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A PERMUTATION MODEL FOR FREE RANDOM VARIABLES AND ITS

CLASSICAL ANALOGUE

FLORENT BENAYCH-GEORGES AND ION NECHITA

Abstract. In this paper, we generalize a permutation model for free random variables which was
first proposed by Biane in [B95b]. We also construct its classical probability analogue, by replacing
the group of permutations with the group of subsets of a finite set endowed with the symmetric
difference operation. These models provide explicit examples of non random matrices which are
asymptotically free or independent. The moments and the free (resp. classical) cumulants of the
limiting distributions are expressed in terms of a special subset of (noncrossing) pairings. At the
end of the paper we present some combinatorial applications of our results.

Introduction

Free probability is the non-commutative probability theory built upon the notion of indepen-
dence called freeness. In classical probability theory, independence characterizes families of random
variables which joint distribution can be deduced from the individual ones by making their tensor
product. In the same way, freeness, in free probability theory, characterizes families of random vari-
ables which joint distribution can be deduced from the individual ones by making their free product
(with the difference that free random variables belong to non commutative probability spaces, and
that their joint distribution is no longer a probability measure, but a linear functional on a space
of polynomials). Concretely, independent random variables are numbers arising randomly with no
influence on each other, whereas free random variables are elements of an operator algebra endowed
with a state which do not satisfy any algebraical relation together, as far as what can be observed
with the algebra’s state is concerned. Free probability theory has been a very active field of mathe-
matics during the last two decades, constructed in a deep analogy with classical probability theory.
It follows that there is a kind of dictionary between objects of both theories: many fundamental no-
tions or results of classical probability theory, like Law of Large Numbers, Central Limit Theorem,
Gaussian distribution, convolution, cumulants, infinite divisibility have a precise analogue in free
probability theory. Moreover, several examples of asymptotically free random variables have been
found, like random matrices ([V91, VDN92, HP00, HT05]), representations of groups ([B95a, B98]),
and a permutation model of P. Biane ([B95b]). In the present paper, we shall firstly generalize this
permutation model, and then develop its analogue from classical probability theory, which will allow
us to show that surprisingly, in the ”dictionary” mentioned above between classical and free prob-
ability theories, there is a correspondence (of minor importance when compared to others, but still
interesting) between groups of sets endowed with the symmetric difference operation and groups of
permutations, following from the correspondence between the lattice of partitions and the lattice
of non crossing partitions.
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2 F. BENAYCH-GEORGES AND I. NECHITA

To explain how we construct this model and its analogue from classical probability theory, let us
recall a few basic definitions of non commutative probability theory. First of all, let us recall that a
non commutative probability space (as we shall use it) is a complex unital ∗-algebra A endowed with

with a linear form ϕ such that ϕ(1) = 1 and for all x ∈ A, ϕ(x∗) = ϕ(x) and ϕ(xx∗) > 0. The non
commutative distribution of a family (xi)i∈I of self-adjoint elements of A is then the application
which maps any polynomial P in the non commutative variables (Xi)i∈I to ϕ(P ((xi)i∈I)). This
formalism is the one of free probability theory, but it recovers the one of classical probability
theory, because if the algebra A is commutative, then this distribution is actually the integration
with respect to a probability measure on RI and A and ϕ can respectively be identified with a
subalgebra of the intersection of the Lp spaces (p ∈ [1,+∞)) of a certain probability space and with
the integration with respect to the probability measure of this probability space. A general example
of non commutative probability space of historical importance is, given a countable group G, the ∗-
algebra C[G] = C(G) (with the notion of adjoint defined by (

∑

g∈G xg.g)
∗ =

∑

g∈G xg.g
−1) endowed

with the trace ϕ(
∑

g∈G xg.g) = xe, where e denotes the neutral element of G. Our asymptotic
model for free random variables is constructed in the algebra of the group S of permutations with
finite support of the set of nonnegative integers, whereas its classical probability theory analogue
is constructed in the algebra of the group of finite sets of nonnegative integers endowed with the
symmetric difference operation. More precisely, let us define, for all integer r > 1, and t ∈ [0,+∞),
the element of C[S]

Mr(n, t) =
1

nr/2

∑

(0a1a2 · · · ar)
︸ ︷︷ ︸

designs the cycle
0→a1→a2→···→ar→0

,

where the sum runs over all r-uplets (a1, . . . , ar) of pairwise distinct integers of [1, nt]. In [B95b],
it was already proved that the non commutative distribution of the family (M1(n, t))t∈[0,+∞) con-
verges, as n goes to infinity, to the one of a family (M1(t))t∈[0,+∞) which is a free Brownian motion.
Here, we shall prove that the non commutative distribution of the family (Mr(n, t))r>1,t∈[0,+∞)

converges, as n goes to infinity, to the one of a family (Mr(t))r>1,t∈[0,+∞) such that that for all r, t,

one has Mr(t) = t
r
2Ur(t

−1/2M1(t)), where the Ur’s are the Chebyshev polynomials of second kind.
In the same way, replacing the group S of finitely-supported permutations of the set of nonnegative
integers by the group G of finite sets of nonnegative integers endowed with the symmetric difference
operation (the symmetric difference A∆B of two sets A and B is (A ∪B)\(A ∩B)), we define, for
all integer r > 1, and t ∈ [0,+∞), the element of C[G]

Lr(n, t) =
1

nr/2

∑

{a1, a2, . . . , ar},

where the sum runs over all r-uplets (a1, . . . , ar) of pairwise distinct integers of [1, nt]. We shall
prove that the non commutative distribution of the family (Lr(n, t))r>1,t∈[0,+∞) converges, as n
goes to infinity, to the one of a family (Lr(t))r>1,t∈[0,+∞) such that (L1(t))t∈[0,+∞) is a classical

Brownian motion and that for all r, t, one has Lr(t) = t
r
2Hr(t

−1/2L1(t)), where the Hr’s are the
Hermite polynomials.

