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Abstract

Consider two insurance companies (or two branches of the same com-
pany) that divide between them both claims and premia in some specified
proportions. We model the occurrence of claims according to a renewal
process. One ruin problem considered is that when the corresponding
two-dimensional risk process first leaves the positive quadrant; another is
that of entering the negative quadrant. When the claims arrive according
to a Poisson process we obtain a closed form expression for the ultimate
ruin probability. In the general case we analyze the asymptotics of the
ruin probability when the initial reserves of both companies tend to infin-
ity, both under Cramér light-tail and under subexponential assumptions
on the claim size distribution.
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1 Introduction and main results

The multidimensional renewal risk model. In collective risk theory the
reserves process X of an insurance company is modeled as

X(t) = x+ pt− S(t), (1)

where x denotes the initial reserve, p is the premium rate per unit of time and
S(t) is a stochastic process modeling the amount of cumulative claims up to time
t. Taking S to be a compound Poisson or compound renewal process yields the
Cramér-Lundberg model and the Sparre-Andersen model, respectively.

Recently, several authors have studied extensions of classical risk theory
towards a multidimensional reserves model (1) where X(t), x, p and S(t) are
vectors, with possible dependence between the components of S(t). Indeed, the
assumption of independence of risks may easily fail, for example in the case of
reinsurance, when incoming claims have an impact on both insuring companies
at the same time. In general, one can also consider situations where each claim
event might induce more than one type of claim in an umbrella policy (see
Sundt (1999)). For some recent papers considering dependent risks, see Dhaene
and Goovaerts (1996, 1997), Goovaerts and Dhaene (1996), Müller (1997a,b),
Denuit et al. (1999), Ambagaspitiya (1999), Dhaene and Denuit (1999), Hu and
Wu (1999) and Chan et al. (2003).

Model and problem. In this paper we consider a particular two-dimensi-
onal risk model in which two companies split the amount they pay out of each
claim in proportions δ1 and δ2 where δ1 + δ2 = 1, and receive premiums at rates
c1 and c2, respectively. Let Ui denote the risk process of the i’th company

Ui(t) := −δiS(t) + cit+ ui, i = 1, 2 ,

where ui denotes the initial reserve and

S(t) =
N(t)∑
i=1

σi (2)

for N(t) being a renewal process with i.i.d. inter-arrival times ζi, and the claims
σi are i.i.d. random variables independent ofN(t), with the distribution function
F (x). We shall denote by λ and µ the reciprocals of the means of ζi and σi,
respectively. We shall assume that the second company, to be called reinsurer,
receives less premium per amount paid out, i.e.:

p1 =
c1
δ1
>
c2
δ2

= p2. (3)

On the other hand, the reinsurer needs to have larger reserves than the insurer,
as in (12).

As usual in risk theory, we assume that pi > ρ := λ
µ = Eσ/Eζ, which

implies that Ui(t) →∞ a.s. as t→∞ (i = 1, 2). Several ruin problems may be
of interest. We consider here:
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1. The first time τor when (at least) one insurance company is ruined, i.e.
the exit time of (U1(t), U2(t)) from the positive quadrant:

τor(u1, u2) := inf{t ≥ 0 : U1(t) < 0. or U2(t) < 0}, (4)

The associated ultimate/perpetual ruin probability will be denoted by

ψor(u1, u2) = P(u1,u2) [τor(u1, u2) <∞] , (5)

where P(u1,u2) denotes the probability measure conditioned on the event
that the initial capitals are equal to (u1, u2), i.e. (U1(0), U2(0)) = (u1, u2).

2. The first time τsim when the insurance companies experience simultaneous
ruin, i.e. the entrance time of (U1(t), U2(t)) into the negative quadrant:

τsim(u1, u2) := inf{t ≥ 0 : U1(t) < 0 and U2(t) < 0}. (6)

The associated ultimate ruin probability will be denoted by

ψsim(u1, u2) = P(u1,u2) [τsim(u1, u2) <∞] . (7)

Let τi(ui) = inf{t ≥ 0 : Ui(t) < 0}, i = 1, 2. We will consider also

ψboth(u1, u2) = P(u1,u2) [(τ1(u1) <∞) ∩ (τ2(u2) <∞)] . (8)

Clearly:

ψsim(u1, u2) ≤ ψboth(u1, u2) = ψ1(u1) + ψ2(u2)− ψor(u1, u2), (9)

where

ψi(u) := Pu(τi(u) <∞) (10)

denotes the ruin probability of Ui when Ui(0) = u. 1

Geometrical considerations and solution in the lower cone C. The
solution of the degenerate two-dimensional ruin problem (5) strongly depends on
the relative sizes of the proportions δ = (δ1, δ2) and premium rates c = (c1, c2).
– see Figure 1. If, as assumed throughout, the angle of the vector δ with
the u1 axis is bigger than that of c, i.e. δ2c1 > δ1c2, we note that starting
with initial capital (u1, u2) ∈ C in the cone C = {(u1, u2) : u2 ≤ (δ2/δ1)u1}
situated below the line u2 = (δ2/δ1)u1, the process (U1, U2) will be subject to a
”sim/or” ruin precisely at the first crossing time τi(ui) the ui axis. Thus, in the
domain C ”sim/or” ruin occurs iff there is ruin in the one-dimensional problem
corresponding to the risk process Ui with premium ci and claims δi σ, and the
solutions in the lower cone C coincide with the ultimate ruin probabilities ψi(ui)
of the classical risk processes Ui(t):

ψor(u1, u2) = ψ2(u2), ψsim(u1, u2) = ψ1(u1). (11)
1Note that our notation is slightly different from that of Cai and Li (2005): their ψand

became our ψboth.
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Figure 1: Geometrical considerations

In the opposite case

u2 > (δ2/δ1)u1 (12)

the solution is more complicated. Note that this is precisely the case of interest
for reinsurance.

