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Introduction

In order to overcome some difficulties coming from classical finite element strategies (refinement of the mesh around the crack tip, remeshing after crack propagation) many approaches have been developed to make the finite element methods more flexible. In 1973, a nonsmooth enrichment method using a cut-off function for a mesh dependent on the domain geometry is introduced in [START_REF] Strang | An Analysis of the Finite Element Method[END_REF]. Since then, different approaches had been analyzed such the Pufem (the Partition of Unity Finite Element Method) [START_REF] Melenk | The partition of unity finite element method: Basic theory and applications[END_REF], the Arlequin method [START_REF] Bendhia | Multiscale mechanical problems : the Arlequin method[END_REF], the Gfem (Generalized Finite Element Method) [START_REF] Strouboulis | The design and analysis of the Generalized Finite Element Method[END_REF], the Xfem (eXtended Finite Element Method) and the patches enrichment approach [START_REF] Glowinski | Approximation of multi-scale elliptic problems using patches of elements[END_REF]. Inspired by the Pufem, the Xfem was introduced in (Moës et al., 1999b;Moës et al., 1999a)). It consists on the enrichment of the classical finite element basis by a step function along the crack line to take into consideration the discontinuity of the displacement field and on some nonsmooth functions to represent the asymptotic displacement in a vicinity of the crack tip. This enrichment strategy allows the use of a mesh independent of the crack geometry. Since the introduction of the Xfem, a rapidly growing literature have been produced in order to explore the capabilities of the method and improve its accuracy, two examples of which are [START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF] and [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF].

In this paper, we propose and analyze a new variant of Xfem. It consists in the addition of an adapted patch to the classical Xfem method in order to approximate the asymptotic displacement at the crack tip. There is some similarities with the patches enrichment approach proposed in [START_REF] Glowinski | Approximation of multi-scale elliptic problems using patches of elements[END_REF] but with significant differences. The interest of the method is to avoid the enrichment of the finite element space with the complete asymptotic displacement when the latter is too much complicated or when its complete expression is not available. Only a partial knowledge of the form of the asymptotic displacement is necessary. We give a mathematical result of a priori error estimate which allows to analyze the potentialities of the method. These results are validated by some numerical computations and comparisons with the classical Xfem.

The Spider eXtended Finite Element Method (SpiderXfem)

We denote Ω ⊂ R 2 the reference configuration of a cracked linearly isotropic elastic body in plane stress approximation. The boundary of Ω, denoted ∂Ω, is partitioned into three parts Γ D , Γ N and Γ C . A Dirichlet condition is prescribed on Γ D and a Neumann one on Γ N and Γ C . The part Γ C of the boundary is representing the crack (see Fig. 1).

Let V = {v ∈ H 1 (Ω, R 2 ); v = 0 on Γ D }
be the space of admissible displacements and let us define

a(u, v) = Ω σ(u) : ε(u) dx, l(v) = Ω ξ.v dx + ΓN ζ.v dΓ,
The spider extended finite element method 3 . crack tip where σ(u) is the stress tensor, ε(u) is the linearized strain tensor, ξ and ζ are some given force densities on Γ N and Ω respectively, and λ > 0, µ > 0 are the Lamé coefficients (which may have different values on one side and on the other side of the crack for the bi-material case). The elastostatic problem reads as

Γ D Γ C Γ N Ω .
find u ∈ V such that a(u, v) = l(v) ∀v ∈ V.
[1]

We suppose that the solution u to this problem is a sum of a regular part and a nonsmooth part u = u r + u s , such that u r is regular in the sense u r ∈ H 2+ε (Ω; R 2 ) for a fixed ǫ > 0 (see [START_REF] Adams | Sobolev Spaces[END_REF] for the definition of H s (Ω; R 2 ), s ∈ R) and u s is of the form

u s = (r α f i (r)g i (θ)) i=1,2 , [2]
where (r, θ) are the polar coordinates relatively to the crack tip, f i , g i , i = 1, 2 are some regular functions and α ≥ 1/4.

This assumption is satisfied in the homogeneous case at least when ξ, ζ are sufficiently smooth, for a straight crack and when the uncracked domain Ω := Ω ∪ Γ C has a regular boundary (see [START_REF] Grisvard | Singularities in boundary value problems[END_REF][START_REF] Grisvard | Problèmes aux limites dans les polygones -Mode d'emploi[END_REF]). In this case, for which α = 1/2, the expression of the asymptotic displacement is available in many references such as [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF]. Note that, when Ω admits some corners, some additional nonsmooth displacements may appear at these corners which may also be taken into account with additional enrichment in an Xfem like approach.