From this results, there emerges the general idea that duly renormalized elements of C[S] of the
type

A(n) :=
∑

a1,...,ara

in a set of size n

(0a1 · · ·ara
), B(n) :=

∑

b1,...,brb

in a set of size n

(0b1 · · · brb
), C(n) :=

∑

c1,...,crc

in a set of size n

(0c1 · · · crc
), etc.
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are asymptotically free as n goes to infinity if the respective sets where the ai’s, the bi’s and the
ci’s are picked from are pairwise disjoint, and that in this result, asymptotic freeness is replaced by
asymptotic independence if the group S of permutations is replaced by the one of finite sets endowed
with the symmetric difference operation and cycles (0x1 · · ·xr) are replaced by sets {x1, . . . , xr}.

Let us now comment on Biane’s original motivation for this construction. His idea (for r = 1)
easily generalizes for arbitrary r. As before, consider a finite set of elements A(n), B(n), C(n), etc.
of the group algebra C[SN ], which is possible for N large enough. When viewed as operators on
SN , A(n), B(n), C(n), etc. are complex matrices with rows and columns indexed by the elements
of SN (these matrices can be seen as the adjacency matrices of some Cayley graphs). This is the
reason why these results provide explicit examples of asymptotically free families of non random
matrices. To our knowledge, there are no other such constructions. The classical probability part of
our result also provides an explicit example of commutative family of non random matrices which
are asymptotically independent, property that only random matrices had until now been proved to
have.

In the last part of this paper, we shall explore connections between several combinatorial struc-
tures and the sets of non crossing pairings which appeared in the formulas of moments and free
cumulants in the limit theorems presented above.

1. The permutation model for free random variables

1.1. Computation of the limit distribution. The non-commutative probability space we are
going to work with is the group algebra C[S] of the group S of finitely-supported permutations of
the set of nonnegative integers (i.e. permutations for which all but finitely-many points are fixed
points), with its canonical trace defined by ϕ(

∑

σ xσσ) = xid, where id is the identity permutation.
Let us define, for all integer r > 1, and t ∈ [0,+∞), the element of C[S]

Mr(n, t) =
1

nr/2

∑

(0a1a2 · · · ar),

where the sum runs over all r-uplets (a1, . . . , ar) of pairwise distinct integers of [1, nt]. For r = 0,
we put M0(n, t) = id. Our purpose in what follows is to study the asymptotic properties (in the
limit n→ ∞) of the family (Mr(n, t))r,t.

Before stating the main result of this section, let us recall to the reader that a free Brownian
motion is a process (St)t∈[0+∞) of non commutative random variables with free increments such
that for all t, St is semi-circular with variance t. Let us also recall some facts about the Chebyshev
polynomials of the second kind, denoted by (Un). These are the orthogonal polynomials on [−2, 2]

with respect to the semi-circular weight w(x) = 1
2π

√
4 − x2. They satisfy the property

Un(2 cos θ) =
sin(n+ 1)θ

sin θ
, ∀n > 0

and the recurrence relation

U0(x) = 1, U1(x) = x, U1(x)Un(x) = Un−1(x) + Un+1(x), ∀n > 1.

Theorem 1. The non commutative distribution of the family (Mr(n, t))r>1,t∈[0,+∞) converges,
as n goes to infinity, to the one of a family (Mr(t))r>1,t∈[0,+∞) such that (M1(t))t∈[0,+∞) is a

free Brownian motion and for all r, t, one has Mr(t) = t
r
2Ur(t

−1/2M1(t)), where the Ur’s are the
Chebyshev polynomials of second kind.
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Proof. Step I. It follows from a direct application of Theorem 1 of [B95b] that the non commutative
distribution of the family (M1(n, t))t∈[0,+∞) converges, as n goes to infinity, to the one of a family
(M1(t))t∈[0,+∞) which is a free Brownian motion.

Step II. Let us prove that for all integer r > 1, and t ∈ (0,+∞),

(1) lim
n→∞

ϕ[(M1(n, t)Mr(n, t) − tMr−1(n, t) −Mr+1(n, t))
2] = 0.

We first compute M1(n, t)Mr(n, t):

M1(n, t)Mr(n, t) = n− r+1

2

∑

(a1,...,ar)
(ar+1)

(0ar+1)(0a1a2 · · · ar)

= n− r+1

2

∑

(a1,...,ar+1)

(0a1a2 · · · arar+1) + n− r+1

2

r∑

k=1

∑

(a1,...,ar)

(0a1a2 · · · ak−1)(ak · · · ar)

= Mr+1(n, t) +
⌊nt⌋
n

Mr−1(n, t) + n− r+1

2

r−1∑

k=1

∑

(a1,...,ar)

(0a1a2 · · ·ak−1)(ak · · · ar).

