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Abstract

In this article, we study a double barrier version of the standard Parisian options.
We give closed formulas for the Laplace transforms of their prices with respect to the
maturity time. We explain how to invert them numerically and prove a result on the
accuracy of the numerical inversion when the function to be recovered is sufficiently
smooth. Henceforth, we study the regularity of the Parisian option prices with respect
to maturity time and prove that except for particular values of the barriers, the prices
are of class C∞ (see Theorem 5.1). This study heavily relies on the existence of a density
for the Parisian times, so we have deeply investigated the existence and the regularity of
the density for the Parisian times (see Theorem 5.4).

Keywords : double barrier option, Parisian option, Laplace transform, numerical inver-
sion, Brownian excursions, Euler summation, option price regularity.

1 Introduction

The pricing and hedging of vanilla options is now part of the common knowledge and the
general interest has moved on to more complex products. Practitioners need to be able to
price these new products. Among them, there are the so-called path-dependent
options. The ones we study in this paper are called double barrier Parisian options.
They are a version with two barriers of the standard Parisian options introduced by
Chesney, Jeanblanc-Picqué, and Yor (1997). Parisian options can be seen as barrier options
where the condition involves the time spent in a row above or below a certain level, and not
only a hitting time. Double barrier Parisian options are options where the conditions
imposed on the asset involve the time spent out of the range defined by the two barriers. In
practice, Parisian options can be seen as a guarantuee against easy arbitrage: they are far
less sensitive to influential agent on the market than standard barrier options. It is quite
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easy for an agent to push the price of a stock momentarily but not on a longer period so
that it would affect the Parisian contract.

The valuation of single barrier Parisian options can be done by using several different
methods: Monte Carlo simulations, lattices, Laplace transforms or partial differential
equations. As for standard barrier options, using simulations leads to a biased problem, due
to the choice of the discretisation time step in the Monte Carlo algorithm. The problem of
improving the performance of Monte Carlo methods in exotic pricing has drawn much
attention and has particularly been developed by Andersen and Brotherton-Ratcliffe (1996).
Concerning lattices, we refer the reader to the work of Avellaneda and Wu (1999) and to
Costabile (2002). An approach based on partial differential equations has been developed by
Haber et al. (1999) and Wilmott (1998). We also refer to Forsyth and Vetzal (1999) for
the pricing of discrete Parisian options using a PDE approach. The idea of using Laplace
transforms to price single barrier Parisian options is owed to Chesney et al. (1997). In their
work, they explain how to compute these Laplace transforms. We also refer to Schröder
(2003) and Hartley (2002). The different formulas of the Laplace transforms of all the
different Parisian option prices have been derived by Labart and Lelong (2005). Concerning
the numerical inversion of the Laplace transforms, we refer to Abate et al. (1999) for a
description of a fast and accurate numerical inversion. This algorithm is implemented by
Bernard et al. (2005) and compared to a procedure for approximating a general Laplace
transform with one that can be easily inverted. Moreover, there are some accuracy problems
with this method as recently discussed by Abate and Valko (2004). Some other techniques
for pricing Parisian options can also be found in the literature: an original concept of
implied barrier was developed by Anderluh and Van der Weide (2004), the idea is to
replace the Parisian option by a standard barrier option with a suitably shifted barrier.

The valuation of double barrier Parisian options has not been investigated much sofar.
Baldi, Caramellino, and Iovino (2000) have proposed a method based on Monte Carlo
simulations corrected by the means of sharp large deviation estimates. In this paper, we
compute the prices of double barrier Parisian options by using Laplace transforms, and give
some properties on the regularity of the prices. First, we give a detailed computation of the
Laplace transforms of the prices with respect to the maturity time. The methodology used
here significantly differs from Chesney et al. (1997). Then, we establish a formula for the
inverse of the Laplace transforms using contour integrals. Since it cannot be computed
exactly, we give an upper bound of the error between the approximated price and the exact
one. We improve the approximation by using the Euler summation to get a fast and
accurate numerical inversion following Abate et al. (1999). The accuracy of the inversion
heavily relies on the regularity of the function to be recovered. So, we naturally study the
regularity of the Parisian option prices with respect to maturity time. This study in turn
depends on the existence of a density for the Parisian times (see Definition 2.5), which is
deeply investigated in this work. To our knowledge, the existence (or not depending on the
value of the barrier) of a density for the Parisian time is a new result.

The paper is organized as follows. In Section 2, we introduce the general framework and give
precise definitions of double barrier Parisian option prices (double Parisian option in short).
In Section 3, we explain how to compute the price of a double Parisian option, the detailed
computation is carried out in Section 4. The pricing of double Parisian options is achieved
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through numerical inversion of the Laplace transform of the prices w.r.t maturity time. As
mentioned above, the technique used to prove these results is based on the regularity of the
option prices and the existence of a density for the Parisian times. These two points are
studied in details in Section 5. Section 6 is devoted to the inversion of the Laplace transforms
and we state some results concerning the accuracy of the method.

2 Definitions

2.1 Some notations

We consider a Brownian motion W = (Wt)t≥0 defined on a filtered probability space (Ω,F ,Q),
which models a financial market. We assume that Q is the risk neutral measure and that
F = (Ft)t≥0 is the natural filtration of W . We denote by T the maturity time. In this
context, we assume that the dynamics of an asset price is given by the process S

∀t ∈ [0, T ], St = x e(r−δ−σ2/2)t+σWt ,

where r > 0 is the interest rate, δ > 0 the dividend rate, σ > 0 the volatility and x > 0 the
initial value of the stock. Working under Q is not that convenient, we would rather use a
new probability measure P (introduced in Definition 2.1) which enables to integrate the drift
(r − δ − σ2/2) into the Brownian motion itself.

Definition 2.1 (Definition of m,P and Z). Let m = 1
σ

(
r − δ − σ2

2

)
and P be a new proba-

bility measure, which makes Z = (Zt = Wt +mt)0≤t≤T a P-Brownian motion. The change of
probability is given by

dQ

dP |FT

= emZT −m2

2
T ,

and under P, the dynamics of S is given by

∀t ∈ [0, T ], St = x eσZt .

Remark 2.2. Since the drift term linking W and Z is deterministic, F is also the natural
filtration of Z.

Without any further indications, all the processes and expectations are considered under P.

Definition 2.3 (Laplace transform). The Laplace transform of a function f is defined by

f̂(λ) =

∫ +∞

0
e−λtf(t)dt,

when the integral exists.

Definition 2.4 (the star notation). For any function f , we define the (r,m) discounted value
of f by

f⋆(t) = e(r+
1
2
m2)tf(t).

Before introducing double barrier Parisian options, we recall some definitions on excursions
and on single barrier Parisian options.
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2.2 Single barrier Parisian options

Parisian options can be seen as barrier options where the condition involves the time spent
in a row above or below a certain level and not only a hitting time. As for barrier options,
which can be activated or canceled (depending on whether they are In or Out) when the asset
S hits the barrier, Parisian options can be activated (In options) or canceled (Out options)
after S has spent more than a certain time D in an excursion. Such an excursion can also
be described in terms of the Brownian motion Z. For a given barrier L for the process S, we
introduce the corresponding barrier b for Z defined by b = 1

σ log(Lx ).

