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Introduction

We are interested in the existence and uniqueness properties for a scalar conservation law made of an hyperbolic first-order quasilinear equation set in a one-dimensional bounded domain Ω, and for any positive finite real T , that can be formally described:

Find a bounded measurable function u on Q =]0, T [×Ω such that

     ∂u ∂t + ∂ ∂x (k(x)g(u)) = 0 in Q =]0, T [×Ω, u(0, x) = u 0 (x) on Ω, u = 0 on (a part of) ]0, T [×∂Ω, (1) 
where k is a discontinuous function at a point x 0 of Ω. Such an equation arises in the modelling of continuous sedimentation of solid particles in a liquid ( [START_REF] Diehl | A conservation law with point source and discontinuous flux function modelling continuous sedimentation[END_REF]) or when one considers a two-phase flow in an heterogeneous porous medium without capillarity effects ( [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF], [START_REF] Gagneux | Analyse mathématique de modèles nonlinéaires de l'ingénierie pétrolière[END_REF]).

By normalization, we suppose that Ω =]-1, 1[. The initial condition u 0 belongs to L ∞ (Ω) and takes values in [m, M ] where m and M are two fixed reals, m < M .

The flux function g is Lipschitzian on R. We suppose also that:

g changes no more than once its monotony [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF] and satisfies a nondegeneracy condition in the sense of A. Vasseur [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF], that is to say:

∀ α ∈ R, L{λ ∈ R, g (λ) = α} = 0. ( 3 
)
where L denotes the Lebesgue measure. The function k is discontinuous at x 0 = 0 and k |[-1,0[ is an element of W 1,+∞ (]-1, 0[) while k |]0,1] belongs to W 1,+∞ (]0, 1[).

Thus, thanks to a Cauchy criterion, we can define:

k L = lim x→0 - k(x) and k R = lim x→0 + k(x).
Eventually, we suppose that:

L{x ∈ Ω, k(x) = 0} = 0. ( 4 
)
The mathematical formulation for (1) is given in Section 2 through an entropy inequality on the whole Q, using the classical Kruzkov entropy pairs (see [START_REF] Kruzkov | First-order quasilinear equations with several independent variables[END_REF]) and involving a term that takes into account the jump of k along {x 0 = 0}. As soon as we are able to transcript in Section 3 the transmission conditions along the interface included in Definition 1, we are able to state, in Section 4, the uniqueness. To do so strong traces for u along the interface {x 0 = 0} will be needed. Finally Section 5 is devoted to the existence property for (1) through a suitable regularization of the function k.

Definition of an entropy solution

We propose a definition extending that of J.D. Towers ([11]) -also used by N. Seguin and J. Vovelle ( [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF]) or F. Bachmann ( [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF]) -to the case where k depends on the space variable and for the homogeneous Dirichlet problem in a bounded interval of R. So we say that:

Definition 1. A function u of L ∞ (Q) is an entropy solution to problem 1 if: (i) ∀κ ∈ R , ∀ϕ ∈ C ∞ c ([0, T [×Ω) , ϕ ≥ 0 ,                Q (|u(t, x) -κ|ϕ t (t, x) + k(x)Φ(u, κ)ϕ x (t, x))dxdt - Q k (x)sgn(u -κ)g(κ)ϕdxdt + Ω |u 0 -κ|ϕ(0, x)dx + |(k L -k R )g(κ)| T 0 ϕ(t, 0)dt ≥ 0 , (5) 
where

Φ(u, κ) = sgn(u -κ)(g(u) -g(κ)), (ii) for a.e. t in ]0, T [, for any real κ, k(1)(sgn(u τ 1 (t) -κ) + sgn(κ))(g(u τ 1 (t) -g(κ)) ≥ 0, (6) k(-1)(sgn(u τ -1 (t) -κ) + sgn(κ))(g(u τ -1 (t) -g(κ)) ≤ 0. (7) 
In this definition u τ 1 and u τ -1 denote the traces of u respectively in (+1) - and (-1) + in the sense of A. Vasseur [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] (see also Y. Panov [START_REF] Panov | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]). Indeed it follows from [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF], Lemma 1. Let u be an entropy solution to [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF]. If for each (α, β) = (0, 0), for a.e.

x ∈ [-1, 1], L({λ | α + β.k(x)g (λ) = 0}) = 0, there exists two functions u τ ±1 in L ∞ (]0, T [) such as, for every compact set K of ]0, T [, ess lim x→±1 K |u(t, x) -u τ ±1 (t)|dt = 0. (8) 
In [START_REF] Panov | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF], Y. Panov proved the existence of these strong traces with a continuous flux function, when the boundary is not a characteristic hypersurface. The latter condition is satisfied here under (3) and ( 4), when we consider the problem (1) separately on ] -1, 0[ and on ]0, 1[. Remark 1. Of course, the statement of Lemma 1 also ensures the existence of strong traces for u, γu + and γu -in L ∞ (]0, T [) along {x 0 = 0} respectively at right and at left.