Thus, it suffices to show that (a = (a1, . . . , ar), b = (b1, . . . , br))

lim
n→∞

ϕ[(n− r+1

2

r−1∑

k=1

∑

a

(0a1a2 · · · ak−1)(ak · · ·ar))
2] = 0.

But
(

r−1∑

k=1

∑

a

(0a1a2 · · ·ak−1)(ak · · · ar)

)2

=

r−1∑

k,l=1

∑

a,b

(0a1a2 · · · ak−1)(ak · · ·ar)(0b1b2 · · · bl−1)(bl · · · br)

In order for the permutation on the right-hand side to be the identity, it has to be that

(0b1b2 · · · bl−1)(bl · · · br) = [(0a1a2 · · · ak−1)(ak · · ·ar)]
−1 = (akarar−1 · · · ak+1)(0ak−1 · · · a1)

and thus k = l and the b’s are determined (modulo some circular permutation of size at most r)
by the a’s. We find that there are at most (r − 1)r!(nt)r terms in the sum which are equal to the
identity and (1) follows.

Step III. To prove the existence of a limit to the non commutative distribution of the family
(Mr(n, t))r>1,t∈[0,+∞), we have to prove that for all polynomial P in the non commutative variables
(Xr(t))r>0,t∈[0,+∞),

ϕ(P ((Mr(n, t))r>0,t∈[0,+∞)))

has a finite limit as n goes to infinity. First of all, by linearity, can suppose that P is a monomial
Xr1

(t1) · · ·Xrk
(ik) with r1, . . . , rk > 0, t1, . . . , tk ∈ [0,+∞). Then let us prove it by induction on

R := max{r1, . . . , rk}. If R = 0 or 1, it follows from the first step of the proof and the convention
M0(n, t) = 1. Now, let us suppose the result to be proved until rank R − 1. Replacing, for all
t ∈ [0,+∞), each XR(t) in P by

(X1(t)XR−1(t) − tXR−2(t)) − (X1(t)XR−1(t) − tXR−2(t) −XR(t))

and using the second step of the proof with the Cauchy-Schwarz inequality, one gets the convergence.
Let us denote the limit distribution by Ψ : C〈Xr(t) ; r > 0, t ∈ [0,+∞)〉 → C.
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Step IV. Now, it remains only to identify the limit distribution. Note first that by the first
step and the convention M0(n, t) = 1, the Cauchy-Schwarz inequality allows us to claim that the
bilateral ideal generated by

{X0(t) − 1 ; t ∈ [0,+∞)} ∪ {X1(t)Xm−1(t) − tXm−2(t) −Xm(t) ; m > 2, t ∈ [0,+∞)}
is contained in the kernel of Ψ. Hence up to a quotient of the algebra C〈Xr(t) ; r > 0, t ∈ [0,+∞)〉,
one can suppose that for all m > 2, t ∈ [0,+∞), X0(t) = 1 and X1(t)Xm−1(t) = tXm−2(t)+Xm(t).
It allows us to claim that for all m > 0, t ∈ [0,+∞), Xm(t) is a polynomial in X1(t), namely
that Xm(t) = t

m
2 Um(t−1/2X1(t)), where the Um’s are the Chebyshev polynomials of second kind

(indeed, this family is completely determined by the fact that U0 = 1, U1 = X and for all m > 2,
U1Um−1 = Um−2 + Um). Since by the first step, (M1(t))t∈[0,+∞) is a free Brownian motion, the
proof is complete. �

The following corollary generalizes Theorem 1 of [B95b]. Roughly speaking, it states that duly
renormalized elements of C[S] of the type

A(n) :=
∑

a1,...,ara

in a set of size n

(0a1 · · ·ara
), B(n) :=

∑

b1,...,brb

in a set of size n

(0b1 · · · brb
), C(n) :=

∑

c1,...,crc

in a set of size n

(0c1 · · · crc
), etc.

are asymptotically free as n goes to infinity if the respective sets where the ai’s, the bi’s and the
ci’s are picked are pairwise disjoint. Biane had proved it in the case where ra = rb = rc = · · · = 1.

Corollary 1. Fix p > 1, r1, . . . , rp > 0, t0 < t1 < · · · < tp, and defines, for all i = 1, . . . , p, for

each n > 1, Mi(n) = n−
ri
2

∑

(0a1 · · · ari
), where the sum runs over all ri-uplets (a1, . . . , ari

) of

paiwise distinct integers of (nti−1, nti]. Then M1(n), . . . ,Mp(n) are asymptotically free as n goes
to infinity.

Proof. Let us define, for all i = 1, . . . , p and n > 1, Si(n) := n− 1
2

∑

a∈(nti−1,nti]
a integer

(0a). By the previous

theorem, as n goes to infinity, the non commutative distribution of (S1(n), . . . , Sp(n)) tends to the
one of a free family (s1, . . . , sp) of semi-circular elements (with various variances). Moreover, the
same theorem says that for all i, as n goes to infinity,

lim
n→∞

ϕ((Mi(n) − (ti − ti−1)
ri
2 Uri

(
√

ti − ti−1Si(n))2) = 0.