D

T
−
bTb

b
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Figure 1: Brownian paths

Definition 2.5 (Parisian times T−
b and T+

b ). For any pathwise continuous and Ft−adapted
process X, we introduce the following concepts. Let b ∈ R, we define the hitting time of level
b by

Tb(X) = inf{u > 0 : Xu = b}.
In order to define T−

b (X) (resp. T+
b (X)) the first time the process X makes an excursion

longer than D below (resp. above) the level b, we introduce gbt (X) — the last time before t,
X has hit b — for any t > 0

gbt (X) = sup {u ≤ t : Xu = b}.

T−
b (X) = inf {t > 0 : (t− gbt (X)) 1{Xt<b} ≥ D},
T+
b (X) = inf {t > 0 : (t− gbt (X)) 1{Xt>b} ≥ D}.

Figure 1 represents a Brownian path which stays below b longer than D. When no confusion
is possible and the process X is actually a Brownian motion, we dare write Tb, T

−
b and T+

b
instead of Tb(X), T−

b (X) and T+
b (X).
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Definition 2.6 (Parisian Options). A Parisian option is defined by three characteristics:

• Up or Down,

• In or Out,

• Call or Put.

We use the following notations:

• PDIC stands for a Parisian Down and In call,

• PUOP stands for a Parisian Up and Out put, etc.

We recall that the price of a Parisian Down and In option with barrier L is given by
e−rTEQ[φ(ST )1{T−

L
(S)≤T}], where φ denotes the payoff. Using Definition 2.1, the price can be

written

e−(r+ m2

2
)TEP[emZT φ(x eσZT )1{T−

b
(Z)≤T}],

with b = 1
σ log(L/x). Indicator 1{T−

b
(Z)≤T} means that the option is activated if the Brownian

motion Z makes an excursion below b longer than D before T . Other single barrier Parisian
options are built in the same way.

2.3 Double barrier Parisian options

For the sake of simplicity, we omit the word “barrier” in the following definitions of double
barrier Parisian options, i.e. “double Parisian options” means “double barrier Parisian op-
tions”. Double Parisian options are barrier options that are activated (or canceled) if the
underlying asset S stays outside a range (denoted [L1, L2] in the following) long enough in a
row.
As for single barrier Parisian options, we introduce the barriers related to the Brownian
motion.

Definition 2.7 (Definition of b1, b2 and k). Let b1 and b2 denote the barriers corresponding
to L1 and L2 for the Brownian motion Z:

b1 =
1

σ
log

(
L1

x

)
, b2 =

1

σ
log

(
L2

x

)
.

We also introduce k = 1
σ log

(
K
x

)
.

2.3.1 Double Parisian Out options

A Double Parisian Out option is worthless if the asset S makes an excursion outside the range
[L1, L2] older than D before maturity time T . The price of a Double Parisian Out option at
time 0 with payoff φ(ST ) is given by

e−rT EQ

(
φ(ST )1{T−

L1
(S)>T}1{T+

L2
(S)>T}

)
. (2.1)

From (2.1) and Definition 2.1, we define the price of a Double Parisian Out call.
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Definition 2.8 (Double Parisian Out call). Let DPOC(x, T ;K,L1, L2; r, δ) denote the value
of a Double Parisian Out call. Then,

DPOC(x, T ;K,L1, L2; r, δ) = e−(r+ 1
2
m2)T E(emZT (x eσZT −K)+1{T−

b1
(Z)>T}1{T+

b2
(Z)>T}).

Using the “star” notation (see Definition 2.4), we obtain

DPOC⋆(x, T ;K,L1, L2; r, δ) = E(emZT (x eσZT −K)+1{T−
b1

(Z)>T}1{T+
b2

(Z)>T}). (2.2)

2.3.2 Double Parisian In options

The owner of a Double Parisian In option receives the payoff if S makes an excursion outside
the range [L1, L2] older than D before maturity time T . The price of a Double Parisian In
option at time 0 with payoff φ(ST ) is given by

e−rT EQ

(
φ(ST )1{{T−

L1
(S)≤T}∪{T+

L2
(S)≤T}}

)
. (2.3)

From (2.3), we define the price of a Double Parisian In call.

Definition 2.9 (Double Parisian In call). Let DPIC(x, T ;K,L1, L2; r, δ) denote the value
of a Double Parisian In call. Then,

DPIC(x, T ;K,L1, L2; r, δ) = e−(r+ 1
2
m2)T E(emZT (x eσZT −K)+1{{T−

b1
(Z)≤T}∪{T+

b2
(Z)≤T}}).

Using the “star” notation (see Definition 2.4), we obtain

DPIC⋆(x, T ;K,L1, L2; r, δ) = E(emZT (x eσZT −K)+1{{T−
b1

(Z)≤T}∪{T+
b2

(Z)≤T}}).

3 Valuation of Double Parisian options

This section is devoted to the valuation of Double Parisian options. We establish several
relations between the different Double Parisian option prices so that computing DPOC⋆

and DPIC⋆ comes down to evaluating E(emZT (x eσZT −K)+1{T−
b1

≤T}1{T+
b2

≤T}). As for single

barrier Parisian options, parity relationships between call and put options hold.

3.1 Valuation of Double Parisian Out and In calls

Before giving new formulas for DPOC⋆ and DPIC⋆, we define the “star” price of a standard
call option.

Definition 3.1. Let SC denote the price of a standard call option.

SC⋆(x, T ;K; r, δ) = E((x eσZT −K)+ emZT ).

Proposition 3.2. Using the notations of Section 2.2, the following relations hold

DPOC⋆(x, T ;K,L1, L2; r, δ) =SC⋆(x, T ;K; r, δ) − PDIC⋆(x, T ;K,L1; r, δ)

− PUIC⋆(x, T ;K,L2; r, δ) +A(x, T ;K,L1, L2; r, δ), (3.1)

DPIC⋆(x, T ;K,L1, L2; r, δ) =PDIC⋆(x, T ;K,L1; r, δ)

+ PUIC⋆(x, T ;K,L2; r, δ) −A(x, T ;K,L1, L2; r, δ), (3.2)
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where

A(x, T ;K,L1, L2; r, δ) = E

[
1{T−

b1
≤T}1{T−

b1
≤T+

b2
}e
mZ

T
−
b1 PUIC⋆

(
xe

σZ
T
−
b1 , T − T−

b1
;K,L2; r, δ

)]

+ E

[
1{T+

b2
≤T}1{T+

b2
<T−

b1
}e
mZ

T
+
b2 PDIC⋆

(
xe

σZ
T

+
b2 , T − T+

b2
;K,L1; r, δ

)]
. (3.3)

Proof. Step 1 : Equation (3.1) ensues from Definition 2.8 and from the following equality

1{T−
b1
>T}1{T+

b2
>T} = 1 − 1{T−

b1
≤T} − 1{T+

b2
≤T} + 1{T−

b1
≤T}1{T+

b2
≤T},

with
A(x, T ;K,L1, L2; r, δ) = E[emZT (x eσZT −K)+1{T−

b1
≤T}1{T+

b2
≤T}]. (3.4)

Equation (3.2) ensues from Definition 2.9 and from 1{{T−
b1

≤T}∪{T+
b2

≤T}} = 1{T−
b1
≤T}+1{T+

b2
≤T}−

1{T−
b1

≤T}1{T+
b2

≤T}.