Solution in the upper cone Cc: piecewise linear barriers A key ob-
servation is that the ”or” and ”sim” ruin times τ in (4), (6) are also equal
to

τ(u1, u2) = inf{t ≥ 0 : S(t) > b(t)}, (13)

where
b(t) = bmin(t) = min{(u1 + c1t)/δ1, (u2 + c2t)/δ2}

in the ”or” case and

b(t) = bmax(t) = max{(u1 + c1t)/δ1, (u2 + c2t)/δ2}

in the ”sim” case. Our two dimensional problem may thus also be viewed as
a one dimensional crossing problem over a piecewise linear barrier. Note the
relation to asset-liability management models, in which regulatory requirements
impose prescribed limits of variation for the difference between the assets P (t)
of a company and its liabilities S(t) (see Gerber and Shiu (2003)), and which
also translate typically into (several) linear barriers.

Note that in the case that the initial reserves satisfy (u1, u2) ∈ C, that is,
u2/δ2 ≤ u1/δ1, the barriers bmin(t) := (u2 + c2t)/δ2, bmax := (u1 + c1t)/δ1 are
linear and we see again that “or” and ”sim” ruin always happen for the second
and first company respectively. Thus, in the case u1 ≤ u2, explicit formulas
for ψsim, ψor and ψboth directly follow from the theory of one-dimensional ruin
(see e.g. Rolski et al. (1999) or Asmussen (2000)). In the case u2 > u1,
which is authentically two-dimensional, and if N is a Poisson process, we shall
obtain (in Section 3) closed form solutions for ψsim, ψor and ψboth in terms of
one-dimensional ruin functions (even though typically, multi-dimensional ruin
problems do not admit analytic solutions).
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Scaling. Let
Xi(t) := Ui(t)/δi

denote risk processes with drift pi, claims σk and initial capitals xi = ui/δi, i =
1, 2, and note that the process (X1(t), X2(t)) has the same ruin probability as
the original two-dimensional process (U1(t), U2(t)). Thus, by scaling, it suffices
to analyze the case when δ1 = δ2 = 1 (and c1 = p1, c2 = p2). Our model
becomes thus the particular case of (1) in which the components of the claims
are equal.

In the future, we will write ψor/sim/both(x1, x2) for ψor/sim/both(u1, u2), with
xi = ui/δi, and S(t) for the common value of Si(t) (i = 1, 2) in the model (1).

Asymptotics. We next turn to the asymptotic behaviour of the different
ruin probabilities ψor/sim/both(x1, x2) as the initial capitals x1, x2 tend to infin-
ity along a ray (i.e. x1/x2 is constant). In this paper we shall consider two
different situations: the ”light-tailed” case when the Cramér-assumption holds
and the case when the distribution of σ belongs to the class of subexponential
distributions.

Cramér/Light-tailed case.

Definition 1 We will say that a two-dimensional renewal risk process X =
(X1, X2) satisfies the Cramér-conditions if there exist constants γi > 0 (i = 1, 2)
such that

E[eγi(σ1−piζ1)] = 1. (14)

Note that while stronger assumptions have been used in the literature, in
our essentially one-dimensional setup – see (13) – a local condition at γ1 will
suffice – see Theorem 1.

In the case that S is a compound Poisson process the Cramér condition
can equivalently be formulated in terms of the characteristic exponent κi(s) =
t−1 logE[esXi(t)] = pis+ λ(E[e−σs]− 1) of Xi(t) = pit− S(t), as the existence
of γi > 0 (i = 1, 2) such that

κi(−γi) = 0. (15)

By Θi, i = 1, 2, we denote the domain of κi, the set of x ∈ R for which κi(x) is
finite.

By (11) the solution in the lower cone C of the ”or/sim” problems coincide
with the ultimate ruin probabilities ψi(xi) of the processes Xi(t) i = 1, 2. Let-
ting thus the initial reserves x1, x2 of both companies tend to infinity within
the cone C along a ray x1/x2 = a with a ≥ 1, we find by the Cramér-Lundberg
approximation that

lim
K→∞

ψsim/both(aK,K)
e−γ1aK

= C1, lim
K→∞

ψor(aK,K)
e−γ2K

= C2, (16)

where C1, C2 are non-negative finite constants that, in the case that S is a
compound Poisson process, are given explicitly by

Ci = −κ′i(0)/κ′i(−γi). (17)
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Next we turn to the asymptotic behaviour of ψor/sim/both(x1, x2) if the initial
reserves tend to infinity along a ray x1/x2 = a with a < 1. In this case we
find different asymptotic results within sub-cones, as typical in such cases; see
for example Borovkov and Mogulskii (2001) and Ignatyuk et al. (1994). We
identify two cones Di, i = 1, 2, adjoining the boundaries x1 = 0 and x1 = x2

respectively, throughout which or/sim ruin are due to the first/second company
in D1/D2, and to the second/first company in Dc