It follows that the non commutative distribution of the family

(S1(n),M1(n), . . . , Sp(n),Mp(n))

converges to the one of

(s1, (t1 − t0)
r1
2 Ur1

(
√
t1 − t0s1), . . . , sp, (tp − tp−1)

rp

2 Ur1
(
√
tp − tp−1sp),

which allows us to conclude. �

1.2. Moments and cumulants of the limit distribution. We now turn to the moments and
the free cumulants of the family (Mr(t))r>1,t∈[0,+∞). As we shall see, these quantities have elegant
closed expressions in terms of non-crossing pairings of a special kind. Let us now introduce the
combinatorial objects of interest. For f function defined on a finite setX , ker f designs the partition
of X by the level sets of f . For every p > 1 and for every vector r = (r1, . . . , rp) of positive
integers, consider the function fr : {1, . . . |r|} → {1, . . . p} defined by fr(x) = k if and only if
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r1 + · · · + rk−1 < x 6 r1 + · · · + rk (here, |r| = r1 + · · · + rp). We introduce the set NC2(r) of
non-crossing pairings π of the set {1, . . . , |r|} which do not link two elements who have the same

image by fr, i.e. such that π ∧ 1̂r = 0̂|r|, where 1̂r = ker fr and 0̂|r| is the singletons partition of

{1, . . . , |r|}. We also introduce NC∗
2 (r) = {π ∈ NC2(r)|π ∨ 1̂r = 1̂|r|}, where 1̂|r| is the one-block-

partition of {1, . . . , |r|}. For s positive integer, we note with 〈s〉p = (s, s, . . . , s) the constant vector
where s appears p times.

In the following theorem, we compute the mixed moments and free cumulants of the family
(Mr)r>1 = (Mr(1))r>1 (the mixed moments and cumulants of the family (Mr(t))r>1,t∈[0,+∞) can
easily be computed in the same way).

Theorem 2. The distribution of the family (Mr)r>1 is characterized by the fact that its mixed
moments are given by

ϕ(Mr1
Mr2

· · ·Mrp
) = ♯NC2(r)

and its free cumulants are given by

κp(Mr1
,Mr2

, . . . ,Mrp
) = ♯NC∗

2 (r).

Remark 1. Although they are clearly dependent, the elements Mr are not correlated: ϕ(MqMr) =
E(XqXr) = 0 if q 6= r (this follows from the orthogonality of the Chebyshev polynomials).

Remark 2. This theorem provides a new proof (even though there are already many !) of the
formula of the free cumulants of the free Poisson distribution (also called Marchenko-Pastur distri-
bution, see [HP00]). Indeed, M2 + 1 = M2

1 is well known to have a free Poisson distribution with
mean 1, whom all cumulants except the first one the same as the free cumulants of M2. By the
theorem, for all p > 2, κp(M2) is the cardinality of {π ∈ NC2(2p)|π ∨ 1̂〈2〉p

= 1̂2p}. In [NS06], it is
shown that

{π ∈ NC(2p)|π ∨ 1̂〈2〉p
= 1̂2p} = {π ∈ NC(2p)|1 π∼ 2p, 2i

π∼ 2i+ 1, ∀i ∈ {1, . . . , p− 1}}.
Thus,

{π ∈ NC2(2p)|π ∨ 1̂〈2〉p
= 1̂2p} = { { {2p, 1}, {2, 3}, . . . , {2p− 2, 2p− 1} } },

which is a partition of NC2(〈2〉p), hence κp(M2) = 1.

Proof. Let us first prove that the mixed moments are given by the formula of the theorem. Using
the identity (0b1b2 · · · bs) = (0bs)(0bs−1) · · · (0b1), we have

p
∏

j=1

Mrj
(n, 1) = n− |r|

2

∑

a

(0a1)(0a2) · · · (0a|r|),

where the sum is taken over all families a = (a1, . . . a|r|) ∈ {1, . . . , n}|r| such that for all k, l ∈
{1, . . . |r|}, ak 6= al whenever fr(k) = fr(l). To such a family a we associate the partition P(a) of
the set {1, . . . |r|} defined by k ∼ l if and only if ak = al. Thus, for all a, P(a) does not link two

elements that have the same image by fr, i.e. satisfies P(a) ∧ 1̂r = 0̂|r|. We regroup the terms of
the preceding sum according to the partitions P :

∑

π

n− |r|
2

∑

a:P(a)=π

(0a1)(0a2) · · · (0a|r|).

Let us show that among the partitions π such that π∧ 1̂r = 0̂|r|, the only partitions that contribute
to the limit, as n goes to infinity, are non-crossing pairings, i.e. elements of NC2(r). If π = P(a)
contains a singleton {k}, then the permutation (0a1)(0a2) · · · (0a|r|) cannot be the identity, because
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the element ak appears only once and thus its image cannot be itself. Consider now a partition π
with no singleton but with a class with at least three elements. It is easy to show that there are no

more than n
|r|−1

2 families a such that P(a) = π and thus they have no contribution asymptotically.
We have shown that only pairings contribute to the trace. The argument in [B95b], Lemma 2
(which adapts mutatis mutandis to our case) shows that only the non-crossing pairings contribute,
completing the proof.