Step 2 : We split Equation (3.4) into two terms depending on the relative position of T−
b1

and T+
b2

. This leads to

A(x, T ;K,L1, L2; r, δ) = E

[
1{T−

b1
≤T}1{T−

b1
<T+

b2
}E

[
emZT (x eσZT −K)+1{T+

b2
≤T}

∣∣FT−
b1

]]

+ E

[
1{T+

b2
≤T}1{T+

b2
<T−

b1
}E

[
emZT (x eσZT −K)+1{T−

b1
≤T}

∣∣FT+
b2

]]

△
= A1 +A2.

A1 and A2 being almost symmetric in b1 and b2, we only focus on the computation of A1. By
conditioning w.r.t to FT−

b1

and using the strong Markov property, we find

A1 = E

[
1{T−

b1
≤T}1{T−

b1
<T+

b2
}e
mZ

T
−
b1 E[emBT−τ (xeσ(BT−τ +z) −K)+1{T+

b2−z
≤T−τ}]

∣∣τ=T−
b1
,z=Z

T
−
b1

]
,

where B is a Brownian motion independent of FT−
b1

. From this equality we easily deduce the

first part of the r.h.s. of (3.3). A similar proof shows that A2 is equal to the second part of
the r.h.s. of (3.3). �

Remark 3.3. Dealing with inequalities of the type 1{T±
b
≤T} is much simpler than 1{T±

b
>T}

since we can condition w.r.t. FT±
b

and use the strong Markov property. That’s why we have

split Equation (2.2) into four terms using the prices of single barrier Parisian options.

Remark 3.4. The computation of DPOC⋆ will be done using the numerical inversion of its
Laplace transform with respect to T . Explicit formulas for the Laplace transforms of the first
three terms in (3.1) — ŜC⋆, P̂DIC⋆, P̂UIC⋆ — are recalled in Appendix D.

It remains to compute the Laplace transform of A w.r.t. maturity time.
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3.2 A Call Put parity relationship

Proposition 3.5. The following relationships hold

DPOP (x, T ;K,L1, L2; r, δ) = xK DPOC

(
1

x
, T ;

1

K
,

1

L2
,

1

L1
; δ, r

)
,

DPIP (x, T ;K,L1, L2; r, δ) = xK DPIC

(
1

x
, T ;

1

K
,

1

L2
,

1

L1
; δ, r

)
.

The proof being the same as for single barrier Parisian options, we refer to Chesney et al.
(1997, Section 6) for more details.

4 Computation of Laplace transforms

The computation of DPOC⋆ and DPIC⋆ will be done using the numerical inversion of their
Laplace transforms w.r.t. the maturity time. As explained in Remark 3.4, the computation
of the Laplace transforms of DPOC⋆ and DPIC⋆ boils down to the one of A. We would like
to point out that the methodology used here to compute the Laplace transforms significantly
differs from the one of the pioneer work of Chesney et al. (1997) on single Parisian options.

Theorem 4.1 (Laplace transform of Double barrier Parisian options). The following relations
hold

D̂POC
⋆
(x, λ;K,L1, L2; r, δ) =ŜC

⋆
(x, λ;K; r, δ) − P̂DIC

⋆
(x, λ;K,L1; r, δ)

− P̂UIC
⋆
(x, λ;K,L2; r, δ) + Â(x, λ;K,L1, L2; r, δ),

D̂PIC
⋆
(x, λ;K,L1, L2; r, δ) =P̂DIC

⋆
(x, λ;K,L1; r, δ)

+ P̂UIC
⋆
(x, λ;K,L2; r, δ) − Â(x, λ;K,L1, L2; r, δ),

where Â is the Laplace transform of A w.r.t. maturity time given by

Â(x, λ;K,L1, L2; r, δ) =E

[
e
−λT−

b11{T−
b1
<T+

b2
}

]
E

[
e

√
2λZ

T
−
b1

]
P̂UIC

⋆

|x<L2
(x, λ;K,L2; r, δ)

+ E

[
e
−λT+

b21{T+
b2
<T−

b1
}

]
E

[
e
−
√

2λZ
T

+
b2

]
P̂DIC

⋆

|x>L1
(x, λ;K,L1; r, δ),

where P̂UIC
⋆

|x<L2
(resp. P̂DIC

⋆

|x>L1
) means that we use the definition of P̂UIC

⋆
(resp.

P̂DIC
⋆
) in the case x < L2 (resp. x > L1).

We refer to Appendix C for explicit formulas of E[e
−λT−

b11{T−
b1
<T+

b2
}], E[e

−λT+
b21{T+

b2
<T−

b1
}],

E[exp(
√

2λZT−
b1

)] and E[exp(−
√

2λZT+
b2

)].

Proof. The first part of the theorem directly ensues from Proposition 3.2.
Using the decomposition of A given by Proposition 3.2, we can split A into A1 + A2. We
concentrate on Â1 as A2 can be treated the same way. We aim at proving that

Â1 = E

[
e
−λT−

b11{T−
b1
<T+

b2
}

]
E

[
e

√
2λZ

T
−
b1

]
P̂UIC

⋆

|x<L2
(x, λ;K,L2; r, δ). (4.1)
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Equality (4.1) ensues from the two following relations — proved hereafter —

Â1 = E

[
e
−λT−

b11{T−
b1
<T+

b2
}

]
E

[
e
mZ

T
−
b1 P̂UIC

⋆
(x e

σZ
T
−
b1 , λ;K,L2; r, δ)

]
, (4.2)

E

[
e
mZ

T
−
b1 P̂UIC

⋆
(x e

σZ
T
−
b1 , λ;K,L2; r, δ)

]
= E

[
e

√
2λZ

T
−
b1

]
P̂UIC

⋆

|x<L2
(x, λ;K,L2; r, δ). (4.3)

Step 1: Proof of (4.2).
As a function of T , A1 shows up as a convolution, hence its Laplace transform is given by

Â1 = E

[
e
−λT−

b11{T−
b1
<T+

b2
}e
mZ

T
−
b1 P̂UIC

⋆
(xe

σZ
T
−
b1 , λ;K,L2; r, δ)

]
.

From Chesney et al. (1997, Sections 8.3 and 8.4), we know that T−
b1

is an F+
gt
−stopping time

whereas ZT−
b1

is independent of F+
g

T
−
b1

. Hence, Step 1 is completed.

Step 2: Proof of (4.3).