Conditions at the interface {x 0 = 0}

Let us establish that the previous definition ensures the uniqueness. The proof is based on that proposed in [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF] and relies essentially on the transmission conditions along {x 0 = 0} underlying to entropy inequality [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF]. Indeed the existence of strong traces for u permits us to state first: Lemma 2. Let u in L ∞ (Q) be an entropy solution to [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF]. So, for a.e. t in ]0, T [, for all real κ,

k L Φ(γu -(t), κ) -k R Φ(γu + (t), κ) + |(k L -k R )g(κ)| ≥ 0 . (9) 
Proof. Let ϕ be a nonnegative element of C ∞ c (Q). We refer to the cut-off function on R, ω ε , for ε > 0, introduced in [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF]:

ω ε (x) =      0 if 2ε < |x| , -|x| + 2ε ε if ε ≤ |x| ≤ 2ε , 1 if |x| < ε .
such that ω ε (x) → 0 if x = 0, and ω ε (0) = 1 for all ε.

Thanks to a density argument we may choose ϕω ε as test-function in [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF]. We pass to the limit when ε goes to 0 + by using the Lebesgue dominated convergence Theorem providing that all the terms tend to 0 except |k L -k R |g(κ) T 0 ϕ(t, 0)dt (which does not depend on ε) and:

I ε = Q k(x)Φ(u, κ)ϕ ω ε dxdt .
By definition of ω ε ,

I ε = T 0 1 ε -ε -2ε k(x)Φ(u, κ)ϕ dxdt + T 0 - 1 ε 2ε ε k(x)Φ(u, κ)ϕ dxdt,
and, by setting

L ε = T 0 1 ε -ε -2ε |k(x)(Φ(u, κ)ϕ(t, x)-k L Φ(γu -, κ)ϕ(t, 0))|dtdx,
we prove that lim ε→0 + L ε = 0 because Φ(., κ) is Lipschitzian on [0, 1], and due to the definition of k L and γu -. As a consequence, we obtain [START_REF] Panov | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF].

As in [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], a Rankine-Hugoniot condition may be deduced from [START_REF] Panov | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]. To do so we need an additional hypothesis on the function g. So we suppose that:

∃ κ 1 ∈ R, κ 1 ≥ ess sup u, g(κ 1 )(k L -k R ) ≤ 0 ∃ κ 2 ∈ R, κ 2 ≤ ess inf u, g(κ 2 )(k L -k R ) ≥ 0 ( 10 
)
Lemma 3. Under [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], for a.e. t in ]0, T [, the following Rankine-Hugoniot condition holds:

k L g(γu -(t)) = k R g(γu + (t)) . (11) 
Proof. We choose κ = κ 1 in (9) to obtain:

k R g(γu + ) -k L g(γu -) + g(κ 1 )(k L -k R ) + |g(κ 1 )(k L -k R )| ≥ 0
From [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], we deduce that k R g(γu + ) ≥ k L g(γu -). By choosing κ = κ 2 in (9), and using [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], we obtain the reverse inequality.

The uniqueness theorem

First we recall that Lemma 4. If a bounded mapping u satisfies (5), then:

esslim t→0 + Ω |u(t, x) -u 0 (x)|dx = 0. ( 12 
)
We are now able to state an uniqueness property for (1) through a T -Lipschitzian dependence in L 1 (Q) of a weak entropy solution with respect to corresponding initial data.

Theorem 1. Let u and v be two entropy solutions to (1) for initial conditions (u 0 , v 0 ) in (L ∞ (]-1, 1[) 2 . Then, under (10):

T 0 1 -1 |u(t, x) -v(t, x)|dxdt ≤ T 1 -1 |u 0 (x) -v 0 (x)|dx. ( 13 
)
Proof. We use the method of doubling variables due to S. N. Kruzkov (see [START_REF] Kruzkov | First-order quasilinear equations with several independent variables[END_REF]) by reasoning in two steps: we consider first some test-functions vanishing on a vicinity of {x 0 = 0}. That provides a Kruzkov-type inequality between two entropy solutions from which one the former vanishing hypothesis is released by using [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF].

Lemma 5. Let u and v be two entropy solutions in L ∞ (Q) to (1) associated with initial conditions u 0 and v 0 in

L ∞ (]-1, 1[). For any nonnegative function ϕ in C ∞ c ([0, T [×Ω), vanishing in a neighborhood of {x 0 = 0}, Q (|u(t, x) -v(t, x)|ϕ t (t, x) + k(x)Φ(u(t, x), v(t, x))ϕ x (t, x))dxdt + Ω |u 0 (x) -v 0 (x)|ϕ(0, x)dx ≥ 0. ( 14 
)
Proof. Let (ρ j ) j∈N * be a classical sequence of mollifiers in R, such that ρ j (x) = ρ j (-x), ϕ an element of C ∞ c ([0, T [×Ω) satisfying the hypotheses of Lemma 5. For j ∈ N * and (t, x, s, y) ∈ Q × Q, we set:

ψ j (t, x, s, y) = ϕ( t+s 2 , x+y 2 )ρ j (t -s)ρ j (x -y).
To simplify, we denote w = t+s 2 , z = x+y 2 , u = u(t, x), v = v(t, x), ṽ = v(s, y), q = (t, x), q = (s, y). By choosing κ = ṽ in (5) for u (respectively κ = u in (5) for ṽ) against the test-function ψ j and integrating over Q with respect to q (respectively q), it comes:

Q×Q |u -ṽ|ϕ t (w, z)ρ j (t -s)ρ j (x -y)dqdq - Q×Q sgn(u -ṽ)(k (x)g(ṽ) -k (y)g(u))ψ j dqdq +2 Ω×Ω |u 0 (x) -v 0 (y)|ϕ( t 2 , z)ρ j (x -y)ρ j (t)dqdy + Q×Ω (|u -u 0 | + |ṽ -ṽ0 |)ϕ( t 2 , z)ρ j (x -y)ρ j (t)dqdy + Q×Q Φ(u, ṽ)k(x)(∂ x ϕ)(w, z)ρ j (t -s)ρ j (x -y)dqdq + Q×Q Φ(u, ṽ)(k(y) -k(x))∂ y ψ j (q, q) dqdq ≥ 0 . (15) 
We will just focus on the second and the sixth line. Indeed there is no difficulty to pass to the limit when j goes to +∞ in the other lines by referring to the notion of Lebesgue points for an integrable function on Q (and by using [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] for the forth line). Let's study first the sixth line, denoted I j . Coming back to the definition of ψ j yields I j = I 1,j + I 2,j , where:

I 1,j = Q×Q Φ(u, ṽ)(k(y) -k(x))∂ y (ϕ(w, z))ρ j (t -s)ρ j (x -y)dqdq, I 2,j = Q×Q Φ(u, ṽ)(k(y) -k(x))ϕ(w, z)ρ j (t -s)∂ y (ρ j (x -y))dqdq.
By using the notion of Lebesgue points, we state that

lim j→+∞ I 1,j = 0.
Next we write I 2,j = I a + I b with:

I a = Q×Q {Φ(u, ṽ) -Φ(u, v)} (k(y) -k(x))ϕ(w, z)ρ j (t -s)∂ y (ρ j (x -y))dqdq
and,

I b = Q×Q Φ(u, v)(k(y) -k(x))ϕ(w, z)ρ j (t -s)∂ y (ρ j (x -y))dqdq.
Let us first consider I b . We denote

T (q, q) = Φ(u, v)(k(y) -k(x))ϕ(w, z)ρ j (t -s)∂ y (ρ j (x -y)), Q -=]0, T [×]-1, 0[ and Q + =]0, T [×]0, 1[, I b,1 = Q-×Q- T (q, q)dqdq , I b,2 = Q-×Q+
T (q, q)dqdq

I b,3 = Q+×Q-
T (q, q)dqdq and I b,4 = Q+×Q+ T (q, q)dqdq.

Then,

I b = I b,1 + I b,2 + I b,3 + I b,4
, so we just need to study I b,1 and I b,2 , the arguments for I b,3 and I b,4 being similar. We integrate by parts I b,1 with respect to y to obtain:

I b,1 = - Q-×Q- Φ(u, v)k (y)ϕ(w, z)ρ j (t -s)ρ j (s -y)dqdq -1 2 Q-×Q- Φ(u, v)(k(y) -k(x))ϕ y (w, z)ρ j (t -s)ρ j (s -y)dqdq + Q- T 0 Φ(u, v)(k L -k(x))ϕ(w, x 2 )ρ j (t -s)ρ j (x)dqds
When j goes to +∞, the two last terms tend to 0, owing to the continuity of

k on ] -1, 0[ and to the definition of k L . Moreover, since k |[-1,0[ belongs to W 1,+∞ ([-1, 0[
) and ϕ is continuous, the first term tends to:

- Q- Φ(u(t, x), v(t, x))k (x)ϕ(t, x)dq.
Similarly, lim j→+∞

I b,4 = - Q+ Φ(u(t, x), v(t, x))k (x)ϕ(t, x)dq.
By definition of ρ j , I b,2 is equal to:

T 0 0 -1 j T 0 1 j 0 Φ(u, v)(k(y) -k(x))ϕ(w, z)ρ j (t -s)∂ y (ρ j (x -y))dqdq
As ϕ vanishes on a neighborhood of {x 0 = 0}, from a certain j 0 , I b,2 vanishes and it is the same for I b,3 . Eventually:

lim j→+∞ I b = - Q Φ(u, v)k (x)ϕ(t, x)dq
We study now I a . By using the same decomposition as for I b , it appears four integrals whose two vanish (because ϕ vanishes on a vicinity of {x 0 = 0}) and it only leads to consider the term, denoting by I a,1 :

Q-×Q- {Φ(u, ṽ) -Φ(u, v)} (k(y) -k(x))ϕ(w, z)ρ j (t -s)∂ y (ρ j (x -y))dqdq
By using the Lipschitz condition for φ and k, we highlight a nonnegative constant C 1 independent from j, such that:

|I a,1 | ≤ C 1 Q-×Q- |v(s, y) -v(t, x)||x -y|ρ j (t -s)|∂ y (ρ j (x -y))|dqdq
This way, due to the definition of ρ j , there exists a nonnegative constant C 2 such that:

|I a,1 | ≤ C 2 j 2 {|t-s|≤ 1 j ,|x-y|≤ 1 j } |v(t, x) -v(s, y)|dqdq,
so that, lim j→+∞ I a,1 = 0, and as a consequence

lim j→+∞ I a = 0.
To sum up:

lim j→+∞ I j = lim j→+∞ (I 1,j + I a + I b ) = - Q Φ(u(t, x), v(t, x))k (x)ϕ(t, x)dq.
We study now the j-limit of the second line in (15) that is:

L j = - Q×Q sgn(u -ṽ)(k (x)g(ṽ) -k (y)g(u))ψ j dqdq.
We write

L j = L 1,j -L 2,j with L 1,j = Q×Q k (x) 
Φ(u, ṽ)ψ j dqdq and and L 2,j = Q×Q g(u)sgn(u -ṽ)(k (x) -k (y))ψ j dqdq.

On the one hand, it is clear that:

lim j→+∞ L 1,j = Q k (x)Φ(u(t, x), v(t, x))ϕ(t, x)dq.
On the other hand, as for the study of I a and I b we share L 2,j into four terms whose two vanishes (ϕ vanishing on a neighborhood of {x 0 = 0}) so that we only consider:

L 2,a = Q-×Q- g(u(t, x))sgn(u(t, x) -v(s, y))(k (x) -k (y))ψ j dqdq and, L 2,b = Q+×Q+ g(u(t, x))sgn(u(t, x) -v(s, y))(k (x) -k (y))ψ j dqdq.
We observe that:

|L 2,a | ≤ C g ∞ ϕ ∞ Ω -×Ω - |k (x) -k (y)|ρ j (x -y)dxdy,
where Proof. Thanks to a density argument we can choose in (14) the test function ϕ(1 -ω ε ) where ω ε is defined in the proof of Lemma 2. By taking the ε-limit, it comes:

Ω -=] -1, 0[. So that, since k belongs to L ∞ ([-1, 0[), lim
Q (|u -v|ϕ t + k(x)Φ(u, v)ϕ x )dxdt + Ω |u 0 -v 0 |ϕ(0, x)dx ≥ J,
with:

J = T 0 (k L Φ(γu -, γv -) -k R Φ(γu + , γv + ))ϕ(t, 0)dt.
Inequality [START_REF] Panov | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF] shows that J is nonnegative. Indeed let us study, for a.e. t of ]0, T [, the sign of:

I = k L Φ(γu -, γv -) -k R Φ(γu + , γv + ) .
We just focus on the case when γu + -γv + and γu --γv -have an opposite sign. Otherwise due to [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF], that is satisfied because of ( 10), I = 0. When sgn(γu + -γv + ) = -sgn(γu --γv -) = 0, by using (11), we have:

I = 2k L Φ(γu -, γv -) = -2k R Φ(γu + , γv + )
We suppose that k L -k R > 0, γv + < γu + and γu -< γv -, the study of the other cases being similar. So,

I = -2k L (g(γu -) -g(γv -)) = -2k R (g(γu + ) -g(γv + ))
Here we must consider some different situations.

1. γu -< γv -< γv + < γu + . Then (9) can be written, for any κ of [γu -, γu + ], 16), we have:

-k L (g(γu -) -g(κ)) -k R (g(γu + ) -g(κ)) + (k L -k R )|g(κ)| ≥ 0. (16) if g(γv -) ≥ 0, by choosing κ = γv -in (
-2k L (g(γu -) -g(γv -)) ≥ 0, so I ≥ 0.
if g(γv + ) ≤ 0, by choosing κ = γv + in (16), we obtain:

-2k R (g(γu + ) -g(γv + )) ≥ 0, so I ≥ 0. if g(γv -) < 0 and g(γv + ) > 0, we deduce from [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF], as k L -k R > 0, that k R < 0 and k L > 0. If we suppose that I = -2k L (g(γu -) -g(γv -)) < 0, then g(γu -) > g(γv -). But we also have I = -2k R (g(γu + ) -g(γv + )), that implies that g(γu + ) < g(γv + ). Consequently g changes at least twice its monotony that contradicts the assumption (2).

γu

-< γv + < γv -< γu + .
As in the previous case, if g(γv -) ≥ 0 or g(γv + ) ≤ 0, we have I ≥ 0. If g(γv -) < 0 and g(γv + ) > 0, there exists α in ]γv + , γv -[ such that g(α) = 0. Choosing κ = α in (9) written successively for u and v yields to -2k R g(γu + ) ≥ 0 and 2k R g(γv + ) ≥ 0. Then I ≥ 0.

3. γu -< γv + < γu + < γv -. if g(γv + ) ≥ 0 or g(γu + ) ≤ 0, from (9), I ≥ 0. if g(γv + ) < 0 and g(γu + ) > 0, there exists β in ]γv + , γu + [, such that g(β) = 0. By choosing κ = β in (9), written for u and v, we show that I ≥ 0.