2/D
c

1. More precisely, these
cones

D1 = {(x1, x2) ∈ Cc : x1 < x2s1}, D2 = {(x1, x2) ∈ Cc : x1 < x2s2} (18)

are separated by the rays Rs1 = {x1 = s1x2}, Rs2 = {x1 = s2x2} with

s1 =
κ′1(−γ1)
κ′2(−γ1)

, s2 =
(
κ′1(−γ2)
κ′2(−γ2)

)
+

. (19)

In Section 4.2 below it will be verified that s2 < s1 < 1, so that the rays Rs1

and Rs2 are disjoint subsets of Cc, and an intuitive explanation is given for the
form of the sub-cones. For a more detailed intuitive explanation of the different
behavior in these sub-cones, see the remark following Lemma 4.

Note that our results are sometimes sharper than the classical ones – see The-
orem 7, and that they are obtained directly from classical one-dimensional con-
vergence results in renewal theory, obtained by Arfwedson (1955) and Höglund
(1990).

Throughout the paper we write f(x) ∼ h(x) as x→∞ if limx→∞ f(x)/h(x) =
1, f(x) ∼log h(x) if log f(x) ∼ log h(x) and f(x) = o(h(x)) as x → ∞ if
limx→∞ f(x)/h(x) = 0.

Theorem 1 Let S be a compound Poisson process as in (2) and let a < 1.
Assume that (15) holds and let κ′1(−γ1) > −∞.

(a) It holds that, as K →∞,

ψor(aK,K) ∼ C2e−γ2K + C1e−γ1aK ,

ψboth(aK,K) = o(C2e−γ2K + C1e−γ1aK).

(b) Assume that there exists an x ∈ intΘ2 with κ′2(x) = p1−p2
1−a . As K →∞,

ψsim(aK,K) ∼ ψboth(aK,K) ∼

{
C1e−γ1aK , s1 < a < 1
C2e−γ2K , 0 < a < s2,

ψboth(aK,K) = o(min{C1e−γ1aK , C2e−γ2K}), a ∈ (s2, s1),

where the region 0 < a < s2 is understood to be empty if s2 = 0. Further, if
s2 > 0 and a ∈ (s2, s1), ψsim(aK,K) ∼log ψboth(aK,K).

The asymptotics in part (a) do not depend on the particular structure of the
risk process considered here; in Theorem 5 we shall show that these asymptotics

5



remain valid for a general two-dimensional Lévy process. This extension implies
that the asymptotics in Theorem 1(a) also remain valid if the cumulative claims
process S is taken as in (2) with a general renewal process N . Indeed, note that
the ruin probabilities ψor/both/sim do not change if we replace X = (X1, X2)
by a two-dimensional compound Poisson process with unit rate and jump sizes
distributed as (σn − p1ζn, σn − p2ζn).

To show the asymptotics in (b) we shall exploit the special (degenerate)
structure of the risk process in (2). In Theorem 7 of Section 4.3, we obtain even
sharper asymptotics (a two term asymptotic expansion) in the case that S is a
compound Poisson process with exponential jumps.

Subexponential case. For any distribution function G on [0,∞) we denote
the tail by G(x) = 1 − G(x). The distribution G is called subexponential if
G(x) > 0 for all x and

lim
x→∞

G∗2(x)/G(x) = 2 ,

where G∗2 is the fold of G with itself. A distribution function G on R belongs
to the class S∗ introduced by Klüppelberg (1988) if and only if G(x) > 0 for all
x and ∫ x

0

G(x− y)G(y) dy ∼ 2νG(x), as x→∞, (20)

where
ν =

∫ ∞

0

G(x) dx.

Note that any distribution from S∗ is subexponential. Its integrated tail dis-
tribution GI is defined as GI(x) = ν−1

∫ x

0
G(y)dy. The subexponential distri-

butions model claim sizes resulting from catastrophic events like earthquakes,
storms, terrorist attacks etc. Insurance companies use the lognormal distribu-
tion (which is subexponential) to model car claims – see Rolski et al. (1999) for
details. Let F denote the distribution of the claim size σ and define

H(aK,K) =
∫ ∞

0

F (max {aK +m1t,K +m2t}) dt (21)

for mi = piE[ζ] − E[σ] (i = 1, 2). If a ≥ 1 and if FI is subexponential distri-
bution, then it follows from the one-dimensional reduction and Embrechts and
Veraverbeke (1982) (see also Zachary (2004)) that

lim
K→∞

ψor(aK,K)
F I(K)

=
1

m2µ
, lim

K→∞

ψsim(aK,K)
F I(aK)

=
1

m1µ
,

where µ = E[σ]−1. If a < 1 the asymptotics of ψor/sim/both are as follows:

Theorem 2 If a < 1, F ∈ S∗ and E[ζ2+δ] < ∞ for some δ > 0, then it holds
that

ψor(aK,K) ∼ 1
m1µ

F I(aK) +
1

m2µ
F I(K)−H(aK,K) , (22)

ψsim(aK,K) ∼ ψboth(aK,K) ∼ H(aK,K) (23)
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as K →∞.