Since x exp(σZT−
b1

) < L2 (as ZT−
b1

< b1), we compute P̂UIC
⋆
(x exp(σZT−

b1

), λ;K,L2; r, δ)

using the definition of P̂UIC
⋆
(x, λ;K,L2; r, δ) in the case x < L2. In such a case, we can

write P̂UIC
⋆
(x, λ;K,L2; r, δ) = x

√
2λ−m

σ f(λ;K,L2; r, δ), where f can easily be deduced from
the formulas recalled in Appendix D. Then, we find

E

[
e
mZ

T
−
b1 P̂UIC

⋆
(xe

σZ
T
−
b1 , λ;K,L2; r, δ)

]
= E


e

mZ
T
−
b1

(
x e

σZ
T
−
b1

)√
2λ−m

σ

f(λ;K,L2; r, δ)


 ,

and the result follows. �

5 Some regularity results for the Parisian option prices

This section is devoted to the study of the regularity w.r.t. the maturity time of the
Parisian option prices. These are actually computed by means of a numerical inversion of
their Laplace transforms w.r.t maturity time. It is proved in Section 6 (see Proposition 6.5),
that the convergence speed of the technique used to perform the numerical inversion heavily
relies on the regularity of the function to be recovered.
As we will discover it, the regularity w.r.t. the maturity time of the Parisian option prices
depends on the value of b for single Parisian options and of b1 and b2 for double Parisian
options, i.e. the relative positions of the initial value of the asset with the lower and upper
barriers. More precisely, Theorem 5.1 states that the price of a double Parisian option is of
class C∞ when b1 < 0 and b2 > 0 but is discontinuous when b1 > 0 or b2 < 0. Concerning the
special case b1 = 0 or b2 = 0, we state that the price of a double barrier Parisian option is
continuous and may even be C1 but no more regularity can be expected. Theorem 5.1 ensues
from Theorem 5.2, which deals with the regularity of the single barrier Parisian option prices.
As for double Parisian options, the regularity depends on the position of x compared to the
barrier L. The proof of Theorem 5.2 is based on the regularity of the density of the “Parisian
time” T−

b . Section 5.2 is entirely devoted to the study of the density, when it exists, of the
“Parisian times”. We will prove that the r.v. T−

b has a density for b < 0, but not for b > 0.
For the special case b = 0, we prove that T−

0 has a discontinuous density.
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5.1 Regularity of option prices

Theorem 5.1 (Regularity of double Parisian option prices). Let f(t) be the “star” price of
a double barrier Parisian option with maturity time t.

• If b1 < 0 and b2 > 0, f is of class C∞ and for all k ≥ 0, f (k)(t) = O
(

e
(m+σ)2

2
t

)
when t

goes to infinity.

• If b1 > 0 or b2 < 0, f is discontinuous in t = D.

• If b1 = 0 or b2 = 0, f is continuous. Moreover, if b1 = 0 (resp. b2 = 0), call prices
(resp. put prices) are C1 if x ≤ K (resp. if x ≥ K).

Theorem 5.2 (Regularity of single Parisian option prices). We consider the regularity of
single Parisian option prices w.r.t. maturity time.

• If b < 0 (resp. b > 0), let f(t) be the price of Parisian Down (resp. Up) option with

maturity t. f is of class C∞ and for all k ≥ 0, f (k)(t) = O
(

e
(m+σ)2

2
t

)
when t goes to

infinity.

• If b > 0 (resp. b < 0), the prices of Parisian Down (resp. Up) options are discontinuous
in t = D.

• If b = 0, Parisian option prices are continuous. Moreover, Parisian Down call (resp.
Up put) prices are C1 when x ≤ k (resp. x ≥ k).

Theorem 5.1 ensues from Proposition 3.2, Theorem 5.2 and from the following result:

Lemma 5.3. For any b1 and b2, A(x, t;K,L1, L2; r, δ) is a C∞ function w.r.t. parameter t.

Moreover, for all k ≥ 0, ∂kt A = O
(

e
(m+σ)2

2
t

)
when t goes to infinity.

Proof of Theorem 5.2. The proof being the same for Down and Up
options, we only prove Theorem 5.2 for Parisian Down option prices.
It is sufficient to prove it for f(t) = PDIC⋆(x, t;K,L; r, δ) since
PDOC(x, t;K,L; r, δ) = SC(x, T ;K; r, δ) − PDIC(x, t;K,L; r, δ), the regularity of a
PDOC ensues from the one of a PDIC. Moreover, the following proof is still valid for
Parisian Down In put prices.

Assume b < 0. First, we prove that f is a C∞ function. Using the strong Markov property
leads to

f(t) = E

[
e
mZ

T
−
b SC⋆(xe

σZ
T
−
b , t− T−

b ;K; r, δ)1{T−
b
≤t}

]
. (5.1)

Since ZT−
b

and T−
b are independent, we get f(t) = E

[
φ(t− T−

b )1{T−
b
≤t}

]
, where φ(t) =

E

[
e
mZ

T
−
b SC⋆(xe

σZ
T
−
b , t;K; r, δ)

]
. Let ν denote the density of ZT−

b
(see Chesney et al. (1997)

for its expression) and p(w) = 1√
2π

e−
w2

2 . We get

φ(t) =

∫ ∞

−∞
dz

∫ ∞

−∞
dw(xeσ(w+z) −K)+em(w+z)p(w/

√
t)ν(z).
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From this equality, we easily deduce that φ is a C∞ function on R⋆
+. Since b < 0, we know

from Theorem 5.4 that T−
b has a density µ of class C∞ satisfying µ(k)(0) = µ(k)(∞) = 0, for

all k ≥ 0. Then, we can write f(t) =
∫ t
0 φ(t − u)µ(u)du and the regularity of φ enables to

complete the first part of the proof.

Second, we prove that for all k ≥ 0, f (k)(t) = O
(

e
(m+σ)2

2
t

)
when t goes to infinity. A change

of variables in Equation (5.1) leads to

f(t) =

∫ t

0
dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
τ+z) −K)+em(w

√
τ+z)p(w)ν(z)µ(t − τ).

Since µ is of class C∞ and all its derivatives are null at 0 and bounded on any interval [0, T ]
(see Theorem 5.4), we get for all k ≥ 0,

f (k)(t) =

∫ t

0
dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw (xeσ(w

√
τ+z) −K)+em(w

√
τ+z)p(w)ν(z)µ(k)(t− τ).

Moreover, we can bound f (k)

∣∣∣f (k)(t)
∣∣∣ ≤

∫ t

0
dτ

∫ ∞

−∞
dz

∫ ∞

−∞
dw xe(m+σ)(w

√
τ+z)p(w)ν(z)

∥∥∥µ(k)
∥∥∥
∞
,

≤
∫ ∞

−∞
xe(m+σ)zν(z)dz

∥∥∥µ(k)
∥∥∥
∞

∫ t

0
e

(m+σ)2

2
τdτ

≤ e
(m+σ)2

2
t 2x

(m+ σ)2

∥∥∥µ(k)
∥∥∥
∞

∫ ∞

−∞
e(m+σ)zν(z)dz.

Assume b > 0. From the definition of f , we know that for all t < D, f(t) = 0, and

f(D) = E
[
φ(0)1{T−

b
=D}

]
= E

[
emZD(xeσZD −K)+

]
P(T−

b = D). Using Theorem 5.4 yields

f(D) > 0, and the result follows.