Let us now compute the free cumulants. To a pairing P ∈ NC2(r) we associate the non-crossing

partition P̄ ∈ NC(p) which encodes the way P links the blocks of 1̂r : k
P̄∼ l if and only if

r1 + · · · + rk
P∨1̂r∼ r1 + · · · + rl, for all k, l ∈ {1, . . . , p}.We have

ϕ((Mr1
Mr2

· · ·Mrp
) = ♯NC2(r) =

∑

π∈NC(p)

♯{P ∈ NC2(r)|P̄ = π}.

Since the functionals NC(p) ∋ π 7→ ♯{P ∈ NC2(r)|P̄ = π} are multiplicative, we have identified
the free cumulants of the family (Mr)r>1:

∀p > 1, r1, . . . , rp > 1, κπ(Mr1
,Mr2

, . . . ,Mrp
) = ♯{P ∈ NC2(r)|P̄ = π}.

Considering the case π = 1̂p, we obtain the announced formula for the free cumulants. �

1.3. An application: linearization coefficients for orthogonal polynomials. As a corollary
of Theorems 1 and 2, we recover some formulas already obtained in [A05] using different techniques.
Consider a family (Pn) of orthogonal polynomials with respect to some weight w. For an integer
vector r = (r1, . . . , rp) there is a decomposition

Pr1
(x)Pr2

(x) · · ·Prp
(x) =

|r|
∑

k=0

c
(r)
k Pk(x),

where the scalars c
(r)
k ∈ R are called linearization coefficients of the family (Pn). They can easily

be recovered by integration:

c
(r)
k =

∫

Pr1
(x)Pr2

(x) · · ·Prp
(x) · Pk(x)dw(x).

For the Chebyshev polynomials, these integrals are the expectation (the trace) of the corresponding
products of the random variables Mr:

Corollary 2. The linearization coefficients for the Chebyshev polynomials of the second kind Unare
given by

c
(r)
k = ♯NC2(r ∪ k),

where r ∪ k is the vector (r1, . . . , rp, k).

In [A05], a similar formula is deduced for the centered free Charlier polynomials Vn. These
polynomials are orthogonal with respect to the centered Marchenko-Pastur density

w2(t) = 1]−1,3](t)
1

2π

√

4

1 + t
− 1.

Note that M2 = M2
1 − 1 has the distribution dµ2 = w2(t)dt. Moreover, one can easily see that

Vn ◦ U2 = U2n and thus
∫

Vr1
(x)Vr2

(x) · · ·Vrp
(x) · Vk(x)dw2(x) =

∫

U2r1
(x)U2r2

(x) · · ·U2rp
(x) · U2k(x)dw(x).
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We obtain

Corollary 3. The linearization coefficients for the centered free Charlier polynomials Vnare given
by

d
(r)
k = ♯NC2(2r ∪ 2k),

where 2r ∪ 2k is the vector (2r1, . . . , 2rp, 2k).

Using the bijection between non-crossing pairings of size 2n and non-crossing partitions of size
n (see [NS06], pp. 153–154), one can easily see that the sets NC2(2r ∪ 2k) and {π ∈ NC(r ∪
k|π has no singleton} have the same cardinality, hence our formula is equivalent to the one in
[A05].

2. A classical probability analogue

The model we study involves permutations, asymptotical freeness, non-crossing pairings, the
semi-circular distribution and its orthogonal polynomials, the second kind Chebyshev polinomials.
By replacing permutations with sets, we construct in this section an analogue model, where the
objects from free probability are replaced by their classical counterparts, respectively independence,
(possibly crossing) pairings, and the gaussian distribution with the orthogonal Hermite polynomials.

2.1. Computation of the limit distribution. Let us start by introducing the non-commutative
probability space. The non-commutative probability space we are going to work with here is the
group algebra C[G] of the group G of finite sets of nonnegative integers endowed with he symmetric
difference operation, with its canonical trace defined by ψ(

∑

A xAA) = x∅. Let us define, for all
integer r > 1, and t ∈ [0,+∞), the element of C[G]

Lr(n, t) =
1

nr/2

∑

{a1, a2, . . . , ar},

where the sum runs over all r-uplets (a1, . . . , ar) of pairwise distinct integers of [1, nt]. For r = 0,
we put L0(n, t) = ∅ (which is the unity of this algebra). Our purpose in what follows is to study
the asymptotic properties (in the limit n→ ∞) of the family (Lr(n, t))r,t.

Recall that for every p > 1 and for every vector r = (r1, . . . , rp) of positive integers, the function
fr : {1, . . . |r|} → {1, . . . p} is the projection defined by fr(x) = k iff. r1+· · ·+rk−1 < x 6 r1+· · ·+rk
(|r| = r1+· · ·+rp). We replace the non-crossing partitions from the free case with general partitions:
Π2(r) is the set of pairings π of {1, . . . , |r|} which do not link two elements who have the same

image by fr, i.e. such that π ∧ 1̂r = 0̂|r|, where 1̂r is still the partition of {1, . . . , |r|} with blocks

f−1
r (1), f−1

r (2), . . . , f−1
r (p). We also introduce Π∗

2(r) = {π ∈ Π2(r)|π ∨ 1̂r = 1̂|r|}.
In the following lemma we compute the asymptotic joint moments of the random variables

Lr(n, t).

Lemma 1. Let p > 1 and consider t1, . . . , tp > 0 and a family of positive integers r = (r1, . . . , rp).