Note that, in contrast to the case of light tails, the asymptotic probability of
joint ruin of both companies at the same time appears in the asymptotics for
ψor(aK,K) (and is equal to H(aK,K)). This is what we might expect —
”large” claims cause often bankruptcy not only of the insurance company but
of a whole chain of reinsurers.

Contents. The rest of the paper is organised as follows. Section 2 is devoted
to auxiliary results regarding one-dimensional first passage times for spectrally
negative Lévy processes. In Section 3 an explicit form of the ruin probabilities
(5) and (7) is derived in the case that N is a Poisson process. The proofs of the
asymptotics for the Cramèr case of light-tailed claims, and the subexponential
case are presented in Sections 4 and 5, respectively.

2 Preliminaries

Let X be a spectrally negative Lévy process, i.e. a stochastic process with
càdlàg paths without positive jumps that has stationary independent increments
defined on some probability space (Ω,F , P ) that satisfies the usual conditions.
By (Px, x ∈ R) we denote the family of measures conditioned on {X(0) = x}
with P0 = P . We exclude the case that X has monotone paths. If X is of
bounded variation, X takes the form of X(t) = pt − S(t), where S(t) is a
subordinator and p > 0 is called the infinitesimal drift of X.

By the absence of positive jumps, the moment generating function of X(t)
exists for all θ ≥ 0 and is given by

E
[
eθX(t)

]
= exp

(
t κ(θ)

)
, θ ≥ 0

for some function κ(θ), called Laplace exponent, which is well defined at least
on the positive half axis, where it is convex with the property limθ→∞ κ(θ) =
+∞. Let Φ(0) denote its largest root. On [Φ(0),∞) the function κ is strictly
increasing and we denote its right-inverse function by Φ : [0,∞) → [Φ(0),∞).

Each measure P (c) in the exponential family of measures P := {P (c) :
c such that κ(c) <∞} is defined by its the Radon-Nikodym derivative Λ(c)

dP (c)

dP

∣∣∣∣
Ft

= Λ(c)(t) = exp (cX(t)− κ(c)t) . (24)

By P
(c)
x we shall denote the translation of P (c) under which X(0) = x. The

characteristic function of the process X under the measure P (c) ∈ P is given by

κc(θ) = κ(c+ θ)− κ(c). (25)

2.1 Cramér asymptotics

Results concerning spectrally negative Lévy processes are conveniently expressed
in terms of the so-called scale function W (q) : [0,∞) → [0,∞) defined by its
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Laplace transform: ∫ ∞

0

e−αxW (q)(x) dx =
1

κ(α)− q
,

where κ(α) is the Laplace exponent ofX(t). As may be seen from the fluctuation
theory of spectrally negative Lévy processes (e.g. Bertoin (1996), Bingham
(1975)) the Laplace transform in t of the survival probability up to time t:

ψ(x, t) = 1− ψ(x, t) = 1− Px(τ < t),

for
τ = inf{t ≥ 0 : X(t) < 0}

is for x ≥ 0 equal to

Ψ
(q)

(x) = Φ(q)−1W (q)(x)−W
(q)

(x), (26)

where W (q) denotes the corresponding scale function and its anti-derivative
W

(q)
(x) =

∫ x

0
W (q)(y)dy. Letting q ↓ 0 in the expression qΨ

(q)
we recover that,

if κ′(0) > 0,
ψ(x) = ψ(x,∞) = 1−W (x)/W (∞), (27)

where, by a Tauberian theorem, W (∞) := limx→∞W (x) = 1
κ′(0+) = Φ′(0+).

The Cramér-Lundberg approximation states that, if there exists a γ > 0 with
κ(−γ) = 0 and if X is a classical risk process, it holds that

lim
x→∞

eγxψ(x) = C = −κ′(0)/κ′(−γ), (28)

where C is understood to be zero if κ′+(−γ) = −∞, where κ′+ denotes the right-
derivative of κ. Bertoin and Doney (1994) showed that this result remains valid
if X is a Lévy process (not just spectrally negative). The parameter γ is called
the adjustment coefficient.

The following result, given for later reference, concerns the expected time of
ruin.

Lemma 1 Suppose that κ′(0+) ∈ (−∞, 0). Then, as x→∞,

x/Ex[τ ] → κ′(0+).

Proof: Applying the optional stopping theorem to the martingale Xt− tκ′(0+)
and the bounded stopping time τ ∧ T shows that

Ex[Xτ∧T ]− x = Ex[τ ∧ T ]κ′(0+).

Since |Xτ∧T | is dominated by Sτ − Xτ which has finite expectation it follows
by letting T → ∞ and invoking the dominated convergence theorem that the
previous display is valid with τ ∧T replaced by τ . The assertion now follows by
noting that Ex[Xτ ] remains finite as x→∞. �
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Example 1 If, under P , X is a drift p minus a compound Poisson process with
rate λ and exponential jump sizes with mean µ, then κ(θ) = pθ − λθ/(µ + θ)
and its scale function W (q) is given by

W (q)(x) = p−1
(
A+eq+(q)x −A−eq−(q)x

)
,

where A± = µ+q±(q)
q+(q)−q−(q) with q+(q) = Φ(q) and q−(q) the smallest root of

κ(θ) = q. Inserting the found expression for W (q) in (26) we see that in this
case

Ψ
(q)

(x) = q−1[1− (1 + q−(q)/µ)e−q−(q)x]. (29)

From (27) one can verify that, if, as assumed throughout, p > λ
µ , then ψ(x) =

Ce−γx, where the adjustment coefficient is γ = µ − λ/p and C = λ/(µp).
Further, under P (c), X is still a drift p minus a compound Poisson process with
exponential jumps but with the changed rates λc = λ µ

µ+c and µc = µ + c. In
particular, λ−γ = µ p and µ−γ = λ/p are the parameters of the corresponding
measure.