All the others cases may be reduced to one of the previous situations. Now, in order to prove (13), thanks to Lemma 6 we choose in (14) the test-function ϕ such that, for any (t, x) in [0, T [×Ω,

ϕ(t, x) = θ(t)α ε (x), ε > 0 where θ ∈ C ∞ c ([0, T [) and α ε is an element of C ∞ c (Ω) such that α ε = 1 on ]-1 + ε, 1-ε[ and |α ε | ≤ 2 ε . We obtain: Q {|u -v|θ (t)α ε (x) + k(x)Φ(u, v)θ(t)α ε (x)}dxdt + Ω |u 0 -v 0 |θ(0)α ε (x)dx ≥ 0.
There is no difficulty to pass to the limit when ε goes to 0 + . We just point out that due to the properties of (α ε ) ε and to the definition of v τ ±1 and u τ ±1 , lim

ε→0 + Q k(x)Φ(u, v)θ(t)α ε (x)dq = T 0 {k(-1)Φ(u τ -1 , v τ -1 ) -k(1)Φ(u τ 1 , v τ 1 )}θ(t)dt. It comes Q |u -v|θ (t)dxdt + Ω |u 0 -v 0 |θ(0)dx ≥ T 0 k(1)Φ(u τ 1 , v τ 1 )θ(t)dt - T 0 k(-1)Φ(u τ -1 , v τ -1 )θ(t)dt.
Let's prove now that:

T 0 k(1)Φ(u τ 1 , v τ 1 )θ(t)dt - T 0 k(-1)Φ(u τ -1 , v τ -1 )θ(t)dt ≥ 0 .
By coming back to Definition 1, we know that, for a.e t in ]0, T [, for all κ in R:

k(1)(sgn(u τ 1 (t) -κ) + sgn(κ))(g(u τ 1 (t)) -g(κ)) ≥ 0, k(1)(sgn(v τ 1 (t) -κ) + sgn(κ))(g(v τ 1 (t)) -g(κ)) ≥ 0.
Thus, a.e. on ]0, T [, if u τ 1 (t) and v τ 1 (t) have the same sign, we choose κ = v τ 1 in the first inequality (or κ = u τ 1 (t) in the second one) to obtain:

k(1)Φ(u τ 1 (t), v τ 1 (t)) ≥ 0,
if u τ 1 (t) and v τ 1 (t) have an opposite sign, choosing κ = 0 in the two inequalities gives:

k(1)Φ(u τ 1 (t), v τ 1 (t)) ≥ 0. Hence, for a.e. t in ]0, T [, k(1)Φ(u τ 1 (t), v τ 1 (t))θ(t) ≥ 0.
Similarly, for a.e. t in ]0, T [,

k(-1)Φ(u τ -1 , v τ -1 )θ(t) ≤ 0.
This way,

Q |u -v|θ t (t)dxdt + Ω |u 0 -v 0 |θ(0)dx ≥ 0.
The conclusion follows from classical arguments which completes the proof of Theorem 1.

Existence of an entropy solution

The proof relies on a suitable regularization k ε , ε > 0, of the function k and uses a compactness argument for the sequence (k ε Φ(u ε , κ)) ε>0 , where u ε is the weak entropy solution to the corresponding mollified problem. We will consider two different situations:

∃α ∈ R -, ∀x ≤ α, (k L -k R )g(x) ≥ 0, ∃β ∈ R + , ∀x ≥ β, (k L -k R )g(x) ≤ 0 (17) g(m) = g(M ) = 0. ( 18 
)
Remark 2. As well (17) as ( 18) implies [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF].

Remark 3. When we take into account ( 2) and (3), we observe that (18) includes the class of srictly convex (or strictly concave) functions that vanish at m and M . In addition ( 17) is fulfilled as soon as g is strictly monotone and vanishes at a point.

In this framework we establish that:

Theorem 2. The following assertions hold:

(i) Under ( 17) Problem ( 1) admits at least one entropy solution u.

(ii) Under (18) the problem (1) admits at least one entropy solution u such that, for a.e.

(t, x) in Q, m ≤ u(t, x) ≤ M .
Remark 4. Under ( 2) and ( 3), the assumption (17) or (18) on g implies that

∃ κ 0 ∈ R such that Φ(., κ 0 ) is strictly monotone on R.
That is a key point that provides the strong convergence of the approximating sequence (u ε ) ε>0 .

We suppose first that the initial condition u 0 is smooth. Then through a Cauchy criterion in L 1 (Q) we come back to the situation of u 0 in L ∞ (Ω).

First step

: u 0 ∈ C ∞ c (Ω)
We apply the ideas introduced in [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF] (also used in [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF]) that is to consider a regular approximation of the function k. Let (k ε ) ε be a sequence of smooth functions such as, for every positive ε, k ε = k out of ] -ε, ε[ and k ε is monotone on [-ε, ε] (depending on the sign of k L -k R ). That implies:

∀ x ∈ R * , k ε (x) → k(x) and |k ε | BV (R) ≤ |k| BV (R) .
Then we denote u ε the unique entropy solution (see [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]) to the regularized problem: Find a measurable and bounded function

u in BV (Q) ∩ C([0, T ]; L 1 (Ω)) such that formally      ∂u ε ∂t + ∂ ∂x (k ε (x)g(u ε )) = 0 on Q, u ε (0, x) = u 0 (x) on Ω, u = 0 on a part of ]0, T [×∂Ω. ( 19 
)
Lemma 7. (i) Under ( 17), for any t in ]0, T [, we set:

R(t) = ( u 0 ∞ + max(|α|, β))e M k Mgt + e M k Mgt -1 M g |g(0)| where M k = max( k L ∞ (]-1,0[) , k L ∞ (]0,1[) ) and M g = Lip(g).
Then |u ε (t, x)| ≤ R(t), a.e. on Ω.