Then, in the limit n→ ∞, the trace ψ
[
∏p

j=1 Lrj
(n, tj)

]

converges to

∑

π∈Π2(r)

∏

{i,j}∈π

min(tfr(i), tfr(j)).

Proof. Using the properties of the symmetric difference ∆, we get
p
∏

j=1

Lrj
(n, tj) = n− |r|

2

∑

a

{a1}∆{a2}∆ · · ·∆{a|r|},
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where the sum is taken over all families a = (a1, . . . a|r|) of positive integers such that for all
k, l ∈ {1, . . . |r|}, ak ∈ [1, ntfr(k)] and ak 6= al whenever fr(k) = fr(l). To such a family a we
associate the partition P(a) of the set {1, . . . |r|} defined by k ∼ l if and only if ak = al. Thus, for
all a, P(a) does not link two elements that have the same image by fr. We regroup the terms of
the preceding sum according to the partitions P :

∑

π

n− |r|
2

∑

a:P(a)=π

{a1}∆ · · ·∆{a|r|}.

Let us show that only pairings can contribute to the asymptotic trace of the sum. It is obvious that
{a1}∆ · · ·∆{a|r|} is the empty set if and only if each ai appears an even number of times. Thus,
π = P(a) cannot contain singletons. On the other hand, if π contains no singleton but has a class

with at least three elements, it is easy to show that there are no more than (nmax{t1, . . . , tp})
|r|−1

2

families a such that P(a) = π and thus such partitions π do not contribute asymptotically.

For π pairing of Π2(r), the number of families a such that P(a) = π, is equivalent to n
|r|
2

∏

{i,j}∈π min(tfr(i), tfr(j)),

which concludes the proof. �

Before stating the main result of this section, let us recall some facts about the Hermite polyno-
mials, denoted by (Hn). These are the orthogonal polynomials on the real line with respect to the
standard Gaussian measure. They satisfy the recurrence relation

H0(x) = 1, H1(x) = x, H1(x)Hr(x) = Hr+1(x) + rHr−1(x), ∀r > 1.

Theorem 3. The distribution of the family (Lr(n, t))r>1,t∈[0,+∞) converges, as n goes to infinity,
to the one of a commutative family (Lr(t))r>1,t∈[0,+∞) such that (L1(t))t∈[0,+∞) is a classical Brow-

nian motion and for all r, t, one has Lr(t) = t
r
2Hr(t

−1/2L1(t)), where the Hr’s are the Hermite
polynomials.

Proof. Step 0. Note first that the symmetric difference is a commutative operation on sets. Hence
the algebra C[G] is commutative.

Step I. It follows from a direct application of the previous lemma that the distribution of the
family (L1(n, t))t∈[0,+∞) converges, as n goes to infinity, to the one of a classical Brownian motion
(L1(t))t∈[0,+∞).

Step II. Let us prove that for all integer r > 1, and t ∈ (0,+∞),

(2) lim
n→∞

ψ[(Lr(n, t)L1(n, t) − rtLr−1(n, t) − Lr+1(n, t))
2] = 0.

It follows from the following computation of Lr(n, t)L1(n, t). The sums run over integers of [1, nt].
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Lr(n, t)L1(n, t) = n− r+1

2

∑

(a1,...,ar)
(ar+1)

{a1}∆ · · ·∆{ar+1}

= n− r+1

2

∑

(a1,...,ar+1)

{a1, a2, . . . ar, ar+1}

+n− r+1

2

r∑

k=1

∑

(a1,...,ar)

{a1, a2, . . . , ǎk, . . . , ar}

= Lr+1(n, t) + n− r+1

2

r∑

k=1

(⌊nt⌋ − r + 1)
∑

(b1,...,br−1)

{b1, b2, . . . , br−1}

= Lr+1(n, t) +
⌊nt⌋ − r + 1

n
rLr−1(n, t)

= Lr+1(n, t) + rtLr−1(n, t) + ǫnLr−1(n, t), with ǫn −→
n→∞

0.

Step III and Step IV are as in the proof of Theorem 1, with the difference that here, the algebra
is commutative, hence one-dimentional non-commutative distributions are integrations with respect
to a probability measure, which is unique in this case. �

The following corollary is the classical probability theory counterpart of corollary 1. Roughly
speaking, it states that duly renormalized elements of C[G] of the type

A(n) :=
∑

a1,...,ara

in a set of size n

{a1, . . . , ara
}, B(n) :=

∑

b1,...,brb

in a set of size n

{b1, . . . , brb
}, C(n) :=

∑

c1,...,crc

in a set of size n

{c1, . . . crc
}, . . .

are asymptotically independent as n goes to infinity if the respective sets where the ai’s, the bi’s
and the ci’s are picked are pairwise disjoint.

Corollary 4. Fix p > 1, r1, . . . , rp > 0, t0 < t1 < · · · < tp, and defines, for all i = 1, . . . , p, for

each n > 1, Li(n) = n−
ri
2

∑

{a1, . . . , ari
}, where the sum runs over all ri-uplets (a1, . . . , ari

) of

paiwise distinct integers of (nti−1, nti]. Then L1(n), . . . , Lp(n) are asymptotically independent as n
goes to infinity.