Example 2 If X(t) = mt + σB(t) where B(t) is standard Brownian motion,
then κ(θ) = σ2

2 θ
2 +mθ and the scale function W (q) is given by

W (q)(x) =
(

2
σ2(q+(q)− q−(q))

)(
eq+(q)x − eq−(q)x

)
,

where q+(q) = Φ(q) and q−(q) is the smallest root of κ(θ) = q and Ψ
(q)

reads
as

Ψ
(q)

(x) = q−1[1− e−q−(q)x]. (30)

In particular, ifm < 0, ψ(x) = e−γx, where γ = 2m
σ2 is the adjustment coefficient.

Further, under P (c), X is still Brownian motion, but the drift changes tom+cσ2.
The drift of the measure associated to c = −γ is −m, i.e. the Brownian motion
switches its drift.

2.2 Generalization of ballot theorem

Denoting by
I(t) = inf

0≤s≤t
X(s) ∧ 0

the infimum of X, the well-known ballot theorem states that, if X has bounded
variation, then

P (X(t) ∈ dz, I(t) ≥ 0) =
z

p t
P (X(t) ∈ dz), (31)

where p denotes the infinitesimal drift of X. The next result generalizes the bal-
lot theorem to general starting point x ≥ 0 and allows for unbounded variation.
We shall derive the result under the condition (AC) that the one-dimensional
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distributions of X are absolutely continuous with respect to the Lebesgue mea-
sure

P (X(t) ∈ dx) � dx, t > 0. (AC)

Proposition 1 Let X be a spectrally negative Lévy process satisfying (AC) and
write p(t, x) for a version of P (X(t)∈dx)

dx . Then for t > 0 and x, z ≥ 0 it holds
that

Px(X(t) ∈ dz, I(t) ≥ 0) = Px(X(t) ∈ dz) (32)

− z

∫ t

0

1
(t− s)

P (X(t− s) ∈ dz)p(s,−x)ds.

Let us sketch the idea of the proof of this result. First of all, writing T (z) =
inf{t ≥ 0 : X(t) > z}, note that equation (32) is equivalent to

Px(X(t) ∈ dz, I(t) < 0) =
∫ t

0

p(t− s,−x)P (T (z) ∈ ds)dz (33)

= z

∫ t

0

1
t− s

P (X(t− s) ∈ dz)p(s,−x)ds,

where the second equality follows by Kendall’s identity (see (75) below). Heuris-
tically, (33) follows by conditioning on the last time t − s when X(t) crosses 0
before arriving in dz, which is the first time the time-reversed process, starting
in z, downcrosses 0, and then using that the time-reversed process, having the
same law as −X and thus being spectrally positive, hits 0 when first downcross-
ing 0.

From this result we can recover the ballot theorem:

Corollary 1 Let X(t) denote a spectrally negative Lévy process of bounded vari-
ation. Then (31) holds true.

The proofs of Proposition 1 and Corollary 1 are deferred to the Appendix 6.

2.3 Asymptotics of finite time ruin probabilities

For the analysis of the two-dimensional ruin problems we shall need a character-
isation of the asymptotics of the finite time ruin probability ψ(x, t) = Px[It < 0]
of the spectrally negative Lévy process X as x and t go to infinity according
to a ray x/t = a. The asymptotics are expressed in terms of the adjustment
coefficient γ and the convex conjugate κ∗ of κ,

κ∗(v) = sup
β∈R

[vβ − κ(−β)]. (34)

If v ∈ K := {−κ′(x) : x ∈ intΘ}, where intΘ is the interior of the domain
Θ = {x ∈ R : κ(x) <∞} of κ then an explicit expression for κ∗(v) read as

κ∗i (v) = −κ′i(−θv)θv − κi(−θv),

where θ = θv is the unique root of κ′(−θ) = −v.
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Proposition 2 Suppose that there exists a γ ≥ 0 with κ(−γ) = 0 and κ′(−γ) <
0 and assume that a ∈ K. Then, as x→∞,

ψ(ax, x) ∼ Ce−γax, 0 < a < −κ′(−γ),
logψ(ax, x) ∼ −κ∗(a)x, a > −κ′(−γ),

ψ(ax,∞)− ψ(ax, x) ∼ Ce−γax, a > −κ′(−γ),
log(ψ(ax,∞)− ψ(ax, x)) ∼ −κ∗(a)x, 0 < a < −κ′(−γ).

Proof: We only prove the statements regarding ψ(ax, x) as the proof for
ψ(ax,∞) − ψ(ax, x) is similar. Changing measure with Λ(−γ) and using that
κ(−γ) = 0, it follows that

eγaxψ(ax, x) = eγaxPax(τ < x) = E(−γ)
ax [eγX(τ)1{τ<x}]

= E(−γ)
ax [eγX(τ)]− E(−γ)

ax [eγX(τ)1{τ>x}].