The main idea of SpiderXfem is to approximate the nonsmooth behavior around the crack tip of Ω by another overlapping mesh. We consider a Lagrange finite element method defined on a triangulation T h of the uncracked domain Ω. In accordance with the Xfem method (Moës et al., 1999b), the appropriate degrees of freedom of T h are enriched using a Heaviside function H equal to 1 on one side of the crack and -1 on the other side. This means that the regular part of the displacement field is approximated by a linear combination of the form

i∈I a i φ i + i∈IH b i Hφ i , [3]
where

a i ∈ R 2 , b i ∈ R 2 , I
is the set of the indices of the classical finite element nodes, I H is the set of the indices of the nodes enriched by the Heaviside function and φ i denotes the shapes functions of the scalar finite element method. We define now another rectangular domain

Ω c = ] -π, π[×]0, r 1 [
in a cartesian coordinate system in r and θ (see Fig. 2). Then, we consider a bi-linear Lagrange finite element method defined on a structured mesh composed of quadrilaterons Q hc of Ω s (h c is the size of the quadrilaterons). In order to take into account the "nonsmooth part" r α , the shape functions of this finite element method are multiplied by the term r α . Then we apply a geometric transformation to Ω c defined by

x = r cos θ + x 0 y = r sin θ + y 0 , [ 4] 
(x 0 , y 0 ) being the coordinates of the crack tip. This allows us to have a "circular" mesh denoted Ω s as depicted in Fig. 2. In order to make a smooth transition between the enriched area and the nonenriched one, we introduce a C 2 cut-off function χ which satisfies for 0

< r 0 < r 1    χ(r) = 1 if r < r 0 , 0 < χ(r) < 1 if r 0 < r < r 1 , χ(r) = 0 if r 1 < r, [5]
which can be, for instance, a piecewise fifth degree polynomial in r. The asymptotic displacement at the crack tip is approximated on Ω s by a linear combination of the form

i∈Is c i χ(r)ψ i (r, θ), [6]
where c i ∈ R 2 , I s is the set of the indices of the finite element nodes on Ω s and ψ i (r, θ) is obtained by applying the geometric transformation to the finite element shape function of the bi-linear finite element method defined on Q hc . The shape functions ψ i can be written as follows:

ψ i (r, θ) = r α p j (r)q k (θ), [7]
where p j (r) and q k (θ) are some piecewise first degree polynomial which represent the shape functions of a P 1 finite element method defined on [0, r 0 ] and [0, 2π], respectively. Finally we overlap Ω and Ω s such that the center of Ω s coincides with the crack tip, and the two sides π and -π coincides with the crack (Fig. 3). Thus, the resulting finite element approximation space over Ω can be written

V h = {u h = i∈I a i φ i + i∈IH b i Hφ i + i∈Is c i χ(r)ψ i (r, θ)}. [8]
The spider extended finite element method 5

. The discrete problem reads as

Geometric transformation θ r +π -π r 1 +π -π Ω s Ω c .
find u h ∈ V h such that a(u h , v h ) = l(v h ) ∀v h ∈ V h . [9]

A priori error estimates

In order to establish an a priori error estimate, we first define an adapted interpolation operator. It is based, as in [START_REF] Chahine | Quasi-optimal convergence result in fracture mechanics with XFEM[END_REF]Chahine et al., submitted) on a decomposition of the solution u to Problem [1] as follows:

u = u rd + χu s .
The part u rd = u r + (1 -χ)u s is still regular in the sense u rd ∈ H 2+ε (Ω; R 2 ) because (1 -χ)u s vanishes in a vicinity of the crack tip and is regular elsewhere. The expression of the interpolation operator over the whole domain Ω is the following:

Π h u = i∈I a i ϕ i + i∈IH b i Hϕ i + i∈Is c i ψ i (r, θ)χ(r).
[10]