Assume b = 0. From Theorem 5.4, we know that T−
0 has a density. Then, we can write,

f(t) =
∫ t
0 dτφ(τ − u)µ(u)du. An integration by parts leads to

f(t) = φ(0)V (t) − φ(t)V (0) +

∫ t

0
φ′(t− u)V (u)du,

where V (u) = P(T−
0 ≤ u). Since V is continuous (see the proof of Theorem 5.4) and φ is

of class C∞, f is continuous. f ′ is continuous if and only if φ(0) = 0, i.e. if and only if

E[e
mZ

T
−
0 (xe

σZ
T
−
0 −K)+] = 0, which ends the proof. �

Proof of Lemma 5.3. We use the decomposition of A
△
= A1 +A2 given by Equation (3.3). We

only concentrate on A1 as A2 can be treated in the same way. We recall that for t ≥ 0

A1(x, t;K,L1, L2; r, δ) = E

[
1{T−

b1
≤t}1{T−

b1
≤T+

b2
}e
mZ

T
−
b1 PUIC⋆

(
xe

σZ
T
−
b1 , t− T−

b1
;K,L2; r, δ

)]
.
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For the sake of simplicity, we drop all the arguments of A but t. Since T−
b1

is an F+
gt
−stopping

time and ZT−
b1

is independent of F+
g

T
−
b1

, we can write

A1(t) = E


1{T−

b1
≤t}1{T−

b1
≤T+

b2
}E

[
e
mZ

T
−
b1 PUIC⋆

(
xe

σZ
T
−
b1 , t− u;K,L2; r, δ

)]
∣∣u=T−

b1


 . (5.2)

Note that xe
σZ

T
−
b1 < L1. It is fairly easy to adapt the proof of Theorem 5.2 in the case b < 0

to prove that f(t) = E

[
e
mZ

T
−
b1 PUIC⋆

(
xe

σZ
T
−
b1 , t;K,L2; r, δ

)]
is of class C∞ for t > 0 and

that f (k)(t) = O
(

e
(m+σ)2

2
t

)
. Moreover f(t) = 0 if t < D. So f̄(t) = 1{t≥0}f(t) is of class C∞

on R. Then, Equation (5.2) becomes

A1(t) = E

[
1{T−

b1
≤T+

b2
}f̄(t− T−

b1
)

]
.

Because f̄ is of class C∞ on R and T−
b1

is a positive random variable, it is obvious that A1 is
of class C∞ on R+ by repeatedly applying the bounded convergence theorem. Moreover for
any k ≥ 0,

∂kt A1(t) = E

[
1{T−

b1
≤T+

b2
}f̄

(k)(t− T−
b1

)

]
and

∣∣∣∂kt A1(t)
∣∣∣ ≤ E

[∣∣∣f̄ (k)(t− T−
b1

)
∣∣∣
]
.

The fact that ∂kt A1(t) = O
(

e
(m+σ)2

2
t

)
directly ensues from what has been said above. �

5.2 Regularity of the density of the “Parisian times” T
−
b and T

+
b

In this section, T−
b and T+

b are related to a Brownian motion W . We recall (see Definition
2.5) that T−

b (W ) = inf{t > 0 : (t− gbt (W ))1{Wt<b} ≥ D}.

Theorem 5.4. The following assertions hold

• For b < 0 (resp. b > 0), the r.v. T−
b (resp. T+

b ) has a density µ w.r.t Lebesgue’s
measure. µ is of class C∞ and for all k ≥ 0, µ(k)(0) = µ(k)(∞) = 0.

• For b > 0 (resp. b < 0), the r.v. T−
b (resp. T+

b ) is not absolutely continuous w.r.t
Lebesgue’s measure and P(T−

b = D) > 0 (resp. P(T+
b = D) > 0).

• T−
0 has a density which tends to infinity in D+ and equals 0 in D−. Nonetheless, the

jump in D is integrable.

One can refer to Figure 2 to have an overview of what the density and cumulative distribution
of T−

0 look like. These functions are computed by numerically inverting the Laplace transform
of T−

0 . To prove the first part of this proposition, we need the two following lemmas.

Lemma 5.5. We define

N (x+ iy) =
1√
2π

∫ x

−∞
e−

(v+iy)2

2 dv. (5.3)
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Then, N is the analytic prolongation of the cumulative normal distribution function on the
complex plane. Moreover, the following equivalent holds

N (r(1 + i)) ∼ 1 when r → ∞.

Lemma 5.6. For b < 0, we have for u ∈ R

E
(
e−iuT

−
b

)
= O

(
e−|b|

√
|u|

)
when |u| → ∞.

The proofs of Lemmas 5.5 and 5.6 are postponed to Appendix A.

Proof of Theorem 5.4. We only prove Theorem 5.4 for the r.v. T−
b .

Assume b < 0. We recall that (see Appendix C for more details)

E

(
e−

λ2

2
T−

b

)
=

eλb

ψ(λ
√
D)

.

We define O = {z ∈ C;−π
4 < arg(z) < π

4 }. One can easily prove that the function z 7−→
E

(
e−

z2

2
T−

b

)
is holomorphic on the open set O and hence analytic. Moreover, z 7−→ ezb

ψ(z
√
D)

is also analytic on O except perhaps in a countable number of isolated points. These two
functions coincide on R+, so they are equal on O. Consequently, we can derive the following
equality. For all z ∈ C with positive real part, we have

E
(
e−zT

−
b

)
=

e
√

2zb

ψ(
√

2zD)
. (5.4)

We use the following convention: for any z ∈ C with positive real part,
√
z is the only complex

number z′ ∈ O such that z = z′z′.
Thanks to the continuity of both terms in (5.4), the equality also holds for pure imaginary
numbers. Hence, by setting z = iu for u ∈ R in Equation (5.4), we obtain the Fourier
transform of T−

b

E
(
e−iuT

−
b

)
=

e
√

2uib

ψ(
√

2iuD)
.

From Lemma 5.6, we know that the Fourier transform of T−
b is integrable on R, thus the r.v.

T−
b has a density µ w.r.t. the Lebesgue measure given by

µ(t) =
1

2π

∫ ∞

−∞

e
√

2uib

ψ(
√

2iuD)
e−iut du.

Moreover, thanks to Lemma 5.6, u 7−→ uk e
√

2uib

ψ(
√

2iuD)
is integrable and continuous. Hence, µ is

of class C∞. Since µ(t) = 0 for t < D, for all k ≥ 0, µ(k)(0) = 0. Lemma A.1 yields that for
all k ≥ 0, limt→∞ µ(k)(t) = 0.

Assume b > 0. P(T−
b = D) = P(sup0≤u≤DWu ≤ b), which yields the result.
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Assume b = 0. First, let us prove that T−
0 has a density. From Chesney et al. (1997), we

know that the Fourier transform of T−
0 is given by

φ(u) = E[e−iuT
−
0 ] =

1

ψ(
√

2iuD)
.

Using Lemma 5.5, |ψ(u)| ∼
|u|→∞

2
√
πD |u|. So, |ψ(u)|

u is integrable. Hence, the cumulative

distribution function F (t) = P(T−
0 ≤ t) is absolutely continuous w.r.t. Lebesgue’s measure

(see Abate and Whitt (1992) for more details). Henceforth, the r.v. T−
0 has a density.

We will now prove that the density of T−
0 is discontinuous in D. Let V (t) denote the length

of the longest excursion of the Brownian motion up to time t. From the scaling property of
the Brownian motion, it is clear that V (t) and tV (1) are equal in distribution. In the sequel,
we denote V (1) by V . We can link V and F . For t ≥ D, we have

F (t) = P(T−
0 ≤ t) = P(V (t) ≥ D) = P(V ≥ D

t
).

From Pitman and Yor (1997), we know that V has the same distribution as
1

1+R1+R1R2+R1R2R3+...
where Rn has the β(n2 , 1) distribution and the Rn are mutually in-

dependent. We are interested in the limit of F (D+εD)−F (D)
εD when ε tends to zero.

