A permutation model for free random variables and its classical analogue - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

A permutation model for free random variables and its classical analogue

Résumé

In this paper, we generalize a permutation model for free random variables which was first proposed by Biane in \cite{biane}. We also construct its classical probability analogue, by replacing the group of permutations with the group of subsets of a finite set endowed with the symmetric difference operation. These constructions provide new discrete approximations of the respective free and classical Wiener chaos. As a consequence, we obtain explicit examples of non random matrices which are asymptotically free or independent. The moments and the free (resp. classical) cumulants of the limiting distributions are expressed in terms of a special subset of (noncrossing) pairings. At the end of the paper we present some combinatorial applications of our results.
Fichier principal
Vignette du fichier
perm.pdf (216.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00220460 , version 1 (28-01-2008)
hal-00220460 , version 2 (19-03-2008)
hal-00220460 , version 3 (11-02-2009)

Identifiants

Citer

Florent Benaych-Georges, Ion Nechita. A permutation model for free random variables and its classical analogue. 2009. ⟨hal-00220460v3⟩
212 Consultations
278 Téléchargements

Altmetric

Partager

More