The coefficients

a i ∈ R 2 , b i ∈ R 2 are determined by: if i ∈ {I \ I H } then a i = u rd (x i ), if i∈I H and x i ∈Ω k (k ∈{1, 2}, l =k) then        a i = u k rd (x i ) + u l rd (x i ) 2 , b i = u k rd (x i ) -u l rd (x i ) 2 H(x i ), [11]
where x i denotes the node associated to ϕ i , and where it is assumed that there exists a continuation of the crack which splits Ω into two parts denoted Ω 1 and Ω 2 . The notations u 1 rd , u 2 rd stand for the restriction of u rd to Ω 1 and Ω 2 respectively and u 1 rd , u 2 rd ∈ H 2+ε (Ω; R 2 ) are some given regular extensions on Ω of u 1 rd and u 2 rd respectively. The coefficients c i ∈ R 2 are simply defined by

c i = r -α i u s (r i , θ i ), where (r i , θ i ) is the finite element node corresponding to ψ i .
An estimate of the regular part is presented in [START_REF] Chahine | Quasi-optimal convergence result in fracture mechanics with XFEM[END_REF]Chahine et al., submitted). It holds for a constant C > 0 independent of h (for a straight crack):

u rd -Π h u rd 1,Ω ≤ Ch u rd 2+ǫ,Ω ,
where . s,Ω stands for the norm of the space H s (Ω; R 2 ). Thus, it remains to estimate

χu s -Π h χu s 1,Ω = χ(u s - i∈Is c i ψ i ) 1,Ω ,
which has only a contribution inside the enriched area (r < r 1 ). The following lemma gives a first estimate of this term. Lemma 3.1 If α ≥ 1/2, then there exists C > 0 a constant independent of h c (but which may depend on r 0 and |||χ||| = 1 + sup 0≤r≤r0 |χ ′ (r)|) such that denoting e s = r -α (u s -i∈Is c i ψ i ) the following estimate holds: χr α e s 1,Ω ≤ C ( e s 0,Ωc + r∂ r e s 0,Ωc + ∂ θ e s 0,Ωc ) .

If 1/4 ≤ α < 1/2, then there exists C > 0 a constant independent of h c such that the following estimate holds:

χr α e s 1,Ω ≤ C e s L 4 (Ωc) + r∂ r e s L 4 (Ωc) + ∂ θ e s L 4 (Ωc) ,
where • L 4 (Ωc) denotes the norm of the space L 4 (Ω c , R 2 ).

Proof. One has, for some constant C > 0 independent of h c χr α e s 1,Ω ≤ C|||χ||| r α e s 1,Ωs .

But

r α e s 2 1,Ωs = Ωs (r α e s ) 2 dΩ s + Ωs |∇(r α e s )| 2 dΩ s = Ωc r 2α-1 r|e s | 2 + |αe s + r∂ r e s | 2 + |∂ θ e s | 2 drdθ
If α ≥ 1/2 the term r 2α-1 can be bounded by r 2α-1 0 which gives the first estimate and if 1/4 ≤ α < 1/2 the second estimate is obtained thanks to Schwarz's inequality.

The regular case

Standard results on Lagrange interpolation operator (see [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF][START_REF] Ern | Éléments finis: théorie, applications, mise en oeuvre[END_REF]) lead to the following result.

Proposition 3.1 If α ≥ 1/2, f i ∈ H 2 (0, r 0 ), i = 1, 2 and g i ∈ H 2 (0, 2π), i = 1, 2
then the following estimate holds for e s = r -α (u s -i∈Is c i ψ i ):

χr α e s 1,Ω ≤ Ch c f (r)g(θ) 2,Ωc .
If 1/4 ≤ α < 1/2, f i ∈ H 2 (0, r 0 ), i = 1, 2 and g i ∈ H 2 (0, 2π), i = 1, 2 then the following estimate holds:

χr α e s 1,Ω ≤ Ch c f (r)g(θ) W 2,4 (Ωc) ,
where W 2,4 (Ω c ) is the standard Sobolev space (see [START_REF] Adams | Sobolev Spaces[END_REF]).

This result indicates that if the functions f i , i = 1, 2 and g i , i = 1, 2 are some regular functions with respect to r and θ respectively then the SpiderXfem allows to have an optimal convergence rate provided that h c is of the same order of h (i.e. ∃ η > 0, h c ≤ ηh).

Note that in the homogeneous case (constant lamé coefficients), functions f i , i = 1, 2 are not necessary. Thus, the functions p j (r) can be omitted in the definition of ψ i [7]. Which means that only a discretization with respect to the variable θ is necessary. This, of course, greatly reduces the number of degrees of freedom necessary to represent the asymptotic behavior of the displacement.

The bi-material case

In the bi-material case (lamé coefficients having different values from one side of the crack to the other), the typical form of the asymptotic displacement at the crack type is (see [START_REF] Rice | Elastic fracture mechanics concepts for interfacial cracks[END_REF][START_REF] Chang | The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface[END_REF] for instance) √ r sin(β log r) g(θ) + √ r cos(β log r)g(θ), [12] where g and g are some regular (trigonometric) functions of θ. Unfortunately, the functions sin(β log r) and cos(β log r) are not sufficiently regular for the result of the previous section to apply. A rapid analysis allows to note that the term r∂ r e s 0,Ωc in Lemma 3.1 only gives a convergence rate of order √ h c .