F (D + εD) − F (D) = P(V ≥ 1

1 + ε
) = P(R1 +R1R2 +R1R2R3 + · · · ≤ ε). (5.5)

We have the following inclusions
(
{R1 ≤ ε

2
} ∪ {1 +R2 +R2R3 + · · · ≤ 2}

)
⊂ {R1 +R1R2 + · · · ≤ ε} ⊂ {R1 ≤ ε}. (5.6)

Moreover, P(R1 ≤ ε
2 , 1 + R2 + R2R3 + · · · ≤ 2) = P(R1 ≤ ε

2)P(R2 + R2R3 + · · · ≤ 1). From
the equality P(R1 ≤ ε

2) =
√

ε
2 , we deduce using Equation (5.6) that

c
√
ε ≤ P(V ≥ 1

1 + ε
) ≤ √

ε,

where 0 < c ≤ 1√
2
. Plugging this into Equation (5.5), proves that F (D+εD)−F (D)

εD goes to

infinity at the rate 1√
ε

when ε goes to zero. Note that the jump is however integrable. Hence,

the density of T−
0 is not differentiable in D. �

6 The inversion of Laplace transforms

This section is devoted to the numerical inversion of the Laplace transforms computed previ-
ously. We recall that the Laplace transforms are computed with respect to the maturity time.
We explain how to recover a function from its Laplace transform using a contour integral.
The real problem is how to numerically evaluate this complex integral. This is done in two
separate steps involving two different errors. First, as explained in Section 6.2 we replace the
integral by a series. The first step creates a discretisation error, which is handled by Propo-
sition 6.3. Secondly, one has to compute a non-finite series. This can be achieved by simply
truncating the series but it leads to a tremendously slow convergence. Here, we prefer to use
the Euler acceleration as presented in Section 6.3. Proposition 6.5 states an upper-bound for
the error due to the accelerated computation of the non finite series. Theorem 6.6 gives a
bound for the global error.
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Figure 2: Parisian time T−
0 : (a) the density function; (b) the cumulative distribution function.

6.1 Analytical prolongations

Because the Laplace inversion is performed in the complex plane, we have to extend the
expressions obtained for the Laplace transforms to the complex plane. To do so, we use
Lemma 5.5 which gives the analytic prolongation of the normal cumulative distribution func-
tion on the complex plane. From Proposition 6.1, it is quite easy to show that the expressions
obtained for a real value of the Laplace parameter are still valid for a complex one with real

part larger than (m+σ)2

2 .

Proposition 6.1 (abscissa of convergence). The abscissa of convergence of the Laplace trans-

forms of the star prices of Parisian options is smaller than (m+σ)2

2 . All these Laplace trans-

forms are analytic on the complex half plane {z ∈ C : Re (z) > (m+σ)2

2 }.

Proof. It is sufficient to notice that the star price of a Parisian option is bounded by
E(emZT (x eσWT +K)).

E(emZT (x eσWT +K)) ≤ K e
m2

2
T +x e

(m+σ)2

2
T = O(e

(m+σ)2

2
T ).

Hence, Widder (1941, Theorem 2.1) yields that the abscissa of convergence of the Laplace

transforms of the star prices is smaller that (m+σ)2

2 . The second part of the proposition ensues
from Widder (1941, Theorem 5.a). �

With the definition of N given by Equation (5.3), it is clear that all the expressions obtained so

far for the Laplace transforms are also valid for complex values of λ satisfying Re (λ) > (m+σ)2

2

since their are analytic on the complex half plane {z ∈ C : Re (z) > (m+σ)2

2 }.

6.2 The Fourier series representation

Thanks to Widder (1941, Theorem 9.2), we know how to recover a function from its Laplace
transform.
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Theorem 6.2. Let f be a continuous function defined on R+ and α a positive number. If the
function f(t) e−αt is integrable, then given the Laplace transform f̂ , f can be recovered from
the contour integral

f(t) =
1

2πi

∫ α+i∞

α−i∞
est f̂(s)ds, t > 0. (6.1)

The variable α has to be chosen greater than the abscissa of convergence of f̂ . The abscissa
of convergence of the Laplace transforms of the double barrier Parisian option prices
computed previously is smaller than (m + σ)2/2 (the Laplace transforms of the single

barrier Parisian options — recalled in Appendix D— are given for λ > (m+σ)2

2 ). Hence, α
must be chosen strictly greater than (m+ σ)2/2.

For any real valued function satisfying the hypotheses of Theorem 6.2, we introduce a trape-
zoidal discretisation of Equation (6.1)

fπ/t(t) =
eαt

2t
f̂(α) +

eαt

t

∞∑

k=1

(−1)kRe

(
f̂

(
α+ i

kπ

t

))
. (6.2)

Proposition 6.3. If f is a continuous bounded function satisfying f(t) = 0 for t < 0, we
have ∣∣eπ/t(t)

∣∣ =
∣∣f(t) − fπ/t(t)

∣∣ ≤ ‖f‖∞
e−2αt

1 − e−2αt
. (6.3)

Remark 6.4. For the upper bound in Proposition 6.3 to be smaller than 10−8 ‖f‖∞, one
has to choose 2αt = 18.4. In fact, this bound holds for any choice of the discretisation step h
satisfying h < 2π/t.

Simply truncating the summation in the definition of fπ/t to compute the trapezoidal integral
is far too rough to provide a fast and accurate numerical inversion. One way to improve the
convergence of the series is to use the Euler summation.

6.3 The Euler summation

To improve the convergence of a series S, we use the Euler summation technique as described
by Abate et al. (1999), which consists in computing the binomial average of q terms from
the p-th term of the series S. The binomial average obviously converges to S as p goes to
infinity. The following proposition describes the convergence rate of the binomial average to
the infinite series fπ/t(t) when p goes to ∞.

Proposition 6.5. Let f be a function of class Cq+4 such that there exists ǫ > 0 s.t. ∀k ≤
q + 4, f (k)(s) = O(e(α−ǫ)s). We define sp(t) as the approximation of fπ/t(t) when truncating
the non-finite series in (6.2) to p terms

sp(t) =
eαt

2t
f̂(α) +

eαt

t

p∑

k=1

(−1)kRe

(
f̂

(
α+ i

πk

t

))
,

and E(q, p, t) =
∑q

k=0C
k
q 2

−qsp+k(t). Then,

∣∣fπ/t(t) − E(q, p, t)
∣∣ ≤ teαt |f ′(0) − αf(0)|

π2

p! (q + 1)!

2q (p+ q + 2)!
+ O

(
1

pq+3

)

when p goes to infinity.
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Using Propositions 6.3 and 6.5, we get the following result concerning the global error on the
numerical computation of the price of a double barrier Parisian call option

Theorem 6.6. Let f be the price of a double barrier Parisian call option. Using the notations
of Proposition 6.5, we have

|f(t) − E(q, p, t)| ≤ S0
e−2αt

1 − e−2αt
+
eαtt |f ′(0) − αf(0)| p! (q + 1)!

π22q (p+ q + 2)!
+ O

(
1

pq+3

)
(6.4)

where α is defined in Theorem 6.2.

Proof of Theorem 6.6. f being the price of a double barrier Parisian call option, we know
that f is bounded by S0. Moreover, f is continuous (actually of class C∞, see Appendix 5.1).
Hence, Proposition 6.3 yields the first term on the right-hand side of (6.4).

Relying on Theorem 5.1, we know that f⋆ is of class C∞ and (f⋆)(k)(t) = O(e
(m+σ)2

2
t), ∀k ≥ 0.

