure 5: Test domain and a triangular
structured mesh.

Figure 6: Exact solution.

In this section we present 2D-numerical tests. The fictitious domain is Ω̃ = ] − 1/2, 1/2[2 .

The exact solution is u(x) = R2 − |x|2(5 + 3 sin(7θ +
π

36
))/2, where R = 0.47 and θ(x) =

arctan(x2/x1). The corresponding right hand sides are f(x) = 10 + 3/2(4 − 49) sin(7θ +
π

36
)

and g(x) = −
(∑2

i=1(5xi + 3xi sin(7θ +
π

36
) + 3x3−i cos(7θ +

π

36
)/2)2

)1/2
. The real domain is

Ω = {x ∈ R
2 : u(x) < 0} and the Dirichlet and Neumann boundary conditions are defined on

Γ
D

= Γ ∩ {x ∈ R
2 : x2 < 0} and Γ

N
= Γ ∩ {x ∈ R

2 : x2 > 0}.
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Figure 7: Approximated solution on a rough mesh with the P2/P1 method. Only the elements
intersecting Ω are depicted. The black curve is the boundary of Ω and the white curve is the zero
level-set of the approximated solution.

The domain Ω is represented in Fig. 5 with an example of a triangular structured mesh. The
exact solution is shown in Fig. 6 while a computed solution on a rough mesh is depicted in Fig. 7.

6.1 without stabilization

First, we present numerical tests without any stabilization. We tested several choices of the finite
element spaces Ṽh and W̃h.

In order to avoid the locking phenomena, the couple of selected finite element spaces should
satisfy as much as possible a discrete mesh independent inf-sup condition since the stabilization
is not used. For instance, it is known that the P1/P0 method for the discretization of u, λ,
respectively, does not satisfy such a condition as seen from Fig. 9.
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Rate of convergence ‖u− uh‖0,Ω. Rate of convergence ‖u− uh‖1,Ω.

Rate of convergence ‖λ− λh‖0,Γ
D

.

Figure 8: Rates of convergence for some couples of finite element spaces with no stabilization.

The linear system to be solved is of the form

(
K B

T

B 0

)(
U
Λ

)
=

(
L
0

)
, (44)

where U and Λ are the degrees of freedom of uh and λh, respectively, and the components of K,B
and L are

Kij =

∫

Ω
∇ϕi.∇ϕjdΩ, Bij =

∫

Γ
D

ψiϕjdΓ, Li =

∫

Ω
fϕidΩ +

∫

Γ
N

gϕidΓ,

with {ϕi}, {ψj} being the selected basis functions of Ṽh, W̃h, respectively. In our experiments,
this system is solved using the library Superlu [9] (a direct LU solver for sparse matrices).

The couples of spaces tested are the following: P1/P0, P1+/P0 (a standard continuous P1

element for u enriched by a cubic bubble function and a standard P0 element for the multiplier),
Q1/Q0 (standard continuous Q1 and discontinuous Q0 elements on quadrilaterals), P2/P1, P2/P0

and Q2/Q1.
Rates of convergence are presented in Fig. 8. Since the exact solution has a small singularity

at x = 0, the norms of the error have been computed outside of a small disc centered at x = 0.
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One can see that in all experiments the rate of convergence in the H1(Ω)-norm is better than
the theoretical one given by Proposition 3 except for the P1/P0 case which is a little bit slower than
h1/2. The choice P1/P0 suffers of course from the non-satisfaction of a mesh-independent inf-sup
condition. It has to be stressed that in all the experiments without stabilization, and particularly
for the P1/P0 case, a singular linear system can be obtained. However, in all examples, presented
here, the linear system is non-singular. It is also seen that convergence of the multiplier is not
generally obtained, especially for degree one methods. Fig. 10 illustrates a poor quality of the
multiplier for the P1/P0 method. The P2/P1 method gives slightly better results (see Fig. 11 still
with some oscillations in parts where the intersection of the element with the domain Ω is very
small).

Figure 9: Approximated solution with no stabilization for the P1/P0 method (h = 0.05). One can
see locking effects on the boundary.
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Figure 10: Multiplier on Γ
D

with no stabilization for the P1/P0 method (h = 0.05).

Figure 11: Multiplier on Γ
D

with no stabilization for the P2/P1 method (h = 0.05).

The test program can be downloaded on the Getfem++ web site [22]. It allows to test many
other couples of elements and to treat also 3D-problems.

6.2 The stabilized method with Rh(vh) = ∂nvh

The numerical experiments are now done using the standard Barbosa-Hughes stabilization tech-
nique (with γ = 0.1). It has been proven in Section 4.1 that this method is optimal whenever
the intersection of elements with the domain Ω is not too small. This is not easy to satisfy in
computations. Of course, one way how to avoid small intersections would be to move a little
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bit some mesh nodes, at least when a structured mesh is not required. We did not test this
possibility.