The conclusion of this mathematical analysis is that it seems necessary to enrich the SpiderXfem with the whole nonsmooth behavior in r. In the bi-material case, both the enrichment with √ r sin(β log r) and with √ r cos(β log r) are necessary. However, once these enrichments are considered, no supplementary dependence of the SpiderXfem in r is necessary, similarly to the previous section. Thus, the necessary enrichment in order to obtain an optimal convergence rate is given by the following definition of functions ψ k i :

ψ 1 i = √ r sin(β log r)q i (θ), ψ 2 i = √ r cos(β log r)q i (θ).
The resulting enriched finite element space is

V h = {u h = i∈I a i φ i + i∈IH b i Hφ i + i∈Is,k=1,2 c k i χ(r)ψ k i (r, θ)}.
[13]

Numerical experiments

The computational tests are performed on the simple non-cracked domain Ω = [-0.5; 0.5]×[-0.5; 0.5] and with a crack being the line segment Γ C = [-0.5; 0]×{0}. The tests are done for an homogeneous material. The opening mode displacement field is the exact solution prescribed as a Dirichlet condition on the domain boundary. This solution is shown on Fig. 5. The cut-off function is a piecewise fifth degree polynomial with r 0 = 0.01 and r 1 = 0.4 (see [5]). The computations are made with the SpiderXfem as described in Section 2 and with the classical Xfem with a fixed enrichment area both over a structured triangulation as depicted on Fig. 4. We make the use of Getfem++, our object oriented C++ finite element library (see (Renard et al., http://www-gmm.insa-toulouse.fr/getfem)). Fig. 6 shows the convergence curves for an isotropic homogeneous cracked domain in L 2 (Ω)-norm and H 1 (Ω)-norm (energy norm). The two mesh parameters for the SpiderXfem are taken proportional (h c = h/2). The convergence rate is optimal for both the two methods. The classical Xfem still gives slightly better results than the SpiderXfem. However, only a partial knowledge of the asymptotic displacement is used with the SpiderXfem. Moreover, the condition number of the stiffness matrix is greatly better in the case of the SpiderXfem as shown on Fig. 7. Fig. 8 shows the convergence curve for a bimaterial interface crack in H 1 (Ω)-norm. The SpiderXfem enrichment considered here is the one given in Section 3.2 and the comparison is done with respect to a refined classical finite element solution. The optimal convergence rate is obtained as in the isotropic homogeneous case even though all the dependency of the singular part of the solution in θ is approximated.

Concluding remarks

The presented theoretical and numerical studies emphasize that with the proposed strategy, the dependence in r of the asymptotic displacement has to be known and added to the expression of the enrichment functions. Conversely, the dependence in θ can be approximated with a one-dimensional finite element. Note that a spectral approximation should also be possible, even if it leads to a more dense stiffness matrix. The coefficients α from [2] and β from [12] are determined by a transcendental equation whose solution is α + iβ (see [START_REF] Chang | The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface[END_REF] for instance). The advantage of the proposed method is that it is sufficient to find α and β. Indeed, the search of the complete expression of the asymptotic displacement and the extraction of a base in the classical Xfem approach can be a complex process which is avoided with the SpiderXfem. For the SpiderXfem we consider h c = h/2.

The conclusions of sections 3.1 and 3.2 indicate that, in most of the cases, one can make the economy of the finite element method describing the dependence in r of the SpiderXfem (i.e. p j (r) can be omitted in [7]). However, it can also be advantageous to keep it. Indeed, the higher degree nonsmooth modes describing the asymptotic displacement at the crack tip differ from an integer power of r compared to the first one. So, according to the theoretical results, by keeping the finite element method in r the whole asymptotic displacement is optimally approximated, not only the first nonsmooth mode. This could be an interesting property, especially to build higher order finite element methods. A perspective to improve the method is to replace the use of a cut-off function by a pointwise or an integral matching condition. This usually leads to a better approximation (see [START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF]). This work is supported by "l'Agence Nationale de la Recherche", project ANR-05-JCJC-0182-01.
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 8 Figure 8. Convergence curves for a bimaterial interface crack in H 1 (Ω)-norm comparing the SpiderXfem and a classical fem. For the SpiderXfem we consider h c = h/2.