Since f(t) = e−(r+m2/2)t f⋆(t), it is quite obvious that f is also of class C∞ and f (k)(t) =

O
(
e((m+σ)2/2−(r+m2/2))t

)
, ∀k ≥ 0. Since α > (m+σ)2

2 , we apply Proposition 6.5 to get the

result. �

Proof of Proposition 6.5. We compute the difference between two successive terms.

E(q, p + 1, t) − E(q, p, t) =
eαt

2qt

q∑

k=0

Ckq (−1)p+1+kap+k+1,

where

ap =

∫ +∞

0
e−αs cos

(p
t
πs

)
f(s)ds. (6.5)

Let g(s) = e−αsf(s). Since g(k)(∞) = 0 for k ≤ q+3 and g(q+4) is integrable, we can perform
(q + 3) integrations by parts in (6.5) to obtain a Taylor expansion when p goes to infinity

ap =
c2
p2

+
c4
p4

+ · · · + cq

p2[(q+3)/2]
+ O

(
1

pq+4

)
(6.6)

with c2 = t2(f ′(0)−αf(0))
π2 .

We can rewrite (6.6)

ap =
c2

p(p+ 1)
+

c′3
p(p+ 1)(p + 2)

+ · · · +
c′q+3

p(p+ 1) · · · (p+ q + 2)
+ O

(
1

pq+4

)
.

Some elementary computations show that for j ≥ 2

q∑

k=0

Ckq (−1)p+1+k 1

(p + k + 1) · · · (p+ k + j)
= (−1)p+1 p! (q + j − 1)!

(j − 1)!(p + q + j)!
.

Computing
∑q

k=0C
k
q (−1)p+1+kap+k+1 leads to

E(q, p + 1, t) − E(q, p, t) = (−1)p+1 eαt

2qt

{
c2

p! (q + 1)!

(p+ q + 2)!
− c′3

(p+ 1)! (q + 2)!

2(p + q + 4)!

}
+ O

(
1

pq+4

)
.
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Moreover, p! (q+1)!
(p+q+2)! and (p+1)! (q+2)!

(p+q+4)! are both decreasing w.r.t p, so

|E(q,∞, t) −E(q, p, t)| ≤ |c2|
eαt

2qt

p! (q + 1)!

(p+ q + 2)!
+ O

(
1

pq+3

)
.

�

Remark 6.7. Whereas Proposition 6.3 in fact holds for any h < 2π/t, the proof of Propo-
sition 6.5 is essentially based on the choice of h = π/t since the key point is to be able to
write E(q, p + 1, t) − E(q, p, t) as the general term of an alternating series. The impressive
convergence rate of E(q, p, t) definitely relies on the choice of this particular discretisation
step. For a general step h, it is much more difficult to study the convergence rate and one
cannot give an explicit upper bound.

Remark 6.8. For 2αt = 18.4 and q = p = 15, the global error is bounded by S010
−8 +

t |f ′(0) − αf(0)| 10−11. As one can see, the method we use to invert Laplace transforms
provides a very good accuracy with few computations.

Remark 6.9. Considering the case of call options in Theorem 6.6 is sufficient since put prices
are computed using parity relations and their accuracy is hung up to the one of call prices.
Theorem 6.6 also holds for single barrier Parisian options.

A Proof of Lemmas 5.5 and 5.6

Proof of Lemma 5.5.

N (x+ iy) =
1√
2π

∫ x

−∞
e−

(v+iy)2

2 dv.

It is easy to check that ∂xN (x + iy) − ∂yN (x + iy) = 0 and this definition coincides with
the cumulative normal distribution function on the real axis, so it is the unique analytic
prolongation. We write N (x+ iy) = N (x) +

∫ y
0 ∂rN (x+ ir)dr, to get

N (x+ iy) = N (x) − i
1√
2π

∫ y

0

∫ x

−∞
(v + iu) e−

(v+iu)2

2 dvdu,

= N (x) + i
1√
2π

∫ y

0
e−

(x+iu)2

2 du.

Taking x+ iy = r(1 + i) gives

N (r(1 + i)) = N (r) + i
1√
2π

∫ r

0
e−

(r+iu)2

2 du,

= N (r) + i
1√
2π

∫ 1

0
e

r2

2
(t2−1) e−itr

2
rdt. (A.1)

For t ∈ [0, 1), e
r2

2
(t2−1) r tends to 0 when r goes to infinity. The function r 7−→ e

r2

2
(t2−1) r is

maximum for r = 1
1−t2 , hence the following upper bound holds

e
r2

2
(t2−1) r ≤ 1

1 − t2
e

1
2(t2−1) for all t ∈ [0, 1).

The upper bound is integrable on [0, 1), so by using the bounded convergence theorem, we can
assert that the integral on the right hand side of (A.1) tends to 0 when r goes to infinity. �
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Proof of Lemma 5.6. We only do the proof for u > 0. For r > 0,

ψ(r(1 + i)) = 1 + r(1 + i)
√

2π er
2iN (r(1 + i)).

Using the equivalent of N (r(1+i)) when r goes to infinity (see Lemma 5.5) enables to establish

that |ψ(r(1 + i))| ∼ 2r
√
π when r goes to infinity. Noticing that

√
iu =

√
2u
2 (1 + i) ends the

proof. �

Here is a quite obvious lemma we used in the proof of Theorem 5.4.

Lemma A.1. Let g be an integrable function on R, then

lim
t→∞

∫ ∞

−∞
g(u) eiut du = 0.

B Proof of Proposition 6.3

To prove Proposition 6.3, we need the following result adapted from Abate et al. (1999,
Theorem 5).

Lemma B.1. For any continuous and bounded function f such that f(t) = 0 for t < 0, we
have

eπ/t(t) = fπ/t(t) − f(t) =

∞∑

k = −∞
k 6= 0

f (t(1 + 2k)) e−2kαt .

Proof of Proposition 6.3. By performing a change of variables s = α + iu in the integral in
(6.1), we can easily obtain an integral of a real variable.

f(t) =
eαt

2π

∫ +∞

−∞
f̂(α+ iu)(cos(ut) + i sin(ut))du.

Moreover, since f is a real valued function, the imaginary part of the integral vanishes

f(t) =
eαt

2π

∫ +∞

−∞
Re

(
f̂(α+ iu)

)
cos(ut) − Im

(
f̂(α+ iu)

)
sin(ut))du.

We notice that

Im
(
f̂(α+ iu)

)
= −Im

(
f̂(α− iu)

)
, Re

(
f̂(α+ iu)

)
= Re

(
f̂(α− iu)

)
.

So,

f(t) =
eαt

π

∫ +∞

0
Re

(
f̂(α+ iu)

)
cos(ut) − Im

(
f̂(α+ iu)

)
sin(ut))du.

Using a trapezoidal integral with a step h = π
t leads to Equation (6.2). Remembering that

f(t) = 0 for t < 0, we can easily deduce from Lemma B.1 that

eπ/t(t) =

∞∑

k=1

f (t(1 + 2k)) e−2kαt .

Taking the upper bound of f yields (6.3). �
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C Laplace transforms

First, we define the function ψ, strongly related to the cumulative normal distribution N .

Definition C.1 (Definition of ψ). Let z be in R.

ψ(z) =

∫ ∞

0
x exp(−x

2

2
+ zx)dx = 1 + z

√
2π exp(

z2

2
)N (z).