Unlike (44), the linear system to be solved is now of the form
(
Kγ B

T

γ

Bγ −Mγ

)(
U
Λ

)
=

(
L
0

)
,

where the components of Kγ , Bγ and Mγ are

(Kγ)ij =

∫

Ω
∇ϕi.∇ϕjdΩ − γ

∫

Γ
D

Rh(ϕi)R
h(ϕj)dΓ, (Bγ)ij =

∫

Γ
D

ψi(ϕj − γRh(ϕj))dΓ,

(Mγ)ij = γ

∫

Γ
D

ψiψjdΓ,

respectively. Note that Kγ is invertible provided that γ is sufficiently small. The whole matrix
of the system is invertible as well whatever is Bγ .

Rate of convergence ‖u− uh‖0,Ω. Rate of convergence ‖u− uh‖1,Ω.

Rate of convergence ‖λ− λh‖0,Γ
D

.

Figure 12: Rates of convergence for some couples of finite element spaces with the Barbosa-Hughes
stabilization.

Rates of convergence are presented in Fig. 12 for the same couples of elements as in the previous
section. The stabilization significantly improves the quality of the P1/P0 choice (the stabilization
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with bubble functions is no longer necessary). Fig. 13 shows that also the approximation of
the multiplier is considerably improved. The convergence rate is improved by the stabilization,
but some problems remain with too small intersections of elements with Ω even for degree two
methods (see Fig. 14).

Figure 13: Multiplier on Γ
D

with the Barbosa-Hughes stabilization for the P1/P0 method (h =
0.05).

Figure 14: Multiplier on Γ
D

with the Barbosa-Hughes stabilization for the P2/P1 method (h =
0.05).
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6.3 The fully stabilized method

We now consider the fully stabilized method described in Section 4.2. An element T is considered
to be “bad” when |T ∩Ω| is less than one percent of |T |. We see that the multipliers behave in a
more regular way than before.

Rate of convergence ‖u− uh‖0,Ω. Rate of convergence ‖u− uh‖1,Ω.

Rate of convergence ‖λ− λh‖0,Γ
D

.

Figure 15: Rates of convergence for some couples of finite element spaces with the fully stabilized
method.
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Figure 16: Multiplier on Γ
D

with the fully stabilized method for the P1/P0 method (h = 0.05).

Figure 17: Multiplier on Γ
D

with the fully stabilized method for the P2/P1 method (h = 0.05).

7 Concluding remarks

In this paper, we combined the Xfem approach together with the Barbosa-Hughes stabilized for-
mulation to get a new fictitious domain method. This method is quite simple to implement since
all the variables (multipliers and primal variables) are defined on a single mesh independent of
the computational domain. Moreover, it potentially allows to treat complex boundary conditions
(such as contact and friction).

The fully stabilized method introduced in Section 4.2 leads to a robust method in the sense
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that it converges whatever is the intersection of the domain with the mesh. This is not the case
if the Barbosa-Hughes stabilization technique is used alone. Note that in [21] a similar approach
is presented. However, the error estimate is given under the assumption (43) and the definition
of multipliers requires the construction of a quasi-uniform family of meshes on the boundary.
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Appendix A

In this appendix we prove the trace inequality (41). For a proof in a more classical framework
see for instance [12]. The proof is done by scaling with respect to a reference element T̂ .

We recall that for all T ∈ T h one has T = τ
T
(T̂ ), where τ

T
is an affine and invertible mapping

in R
d. We make the following hypotheses:

a) there exists a constant C1 > 0 independent of h and T ∈ T h such that |Γ
D
∩ T | ≤ C1h

d−1
T

,

b) there exists a constant C2 > 0 independent of h and T ∈ T h such that ‖∇τ
T
‖∞,T ≤ C2hT

and ‖∇τ−1
T̂

‖∞,T ≤ C2h
−1
T

.

These two hypotheses are obviously satisfied for regular families of meshes provided that Γ
D

is
piecewise C1.

Lemma 6 Let a) and b) be satisfied. Then there exists a constant C > 0 independent of h and
T ∈ T h such that

‖v‖2
0,Γ

D
∩T ≤ C(h−1

T
‖v‖2

0,T + h
T
‖v‖2

1,T ), ∀v ∈ H1(T ).