The first expectation converges to C by (28) and, if a < −κ′(−γ), the second
one converges to zero by the bounded convergence theorem in conjunction with
the law of large numbers. Indeed, it holds that

P (−γ)
ax (τ ≤ x) = P (−γ)(I(x) ≤ −ax) ≥ P (−γ)(X(x) ≤ −ax)

= P (−γ)(X(x)/x ≤ −a)

and, in view of the strong law of large numbers, the latter probability, converges
to 1 as x→∞.

Next we consider the case a > −κ′(−γ). Employing Λ(−θa) as a change of
measure and using that θa > 0, X(τ) ≤ 0 and κ(−θa) > 0, we find the upper
bound

ψ(ax, x) = e−aθaxE(−θa)
ax [eθaX(τ)+κ(−θa)τ1{τ<x}] ≤ e−aθax+κ(−θa)x = e−xκ∗(a).

To establish the lower bound we invoke the classical asymptotics of Bahadur
and Rao (1960): for a ∈ K, it holds that P (X(n) < −an+ εn) ∼ cn−1/2e−nκ∗(a)

for εn = o(
√
n), as n→∞, (n ∈ N). Therefore, we find that

logψ(ax, x) = logP (I(x) < −ax) ≥ logP (X(bxc) < −ax)
∼ logP (X(bxc) < −ax) ∼ −[x]κ∗(a) ∼ −xκ∗(a),

where bxc is the largest integer smaller or equal to x. �
We shall also need the following sharper result that was obtained by Arfwedson
(1955). The current statement is from Höglund (1990) (Cor. 2.3).

Theorem 3 Let X(t) = ax+pt−S(t), where S is a compound Poisson process
with positive jumps. Suppose that there exists a γ ≥ 0 with κ(−γ) = 0 and
κ′(−γ) < 0 and assume that a ∈ K. Then, there exists a positive constant D
such that, as x→∞,

ψ(ax, x) ∼ Dx−1/2e−κ∗(a)x, a > −κ′(−γ),
ψ(ax,∞)− ψ(ax, x) ∼ Dx−1/2e−κ∗(a)x, 0 < a < −κ′(−γ).
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If θ′a is the root of κ(−s) = κ(−θa), then

D =
θa − θ′a

|θaθ′a|
√

2πκ′′(−θa)
. (35)

3 Exact two-dimensional ruin probabilities

In this section we propose methods for computing the ruin probabilities of the
model with equal claims in the case when (x1, x2) ∈ Cc and S(t) is a general
spectrally positive Lévy process. The generalisation of the ballot theorem de-
rived in the previous section enables us to express the ruin probabilities for
general claim size distributions in terms of the one-dimensional distributions in
Proposition 4 in Subsection 3.2. Specializing to the case of a compound Pois-
son process with exponential jumps or a Brownian motion this leads to explicit
expressions.

3.1 The probability of crossing a piecewise linear barrier.

In the case x2 > x1, the survival probabilities ψor(x1, x2)/ψsim(x1, x2) are given
by the probability that the process S stays below piecewise linear barriers

bmin(t) = min
i=1,2

{xi + pit}, bmax(t) = max
i=1,2

{xi + pit}

formed by the lines t 7→ x1 + p1t and t 7→ x2 + p2t, which cross at

T = T (x1, x2) =
x2 − x1

p1 − p2
. (36)

In the first case for example, this requires staying below the barrier x1 + p1t
between the times 0 and T and subsequently staying below the barrier x2 + p2t
after time T . In the case when S is Markovian (not necessarily a spectrally
positive Lévy process), this yields by conditioning at time T :

ψor(x1, x2) =
∫ ∞

0

ψ1(dz, T |x1)ψ2(x2 + p2T − z),

where
ψi(dz, T |x) := P0(S(t) ≤ x+ pit,∀t ∈ [0, T ], S(T ) ∈ dz) (37)

is the density at time T of the paths S(T ) which ”survive” the upper barrier
x + pit and where we used the fact that x1 + p1T = x2 + p2T . We find it
convenient to reformulate this result in terms of the two coordinates of our
reserves process

Xi(t) := xi + pit− S(t), i = 1, 2,

their infima
Ii(t) = inf

0≤s≤t
Xi(s) ∧ 0

12



and the coordinate-wise densities of the ”non-ruined” paths

ψi(dz, T |xi) = Pxi
(Ii(T ) ≥ 0, Xi(T ) ∈ dz). (38)

We arrive thus at the following result, which relates the survival probability of
the two dimensional process to the one dimensional survival characteristics of
its coordinates:

Theorem 4 Let X(t) be a two-dimensional Lévy process (1) with equal cu-
mulative claims S(t) = S1(t) = S2(t) given by an arbitrary Lévy process. If
x2 > x1, p2 < p1, then the two-dimensional survival probabilities associated to
the or/sim ruin problems (5), (7), are given by:

ψor(x1, x2) =
∫ ∞

0

ψ1(dz, T |x1)ψ2(z),

ψsim(x1, x2) =
∫ ∞

0

ψ2(dz, T |x2)ψ1(z),

where T is given in (36), ψi(dz, T |xi) in (38) and ψi(z) = Pz(Ii(∞) ≥ 0) are
perpetual one-dimensional survival probabilities.