(ii) Under (18), m ≤ u ε (t, x) ≤ M , for a.e.(t, x) ∈ Q.

(iii) Under (17) or (18), there exists a constant C > 0, such that:

|k ε (Φ(u ε , κ))| BV (Q) ≤ C(|u 0 | BV (Ω) + |k| BV (Q) )
Proof. (i) Let µ > 0. We introduce the viscous problem associated with (19):

Find u ε,µ in L 2 (0, T ; H 2 (Ω)) ∩ C([0, T ]; H 1 (Ω)), ∂ t u ε,µ ∈ L 2 (Q) such that,    ∂ t u ε,µ + ∂ x (k ε (x)g(u ε,µ )) = µ∂ xx u ε,µ a.e. in Q, u ε,µ = u 0 on Ω, u(t, 1) = u(t, -1) = 0 for any t ∈]0, T [. (20) 
It is known that (20) admits an unique solution that converges toward u ε in C([0, T ]; L 1 (Ω)) when µ tends to 0. We multiply (20) with (u ε,µ -R(t)) + , we integrate over Q s =]0, s[×Ω, s ∈]0, T [, and perform the following transformations:

µ Qs ∂ xx u ε,µ (u ε,µ -R(t)) + dxdt = -µ Qs [∂ x (u ε,µ -R(t)) + ] 2 , Qs ∂ t u ε,µ (u ε,µ -R(t)) + dtdx = 1 2 (u ε,µ (s, .) -R(s)) + 2 L 2 (Ω) + Qs R (t)(u ε,µ -R(t)) + dtdx, since u ε,µ (0, .) = u 0 ≤ R(0). Moreover As L{x ∈ Ω, k(x) = 0} = 0, Φ(u ε , κ) -→ χ k a.e. in Q.
Thanks to Remark 4, there exists a subsequence of (u ε ) ε that tends in L 1 (Q) and a.e. on Q to a limit denoted u. Consequently, up to a subsequence, (k ε Φ(u ε , κ)) ε converges toward kΦ(u, κ) in L 1 (Q) and a.e. on Q. Now we have to establish that u is an entropy solution to (1). First we prove that u fulfills [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF]. To this purpose, we introduce the regularized entropy pairs, for any κ ∈ R, and any real τ :

Φ η (τ ) = τ κ sgn η (r -κ)g (r)dr and I η (τ ) = τ κ sgn η (r -κ)dr,
where sgn η denotes the Lipschitzian approximation of the function sgn given for any positive η and any nonnegative real x by sgn η (x) = min( x η , 1) and sgn(-x) = sgn(x).

By coming back to (20) and considering the test-function

v = sgn η (u ε,µ -κ)ϕ, ϕ ∈ C ∞ c ([0, T [×Ω)
, ϕ ≥ 0, we can take the limit on µ with classical arguments. So we establish that u ε fulfills the regularized entropy inequality for all ϕ in

C ∞ c ([0, T [×Ω), Q I η (u ε )ϕ t dxdt + Q k ε (x)Φ η (u ε )ϕ x dxdt + Q k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdxdt + Ω I η (u 0 )ϕ(0, x)dx ≥ 0. (21) 
We want to pass to the limit in (21), first with respect to ε and then with respect to η. The difficulty is only concentrated in the first term of the second line. That is why we write (with dq = dxdt):

Q k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq = T 0 -ε -1 k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq (22) + T 0 ε -ε k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq + T 0 1 ε k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq.
However, owing to the definition of k ε ,

T 0 -ε -1 k ε (x)(Φ η (u ε )-I η (u ε )g(u ε ))ϕdq = T 0 -ε -1 k (x)(Φ η (u ε )-I η (u ε )g(u ε ))ϕdq, (23) and 
T 0 1 ε k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq = T 0 1 ε k (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq.
(24) In addition, by referring to the definition of Φ η and I η ,

T 0 ε -ε k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq = - T 0 ε -ε k ε g(κ)sgn η (u ε -κ)ϕdq + T 0 ε -ε k ε ϕ( uε κ sgn η (τ -κ)g (τ )dτ -(g(u ε ) -g(κ))sgn η (u ε -κ))dq.
We look for a majoration of the right-hand side of this equality. First,

T 0 ε -ε k ε g(κ)sgn η (u ε -κ)ϕdq ≤ |g(κ)| T 0 ε -ε |k ε |ϕdq.
Now we turn on to the estimate of the term |D(u ε )| where:

D(u ε ) = uε κ sgn η (τ -κ)g (τ )dτ -(g(u ε ) -g(κ))sgn η (u ε -κ)).
More precisely, |D(u ε )| ≤ C g η with C g = 2M g . Indeed, let us fix η and κ. Then a.e. on Q:

if u ε ≥ κ + η, D(u ε ) = η+κ κ τ -κ η g (τ )dτ + uε κ+η g (τ )dτ -(g(u ε ) -g(κ))
and

|D(u ε )| ≤ η M g + |g(κ + η) -g(κ)|, because 0 ≤ τ -κ η ≤ 1. Then we use the Lipschitz condition for g. if κ -η ≤ u ε ≤ κ + η, D(u ε ) = uε κ τ -κ η g (τ )dτ - u ε -κ η (g(u ε ) -g(κ))
and

|D(u ε )| ≤ M g |u ε -κ| + M g |uε-κ| 2 η ≤ 2M g η. if u ε ≤ κ -η, D(u ε ) = κ-η uε g (τ )dτ + κ κ-η τ -κ η g (τ )dτ + g(u ε ) -g(κ),
and |D(u ε )| ≤ C g η, as in the first case.

Eventually we deduce that the term:

T 0 ε -ε k ε ϕ( uε κ sgn η (τ -κ)g (τ )dτ -(g(u ε ) -g(κ))sgn η (u ε -κ))dq
is bounded by:

C g η T 0 ε -ε |k ε |ϕdxdt, and 
T 0 ε -ε k ε (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq ≤ (C g η + |g(κ)|) T 0 ε -ε |k ε |ϕdxdt. (25) As k ε is monotone on [-ε, ε], for ε small enough, |k ε | = sgn(k R -k L )k ε . So, T 0 ε -ε |k ε |ϕdq = sgn(k R -k L ) T 0 ε -ε k ε ϕdq
Then we integrate by parts to obtain:

T 0 ε -ε |k ε |ϕdq = -sgn(k R -k L ) T 0 ε -ε k ε ϕ x dq + sgn(k R -k L ) T 0 (k(ε)ϕ(t, ε) -k(-ε)ϕ(t, -ε))dt . (26) 
Finally, from (21), ( 22), ( 23), ( 24), ( 25) and ( 26), for any positive η and ε, we have:

-sgn(k R -k L )(C g η + |g(κ)|) T 0 ε -ε k ε ϕ x dxdt + Q k ε (x)Φ η (u ε )ϕ x dxdt T 0 -ε -1 k (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq + Ω I η (u 0 )ϕ(0, x)dx + T 0 1 ε k (x)(Φ η (u ε ) -I η (u ε )g(u ε ))ϕdq + Q I η (u ε )ϕ t dxdt +sgn(k R -k L )(C g η + |g(κ)|) T 0 (k(ε)ϕ(t, ε) -k(-ε)ϕ(t, -ε))dt ≥ 0.
We take now the ε-limit. Clearly, because (u ε ) ε goes to u in L 1 (Q) and since I η and Φ η are Lipschitzian, lim

ε→0 + Q (I η (u ε )ϕ t + k ε (x)Φ η (u ε )ϕ x )dq = Q (I η (u)ϕ t + k(x)Φ η (u)ϕ x )dq.
Thanks to the definition of k L and k R and to the continuity of ϕ,

lim ε→0 + T 0 (k(ε)ϕ(t, ε) -k(-ε)ϕ(t, -ε))dt = (k R -k L ) T 0 ϕ(t, 0)dt.
Moreover, k ε ϕ x being bounded independently with respect to ε,

lim →0 + T 0 ε -ε k ε ϕ x dxdt = 0.
So, for any positive η, the following inequality holds:

Q (I η (u)ϕ t + k(x)Φ η (u)ϕ x )dxdt + Q k (x)(Φ η (u) -I η (u)g(u))ϕdxdt + Ω I η (u 0 )ϕ(0, x)dx + (|g(κ)| + C g η)|k R -k L | T 0 ϕ(t, 0)dt ≥ 0. (27)
We take the limit with respect to η through the Lebesgue dominated convergence Theorem, providing that u fulfills [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF].

Lastly, let us establish that u satisfies ( 6)- [START_REF] Kruzkov | First-order quasilinear equations with several independent variables[END_REF]. To this purpose, we use the functions H η and Q η defined in [START_REF] Àlek | Weak and mesurevalued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] for any τ , κ ∈ R, by:

H η (τ, κ) = (dist(τ, I[0, κ])) 2 + η 2 1 2 -η and Q η (τ, κ) = τ κ ∂ 1 H η (λ, κ)g (λ)dλ 5.2 Second step: u 0 ∈ L ∞ (Ω)
We use a mollification process to come back to the first step. Indeed, for j ∈ N * , we consider the sequence (u j 0 ) j such that u j 0 belongs to C ∞ c (Ω) and (u j 0 ) tends to u 0 in L 1 (Ω). We denote u j the entropy solution to (1) associated with the initial condition u j 0 so that, for any j, u j fulfills ( 27) and (28). The comparison result (13) ensures that the sequence (u j ) j is a Cauchy sequence in L 1 (Q) and so tends to a limit, denoted u. Then the j-limit in ( 27) and (28) warrants that u is an entropy solution to [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF].