Proof. Mutatis mutandis, the proof goes along the same line as the one of corollary 1. �

2.2. Moments and cumulants of the limit distribution. In the following theorem, we compute
the mixed moments and cumulants of the family (Lr)r>1 = (Lr(1))r>1 (the mixed moments and
cumulants of the family (Lr(t))r>1,t∈[0,+∞) can easily be computed in the same way). Here, the
analogy with the free probability model is obvious, since the formulas are the same ones as in
Theorem 2, with the difference that the pairings are now allowed to have crossings.

Theorem 4. The distribution of the family (Lr)r>1 is characterized by the fact that its mixed
moments are given by

ψ(Lr1
Lr2

· · ·Lrp
) = ♯Π2(r)

and its classical cumulants are given by

kp(Lr1
, Lr2

, . . . , Lrp
) = ♯Π∗

2(r).
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Remark 3. The correspondance between the limit distributions of the classical and the free case is
not the Bercovici-Pata bijection, since the distribution of L2 is not a classical Poisson distribution.

Proof. The moments have been computed in Lemma 1 and the cumulants can be computed in the
same way as in the proof of Theorem 2. �

2.3. An application: linearization coefficients for orthogonal polynomials. As in Corol-
laries 2 and 3, one deduce from this work combinatorial formulas for the linearization coefficients
for Hermite and centered Charlier polynomials. The formulas are the same ones, with the difference
that non crossing parings are replaced by pairings.

3. Further combinatorics

In this section, we explore connections between several combinatorial structures and the sets
NC2(r) and NC∗

2 (r), which appeared in the formulas of moments and free cumulants of the family
Mr(1).

3.1. A bijection with a class of paths. Here, we shall denote the set of nonnegative integers by
N and the set of integers by Z.

It is well known that for all n > 1, the n-th moment of a semi-circular element is the number
of Dyck paths with length n, i.e. of functions γ : {0, . . . , n} → N such that γ(0) = γ(n) = 0 and
for all i, |γ(i) − γ(i − 1)| = 1. Since for n, t fixed, the Mr(n, t)’s (r > 1) are a generalizations of
the Jucys-Murphy element M1(n, t), which distribution tends to a semi-circular one, it is natural
to expect a generalization of this interpretation of the moments in terms of paths for the moments
of the Mr(t)’s. We show here that the mixed moments and free cumulants of the family (Mr)r>1

count lattice paths with general jump size, as follows. Consider an integer vector r = (r1, . . . , rp).
For k > 1, define ∆(k) = {k, k − 2, k − 4, . . . ,−k + 2,−k} = {t − s; s, t ∈ N, s + t = k} ⊂ Z.
We define a Dyck r-path to be a function γ : {0, 1, . . . , p} → Z such that γ(0) = 0, γ(p) = 0,
γ(i) + γ(i − 1) > ri and γ(i) − γ(i− 1) ∈ ∆(ri) for all i ∈ {1, . . . , p} (∆(k) is somehow the set of
admissible jumps for these paths). We denote by Γ(r) the set of Dyck r-paths and we also consider
its subset Γ∗(r) of irreducible Dyck r-paths: a Dyck r-path γ is said to be irreducible if it has the
property that it does not contain strictly smaller Dyck s-paths, in the following sense: there is no
pair (x, y) 6= (0, p) such that the path γ̄ : {0, . . . y − x} → Z defined by γ̄(i) = γ(x + i) − γ(x) is a
Dyck (rx+1, rx+2, . . . , ry)-path.

It can be easily seen that Dyck r-paths are always positive (γ(i) > 0, for all i ∈ {0, . . . , p}) and
that the first and the last jumps are the largest, respectively smallest, possible: γ(1) = r1 and
γ(p− 1) = rp. By the following proposition, Dyck r-paths (resp. irreducible ones) are counted by
the moments (resp. free cumulants) of the family (Mr)r := (Mr(1))r:

Proposition 1. The sets NC2(r) and Γ(r) are in bijection. The same holds true for NC∗
2 (r) and

Γ∗(r). In particular, we have

ϕ(Mr1
Mr2

· · ·Mrp
) = ♯Γ(r)

and

κp(Mr1
,Mr2

, . . . ,Mrp
) = ♯Γ∗(r).

Proof. Consider a non-crossing pairing π ∈ NC2(r). We begin by constructing the path of Γ(r)
associated to π. An element k of {1, . . . , |r|} is said to be an opener (for π) if it appears first
in its block (pair) of π. Otherwise, it is called a closer. For 1 6 i 6 p, let Bi = f−1

r (i). As π
is non-crossing and it does not contain pairs with both ends in Bi, the closers appear before the
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openers in each Bi. Let si be the number of closers of Bi and ti be the number of openers of Bi. We
have si + ti = ri. Define γ : {0, 1, . . . , p} → Z by γ(0) = γ(p) = 0 et γ(i)− γ(i− 1) = ti − si, for all
1 6 i 6 p; we have thus γ(i)− γ(i− 1) ∈ ∆(ri). The value of γ(i) is the number of open pairs after
the first i groups of π. Hence, for all i > 1, γ(i− 1)− si > 0. This implies γ(i) + γ(i− 1) > ri, and
thus γ is an r-path. In order to prove the other direction, note that a pairing π ∈ NC2(r) can be
reconstructed by knowing only the number of openers/closers in each block Bi. This information
can easily be deduced from an r-path γ.