C.1 Laplace transforms for T
−
b , T

+
b , ZT−

b
and ZT+

b

The following Lemma ensues from Chesney et al. (1997, Sections 8.3 and 8.4), giving the
Laplace transforms of T−

b and T+
b , for b ∈ R.

Lemma C.2. Let θ denote
√

2λ. We recall that the function ψ is given in Definition C.1.
Then,

E[e−λT
−
b ] =

eθb

ψ(θ
√
D)

for b < 0,

= e−λD
(

1 − 2N
(
− b√

D

))

+ ψ(θ
√
D)−1

[
e−θbN

(
θ
√
D − b√

D

)
+ eθbN

(
−θ

√
D − b√

D

)]
otherwise.

E[e−λT
+
b ] =

e−θb

ψ(θ
√
D)

for b > 0,

= e−λD
(

1 − 2N
(

b√
D

))

+ ψ(θ
√
D)−1

[
eθbN

(
θ
√
D +

b√
D

)
+ e−θbN

(
−θ

√
D +

b√
D

)]
otherwise.

To compute the Laplace transforms of ZT−
b

and ZT+
b

we use the densities of these random

variables. We refer to Chesney et al. (1997, Sections 8.3 and 8.4) for an expression of these
densities (note that there is a misprint in Chesney et al. (1997, Appendix 8.3): indicator
1{x<b} is missing in the formula of P(ZD ∈ dx, Tb > D) case b > 0).

Lemma C.3. Let θ denote
√

2λ. We recall that the function ψ is given in Definition C.1.
Then,

E

[
e
−θZ

T
−
b

]
= e−θbψ(θ

√
D) for b < 0,

= 2N
(
− b√

D

)
e−θbψ(θ

√
D)

+ eλD
[
N

(
b√
D

+ θ
√
D

)
− e−2θbN

(
− b√

D
+ θ

√
D

)]
otherwise.
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E

[
e
−θZ

T
+
b

]
= e−θbψ(−θ

√
D) for b > 0,

= 2N
(

b√
D

)
e−θbψ(−θ

√
D)

+ eλD
[
N

(
− b√

D
− θ

√
D

)
− e−2θbN

(
b√
D

− θ
√
D

)]
otherwise.

C.2 Formulas for E[e
−λT−

b11{T−
b1
<T+

b2
}] and E[e

−λT+
b21{T+

b2
<T−

b1
}]

Lemma C.4. Let θ denote
√

2λ. We recall that the function ψ is given in Definition C.1.
Then,

E[e
−λT−

b11{T−
b1
<T+

b2
}] =

E[e
−λT−

b1 ] − a1E[e
−λT+

b2 ]

1 − a1a2
,

E[e
−λT+

b21{T+
b2
<T−

b1
}] =

E[e
−λT+

b2 ] − a2E[e
−λT−

b1 ]

1 − a1a2
,

where a1 = eθb1

ψ(θ
√
D)

E[exp(−θZT+
b2

)] and a2 = e−θb2

ψ(θ
√
D)

E[exp(θZT−
b1

)].

Proof. Let E− (resp. E+) denote E[e
−λT−

b11{T−
b1
<T+

b2
}] (resp. E[e

−λT+
b21{T+

b2
<T−

b1
}]). Then,

E[e
−λT−

b1 ] = E− + E[e
−λT−

b11{T+
b2
<T−

b1
}],

E[e
−λT+

b2 ] = E+ + E[e
−λT+

b21{T−
b1
<T+

b2
}].

We can write E[e
−λT−

b11{T+
b2
<T−

b1
}] = E[E[exp(−λ(T+

b2
+ T̃−

b1−Z
T

+
b2

))
∣∣FT+

b2

]1{T+
b2
<T−

b1
}], where T̃

denotes a stopping time related to a Brownian motion independent of FT+
b2

. Hence, we get

E[e
−λT−

b11{T+
b2
<T−

b1
}] = E[exp(−λT+

b2
)1{T+

b2
<T−

b1
}E[exp(−λ(T̃−

b1−z))]|z=Z
T

+
b2

]. Since b1 −ZT+
b2

< 0,

we get

E[e
−λT−

b11{T+
b2
<T−

b1
}] =

eθb1

ψ(θ
√
D)

E

[
exp(−λT+

b2
)1{T+

b2
<T−

b1
}e

−θZ
T

+
b2

]
.

From Chesney et al. (1997, Sections 8.3 and 8.4) we know that T+
b2

is an F+
gt
−stopping

time whereas ZT+
b2

is independent of F+
g

T
+
b2

. Hence, we get E[e
−λT−

b11{T+
b2
<T−

b1
}] =

eθb1

ψ(θ
√
D)

E[e
−θZ

T
+
b2 ] = a1E+. The same kind of proof leads to E[e

−λT+
b21{T−

b1
<T+

b2
}] = a2E−,

which ends the proof. �
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D Laplace transforms of single barrier Parisian option prices

In this section, we recall the prices of single barrier Parisian options that are required to
compute the double barrier Parisian option prices. In the following, d denotes b−k√

D
and

θ =
√

2λ. We also recall k = 1
σ log(Kx ). For more details on the computations, we refer

to Labart and Lelong (2006).

D.1 Standard call option

ŜC
⋆
(x, λ;K; r, δ) =





K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
for K ≥ x,

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
Ke(m+θ)k

θ(
1

m+θ − 1
m+σ+θ

)
for K ≤ x.

D.2 Parisian down in call

We recall that ψ is defined in Definition C.1. For any λ > (m+σ)2

2 , it holds

P̂DIC
⋆
(x, λ;K,L; r, δ) =

ψ(−θ
√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
,

for L < K and L ≤ x.

P̂DIC
⋆
(x, λ;K,L) =

e(m+θ)b

ψ(θ
√
D)

(
2K

m2 − θ2

[
ψ(−

√
Dm) +

√
2πDe

Dm2

2 mN (−d−
√
Dm)

]

− 2L

(m+ σ)2 − θ2

[
ψ(−

√
D(m+ σ)) +

√
2πDe

D
2

(m+σ)2(m+ σ)N
(
−d−

√
D(m+ σ)

)])

+
Ke(m+θ)k

θψ(θ
√
D)

(
1

m+ θ
− 1

m+ σ + θ

)[
ψ(−θ

√
D) + θeλD

√
2πDN (d− θ

√
D)

]

+
eλD

√
2πD

ψ(θ
√
D)

Ke2bθe(m−θ)kN (−d− θ
√
D)

(
1

m+ σ − θ
− 1

m− θ

)

for K ≤ L ≤ x.
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D.3 Parisian up in call

For any λ > (m+σ)2

2 , it holds

P̂UIC
⋆
(x, λ;K,L; r, δ) = e(m−θ)b

√
2πD

ψ(θ
√
D)

[
2K

m2 − θ2
e

Dm2

2 mN (d+
√
Dm)

− 2L

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N (d+
√
D(m+ σ))

]

+
e−2bθ

ψ(θ
√
D)

Ke(m+θ)keλD
√

2πDN (d− θ
√
D)

(
1

m+ σ + θ
− 1

m+ θ

)

+
e(m−θ)k

θψ(θ
√
D)

K

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN (d− θ

√
D)

)

for x ≤ L ≤ K.

P̂UIC
⋆
(x, λ;K,L; r, δ) =

e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]

+
e−2bθψ(−θ

√
D)

θψ(θ
√
D)

K e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

for K ≤ L and x ≤ L.
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