Proof. Since C∞(T ) is dense in H1(T ) one can confine to functions v ∈ C∞(T ). Denoting
Γ̂

D
= τ−1

T
(Γ

D
∩ T ) and n̂ a unit normal vector to Γ̂

D
, one has:

∫

Γ
D
∩T
v2dΓ =

∫

Γ̂
D

v̂2|det(∇τ
T
)| ‖∇τ−1

T
n̂‖dΓ̂ ≤ Chd−1

T

∫

Γ̂
D

v̂2dΓ̂,

where v̂ = v ◦ τ
T
. Using now the continuity of the trace operator one has

∫

Γ̂
D

v̂2dΓ̂ ≤ C3‖v̂‖2
1,T̂

∀v̂ ∈ C∞(T̂ ),

where the constant C3 > 0 does not depend on the position of Γ̂
D

inside of T̂ . This can be easily
deduced from the hypotheses on the regularity of Γ

D
and usual arguments (see [1]). Further

‖v‖2
0,Γ

D
∩T ≤ Chd−1

T

∫

T̂
(v̂2 + |∇̂v̂|2)dx̂

≤ Ch−1
T

∫

T̂
(v̂2 + |∇̂v̂|2)|det(∇τ

T
)|dx̂

≤ Ch−1
T

∫

T
v2dx+ Ch

T

∫

T
|∇v|2dx,

using that ‖∇v̂‖∞,T̂ ≤ Ch
T
‖∇v‖∞,T . �
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Appendix B

We prove the discrete trace inequality (27) when Rh(vh) = ∂nv
h provided that (43) is satisfied

under the same hypotheses on the family of meshes and on Γ
D

as in Appendix A. First we prove
the following auxiliary result.

Lemma 7 Let vh be defined on T ∈ T h by vh(x) := v̂(τ−1
T

(x)) with v̂ ∈ Pk(R
d) and suppose that

(43) is satisfied. Then there exists a constant C > 0 independent of h, T and v̂ such that

∫

Γ
D
∩T

(vh)2dΓ ≤ Ch−1
T

∫

Ω∩T
(vh)2dx.

Proof. Because of the equivalence of norms on Pk(R
d), one has

‖v̂‖2
∞,T̂

≤ ‖v̂‖2
∞,B(ŷ

T
,2) = ‖v̂ ◦ t(−ŷ

T
)‖2

∞,B(0,2)

≤ C‖v̂ ◦ t(−ŷ
T

)‖2
0,B(0,ρ̂) = C‖v̂‖2

0,B(ŷ
T

,ρ̂) ≤ C

∫

τ−1

T
(T∩Ω)

v̂2dx̂,

where t(−ŷ
T

) is the translation defined by t(−ŷ
T

)(x) = x − ŷ
T
. Thus, still with notations of

Appendix A:

∫

Γ
D
∩T

(vh)2dΓ =

∫

Γ̂
D

v̂2|det(∇τ
T
)| ‖∇τ−1

T
n̂‖dΓ̂ ≤ Chd−1

T
‖v̂‖2

∞,T̂
|Γ̂

D
|

≤ C
hd−1

T

hd
T

∫

τ−1

T
(T∩Ω)

v̂2|det(∇τ
T
)|dx̂ = Ch−1

T

∫

T∩Ω
(vh)2dx.

�

Now, summing up the previous estimate over elements of T h one obtains the following result.

Lemma 8 Let vh be defined on Ω by vh(x)|T = v̂
T
(τ−1

T
(x)), v̂

T
∈ Pk(R

d), T ∈ T h and suppose
that (43) is satisfied. Then the following estimate holds with a constant C > 0 independent of h
and vh:

h

∫

Γ
D

(vh)2dΓ ≤ C

∫

Ω
(vh)2dx.

The discrete trace inequality (27) can be now easily deduced since ‖∂nv
h‖0,Γ

D
≤ ‖∇vh‖0,Γ

D

and for a quasi-uniform family of meshes the previous lemma can be applied to ∇vh component-
wise.

Appendix C

We now adapt the proof of Appendix B to the operator Rh(vh) defined in Section 4.2. The
difference comes from those elements T ∈ T h having a too small intersection with Ω (“bad”
elements) and for which a neighbor element T ′ has been selected to make a natural extension of
functions. For such an element, the proof of Appendix B has to be modified because we evaluate
the polynomial on a larger zone than T̂ = τ−1

T ′ (T ′) namely on T̂T,T ′ = τ−1
T ′ (T ′ ∪ (T ∩ Ω)). With

the quasi-uniform assumption for the meshes, it is readily seen that this zone is included in
T̂ρ

R
= {x ∈ R

d : dist(x, T̂ ) ≤ ρ
R
} for some ρ

R
> 0 independent of h, T and T ′. Lemma 7 can be

easily adapted remarking that there exists a constant C > 0 independent of h such that

‖v̂‖∞,T̂ρ
R

≤ C‖v̂‖∞,T̂ ∀v̂ ∈ Pk(R
d),
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using again that all norms are equivalent in Pk(R
d). From this the estimate

∫

Γ
D
∩T

(vh)2dΓ ≤ Ch−1
T

∫

Ω∩T ′

(vh)2dx,

where vh(x) := v̂(τ−1
T ′

(x)), x ∈ R
d follows. Thus (27) can be established remarking that the

element T ′ can be selected as a neighbor element only a finite number times independently of h
still due to the quasi-uniform property of the meshes.
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