The proof that the construction above is a bijection between the set of irreducible r-paths Γ∗(r)
and NC∗

2 (r) is cumbersome; we shall just give the main idea. Again, let π be a pairing of NC2(r).

The condition π∨ 1̂r = 1̂|r| amounts to the fact that the standard graphical representation of π and

1̂r on the same figure (1̂r can drawn by connecting the points of each of its groups by horizontal
lines) is a connected graph. If it is not the case, then the sub-graph of a connected component
corresponds to a strictly smaller r-path in the path γ previously associated to π. �

Remark 4. Note that for r = 〈1〉p, ∆(1) = {±1}, and we recover the usual Dyck paths. For
r = 〈2〉p, and p > 2, it can easily be seen that Γ∗(〈2〉p) = {(0, 2, 2, . . . , 2, 0)}, and we obtain the free
cumulants of the centered Marchenko-Pastur (or free Poisson) distribution.

3.2. A Toeplitz algebra model for (Mr(1))r>1. In this section we provide a concrete realization
of the family (Mr(1))r>1, Toeplitz operators. Consider the Toeplitz algebra T of bounded linear
operators on ℓ2(N) with its vacuum state ω(T ) = 〈e0, T e0〉. The shift operators are denoted by S
and S∗. Let T0 = 1 and define, for all r > 1 the operators

Tr =
r∑

k=0

SS · · ·S
︸ ︷︷ ︸

r−k times

S∗S∗ · · ·S∗
︸ ︷︷ ︸

k times

= Sr + Sr−1S∗ + · · · + S∗r.

It can be easily checked that the operators Tr verify the recurrence relation of the (second kind)
Chebyshev polynomials T1Tr = Tr−1 + Tr+1. It is well known that, under the vacuum state, the
operator T1 = S + S∗ has a semicircular distribution, and thus it has the same law as M1(1). We
conclude that

Proposition 2. The families (Tr)r ∈ (T , ω) and (Mr(1))r ∈ (A, ϕ) have the same distribution.

Remark 5. Note that we can also realize the whole family (Mr(t))r>1,t∈[0,+∞) on the full Fock

space of the Hilbert space L2([0,+∞), dx) with the operators (here, ℓ denotes the creation operator)

Tr(t) =
r∑

k=0

ℓ(1[0,t)) · · · ℓ(1[0,t))
︸ ︷︷ ︸

r−k times

ℓ∗(1[0,t)) · · · ℓ∗(1[0,t))
︸ ︷︷ ︸

k times

∈ B(F(L2([0,+∞), dx))).

It can be insightful to look at the matrix representations of the operators Tr. It can be easily
verified that the (i, j) coefficient of Tr, Tr(i, j) = 〈ei, Trej〉 is null, unless

• j − i ∈ ∆(r) = {r, r − 2, . . . ,−r} and
• j + i > r,

in which case it equals 1.
This matrix point of view introduces the connection with the set Γ(r):

ϕ(Mr1
Mr2

· · ·Mrp
) = ω(Tr1

Tr2
· · ·Trp

) = [Tr1
Tr2

· · ·Trp
](0, 0) =

=
∑

i0=0,i1,...,ip=0

Tr1
(i0, i1)Tr2

(i1, i2) · · ·Trp
(ip−1, ip).
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In order for the general term of the above sum to be non-zero, it has to be that each factor is 1,
and that amounts to the fact that γ = (i0, i1, . . . , ip) ∈ Γ(r).

3.3. Non-commutative invariants and semi-standard Young tableaux. In this section we
show that the combinatorics of the family (Mr)r is related to semi-standard Young tableaux, which
have been shown to count the number of non-commutative classical invariants of binary forms [T88].
Here, we prove only a combinatorial result; whether there is a more profound reason for this, we
ignore at this moment and connections with the representation theory of SL2(C), GL(n) or Sn are
to be explored.

Start by fixing a vector r = (r1, . . . , rp) such that |r| is even and consider the Young diagram
with 2 rows and |r|/2 columns associated to the partition λ = (|r|/2, |r|/2) of |r|. A semi-standard
Young tableau of shape λ and weight r is a numbering of the Young diagram of shape λ with r1
1’s, r2 2’s, . . ., rp p’s such that the rows are not decreasing and the columns are increasing. Let
c(r) be the number of such semi-standard Young tableaux.

Proposition 3. c(r) = ♯NC2(r).

Proof. We shall construct a bijection between the set of non-crossing pairings of NC2(r) and the
set of semi-standard Young tableaux of weight r. Start with a pairing π ∈ NC2(r). We shall add
numbers in the empty Young diagram group by group. When we arrive at the i-th group of π, start
by appending si i’s to the second row, corresponding to the si closing pairs of the i-th group. Then
add the remaining ti’s i’s to the top row - these are the ti opening pairs. In this way we are sure
to get a row non-decreasing numbering. The fact that the columns are increasing follows from the
fact that at each moment, the number of opened pairs of π is larger or equal than the number of
closed pairs. Thus the top row is always more occupied then the bottom row. �

Remark 6. As we did for the paths, we can prove a bijection between NC∗
2 (r) and a strict subset

of semi-standard Young tableaux. However, this is stricter than the notion of “indecomposable”
Young tableaux, defined in [T88].
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