To conclude, we point out that (17) or ( 18) implies [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], so that:

Corollary 1. Assume that (17) or (18) holds. Then (1) has an unique entropy solution.

Generalisation

In this section we keep the same assumptions on g but we consider that k has a finite number of discontinuities. Let D = {1, ..., n -1}, n = 0, x 0 = -1, x n = 1. We suppose that: 

k is discontinuous at x i , i ∈ D, (29) 
+ i∈D |(k + i -k - i )g(κ)| T 0 ϕ(t, x i )dt ≥ 0 , (30) 
where

k + i = lim x→x + i k(x) and k - i = lim x→x - i k(x)
We denote γu + i and γu - i the strong traces in L ∞ (]0, T [) at {x = x i }. By using the same techniques as before we can state the following theorem: Theorem 3. Under (18), when k satisfies (29), there exists a unique entropy solution to [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF]. Moreover, at every point x i , i ∈ D, u satisfies the Rankine-Hugoniot condition:

k + i g(γu + i ) = k - i g(γu - i ) In addition, we adapt (17) under the form:    for i, j ∈ D, i = j, sgn(k + i -k - i ) = sgn(k + j -k - j ), ∃α ∈ R -, ∀x ≤ α, (k - 1 -k + 1 )g(x) ≥ 0, ∃β ∈ R + , ∀x ≥ β, (k - 1 -k + 1 )g(x) ≤ 0.

(31)
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 26 ,a = 0 and it is the same forL 2,b . To summarize, lim j→+∞ L j = Q k (x)Φ(u(t, x), v(t, x))ϕ(t, x)dq, and (14) follows that completes the proof of Lemma 5. Now we state that: Under (10), the Kruzkov inequality (14) still holds for ϕ in C ∞ c ([0, T [×Ω), ϕ ≥ 0.

Definition 2 .

 2 while k |]xi,xi+1[ ∈ W 1,+∞ (]x i , x i+1 [).Of course we need a new definition of an entropy solution which has to be equivalent to Definition 1 when D is reduced to one point. So we say that: Under (29), a function u of L ∞ (Q) is an entropy solution to Problem (1) if u satisfies (6)-[START_REF] Kruzkov | First-order quasilinear equations with several independent variables[END_REF] and if, ∀κ ∈ R , ∀ϕ ∈ C ∞ c ([0, T [×Ω) , ϕ ≥ 0 , t, x) -κ|ϕ t (t, x) + k(x)Φ(u, κ)ϕ x (t, x))dxdt -Q k (x)sgn(u -κ)g(κ)ϕdxdt + Ω |u 0 -κ|ϕ(0, x)dx

Qs

where we use an integration by parts in the last term on the right-hand side. Then the Young inequality gives:

Gathering all terms yields to:

Qs

is nonnegative. Therefore, thanks to the Gronwall's Lemma the conclusion will follow. 

, we multiply (20) with (u ε,µ + R(t)) -and we use the same techniques as before, especially the first line in (17).

(ii) The proof refers to (i) and basically lies on the fact that g(m) = g(M ) = 0.

(iii) The BV -estimate is based on the maximum principle and the following estimates that are classical (see [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF]):

where C 1 and C 2 are constants independent from µ.

-κ|, when µ tends to 0, the conclusion follows.

As a consequence of Lemma 7, and of the compactness embedding of

where I[0, κ] denotes the closed interval bounded by 0 and κ. The sequence (H η , Q η ) η converges uniformly to (dist(τ, I[0, κ]), G(τ, 0, κ)) where:

By taking in (20) the test-function ∂ 1 H η (u ε , κ)ϕ, for any function ϕ ∈ C ∞ c (]0, T [ ×Ω), we obtain for any positive η and ε the following inequality:

If we only consider functions ϕ vanishing in a neighborhood of {x 0 = 0} containing [-ε, ε] (that will not be restictive in the sequel), we can take the ε-limit without difficulty to obtain:

Then, for (t, x) ∈]0, T [×Ω, we choose in (28) a sequence of test-functions defined by

On the one hand, by reasoning as in [START_REF] Àlek | Weak and mesurevalued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] we make sure that lim On the other hand by using the definition of u τ 1 ,

Finally, when η goes to 0 + ,

To conclude we just emphasize that the previous inequality is equivalent for all κ in I[0, u τ 1 ], to: sgn(u τ 1 )k(1)(g(u τ 1 ) -g(κ)) ≥ 0, that is namely (6) when κ is reduced to belong to I(0, u τ 1 ). In the same way, by choosing ϕ(t, x) = β(t)δ n (x) in (28), with β ∈ C ∞ c (]0, T [), β ≥ 0, and δ n ∈ C ∞ c (Ω) such as δ n ≥ 0, δ n (x) = 0 on ] -1 + 1 n , 1[, δ n (-1) = 1 and δ n ∞ ≤ n, by using the definition of u τ -1 , we establish [START_REF] Kruzkov | First-order quasilinear equations with several independent variables[END_REF].

This condition is satisfied when g is strictly monotone and the next corollary holds:

Corollary 2. Assume that (31) is satisfied. Then problem (1) has a unique entropy solution, in the sense of Definition 2.