Proof: Recall that

ψor(x1, x2) = P(x1,x2)(min{X1(t), X2(t)} ≥ 0 for all t ≥ 0).

Next, we note that, if x2 > x1, it holds that the minimum

min{X1(t), X2(t)} = min{x1 − x2 + (p1 − p2)t, 0}+X2(t)

is equal to X1(t) for t ≤ T and X2(t) for t > T , where T was defined in (36).
Applying subsequently the Markov property of X2 at time T shows that

ψor(x1, x2) = P(x1,x2)(X1(t) ≥ 0 for t ≤ T,X2(t) ≥ 0 for t ≥ T )

=
∫ ∞

0

Px1(X1(T ) ∈ dz, I1(T ) ≥ 0)Pz(I2(∞) ≥ 0).

Similarly, the probability ψsim(x1, x2) that S stays below the barrier bmax(t)
can be seen to be equal to

ψsim(x1, x2) =
∫ ∞

0

Px2(X2(T ) ∈ dz, I2(T ) ≥ 0)Pz(I1(∞) ≥ 0).

�

3.2 Particular cases of Theorem 4

Combining Theorem 4 with Proposition 1 yields an expression for ψor(x1, x2)
in terms of the one-dimensional distributions of S. In the case that S is a
compound Poisson process the next result, whose proof can be found in Section
6, expresses the one-dimensional distributions of S as a series:

13



Corollary 2 Suppose S is a compound Poisson process whose jump sizes σi

have the pdf f . If x2 > x1, Theorem 4 holds true where ψi(dz, T |xi) is given by
(32) with

Pxi(X(t) ∈ dx) = e−λtδxi+pit(dx) + p(t, xi + pit− x)dx

and

p(t, z) = e−λt
∞∑

n=1

(λt)n

n!
f?n(z) (39)

is the density of S(t).

If, in addition, the claims sizes σi follow a phase-type distribution (β,B), i.e.
P [σ > x] = βeBx1, the solution simplifies. Indeed, in this case the one-
dimensional ruin probability may be written in a simple matrix exponential
form:

ψi(xi) = ηie
Qixi1 (40)

with Qi = B + bηi and ηi = λ
pi

β(−B)−1 (see for example (4) in Asmussen et
al. (2002)). Combining this explicit formula (40) with Theorem 4 yields the
following result:

Corollary 3 Suppose S is a compound Poisson process with phase-type jumps
(β,B). If x2 > x1, it holds that

ψor(x1, x2) = Px1(I1(T ) < 0) + η2

∫ ∞

0

eQ2zψ1(dz, T |x1)1, (41)

ψsim(x1, x2) = Px2(I2(T ) < 0) + η1

∫ ∞

0

eQ1zψ2(dz, T |x2)1, (42)

where Qi = B + bηi and ηi = λ
pi

β(−B)−1.

In the special case of exponential claims σi with rate µ equation (41) can be
developed further by employing the technique of change of measure and by
applying the Markov property of Xi. Indeed, as a particular case of the phase-
type relation (41), we see that

ψor(x1, x2) = Px1(I1(T ) < 0) + C2Ex1 [e
−γ2X1(T )1{I1(T )≥0}]. (43)

By a change of measure and using that −γ2x1 + κ1(−γ2)T = −γ2x2 we find
that the second term in (43) is equal to

C2e−γ2x1+κ1(−γ2)TEx1 [Λ
(−γ2)(T )1{I1(T )≥0}] = C2e−γ2x2P (−γ2)

x1
(I1(T ) ≥ 0).

The probability ψsim can be treated using similar arguments. In conclusion,
the original two-dimensional ruin problems ψor/ψsim/ψboth have been reduced
to one-dimensional finite time ruin problems ψ(c)

i (x, t) = P
(c)
x [Ii(t) < 0], as

follows:

14



Corollary 4 Suppose S is a compound Poisson process with exponential jumps.
If x2 > x1, it holds that

ψsim(x1, x2) = ψ2(x2, T ) + ψ1(x1)ψ
(−γ1)

2 (x2, T ),

ψor(x1, x2) = ψ1(x1, T ) + ψ2(x2)ψ
(−γ2)

1 (x1, T ),

ψboth(x1, x2) = w1(x1, T ) + ψ2(x2)ψ
(−γ2)
1 (x1, T ),

where w1(x, t) = wλ,µ,p1(x, t) is given by

wλ,µ,p(x, t) = Px(I(∞) < 0, I(t) ≥ 0) = ψ(x)− ψ(x, t)

for I(t) defined for X(t) = pt− S(t).

Remark. Recall (see Example 1) that shifting the measure from P to P (−γi)

for a Lévy risk processes with premium p and exponential claim sizes of intensity
µ is equivalent to using the parameters µ̃i := µ−γi

, λ̃i := λ−γi
under P . When

ρ > ρ∗ := p2
2/p1

we find that the adjustment parameter of X1 under P (−γ2) is positive and equals
to

γ = γ3 =
µ

p2
(ρ− p2

2/p1), (44)

in the opposite case, ρ ≤ ρ∗, this coefficient is zero. Moreover, the asymptotic
constant C3 in the first case satisfies C3C2 = p2

p1
. Similarly, we find that under

P (−γ1), the drift of X2 is always negative, κ(−γ1)′
2 (0) = κ′2(−γ1) < 0, so that

the adjustment parameter of X2 is always zero. Noticing that ψ
(−γ2)

1 (x1, T ) =
w

(−γ2)
1 (x1, T )+(1−C3e−γ3x1)I[ρ>ρ∗] and combining with above Corollary leads

to

ψsim(x1, x2) = C2e−γ2x2 + ω2(x1, x2),
ψor(x1, x2) = C1e−γ1x1 − ω1(x1, x2) + e−γ2x2(C2 − (p2/p1)e−γ3x1)+,

ψboth(x1, x2) = ω1(x1, x2) + e−γ2x2 max{C2, (p2/p1)e−γ3x1},

where x+ = max{x, 0}, γi = µ− λ/pi (i = 1, 2), Ci = λ/(µpi) and

ωi(x1, x2) = C1e−γ1x1wλ̃1,µ̃1,pi
(xi, T )− C2e−γ2x2wλ̃2,µ̃2,pi

(xi, T ). (45)

An explicit formula for wλ,µ,p(x, t) = Px(t < τ < ∞) can be extracted from
the literature [Asmussen (1984), Knessl and Peters (1994) (with p = 1) and
Pervozvansky (1998)] - see Appendix 6.

Remark. In view of the fact (Example 2) that the perpetual ruin probability
of a Brownian motion with drift is given by an exponential, the representation
in Corollary 4 remains valid if S is replaced by a Brownian motion. In this case
ψ(x, t) is given in terms of inverse Gaussian distributions.
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4 Two dimensional Cramér asymptotics

We now turn to the asymptotics of the ruin probabilities ψor/ψsim/ψboth(x1, x2)
in the case that the initial reserves tend to infinity according to a ray x1/x2.
Section 4.1 is devoted to asymptotics for general two-dimensional Lévy pro-
cesses (implying the result for a Cramér-Lundberg process as in Theorem 1(a)).
In Section 4.2 we derive asymptotics for the particular (degenerated) risk pro-
cess given in the introduction and we consider in Section 4.3 the example of
exponential jumps.

4.1 General asymptotics

Let X = (X1, X2) now be a two-dimensional Lévy process and assume that
X1, X2 do not have monotone paths. We will denote by

κ(θ) = κ(θ1, θ2) = logE[eθ1X1(1)+θ2X2(1)]

the joint cumulant of X = (X1, X2), by Θ = {θ : κ(θ) < ∞} the domain of κ
and by Σ the Cramér set,

Σ = {θ = (θ1, θ2) ∈ Θ : κ(θ1, θ2) ≤ 0}.

Suppose that the Cramér assumption hold for X1 and X2, that is, there exist
γ1, γ2 > 0 such that

κ(−γ1, 0) = κ(0,−γ2) = 0. (46)

Moreover, assume the following condition is satisfied by the partial derivatives
of κ:

∂κ

∂u
(u, v)

∣∣∣∣
(u,v)=(−γ1,0)

+
∂κ

∂v
(u, v)

∣∣∣∣
(u,v)=(0,−γ2)

> −∞. (47)

By (P(x,y), x, y ∈ R) we will denote the family measures under which X(0) =
(x, y) and, for c = (c1, c2) ∈ ×, P (c) denotes the measure with Radon-Nikodym
derivative with respect to P given by

dP (c)

dP

∣∣∣∣
Ft

= exp(c1X1(t) + c2X2(t)− κ(c1, c2)t),

where Ft denotes the P -completed sigma-algebra generated by (Xs, s ≤ t). We
shall also use the notation (4) – (10) for the different ruin times of interest in
this setting.

Theorem 5 Suppose that the Cramér assumptions (46) and (47) hold and let
a > 0. Then, as K →∞,

ψor(aK,K) ∼ C2e−γ2K + C1e−γ1aK , (48)
ψboth(aK,K) = o(C2e−γ2K + C1e−γ1aK), (49)

where C1 and C2 are given in (17).

16



Proof: We start with a few estimates. On the one hand, it holds that

ψor(aK,K) = ψ1(aK) + ψ2(K)− ψboth(aK,K)
≤ ψ1(aK) + ψ2(K), (50)

while, on the other hand,

ψor(aK,K) ≥ max{ψ1(aK), ψ2(K)}. (51)

Note that, in view of (50) and the Cramér-Lundberg asymptotics (28), the
asymptotics (48) imply those of (49):

lim
K→∞

ψboth(aK,K)
C1e−γ1aK + C2e−γ2K

= 0.

The rest of the proof is therefore devoted to showing (48).
If γ1a > γ2 [resp. γ1a < γ2], it follows, in view of the Cramér-Lundberg

asymptotics (28), that the lower bound (51) and upper bound (50) are of the
same order of magnitude, C2e−γ2K [resp. C1e−γ1aK ], as K →∞. Thus (48) is
valid if γ1a 6= γ2.

Next we turn to the case γ1a = γ2. In this case we have to show that

ψor(aK,K) ∼ C1e−γ1aK + C2e−γ2K as K →∞.

Noting that (with τ1 = τ1(aK) and τ2 = τ2(K)) it holds that

ψor(aK,K) = P(aK,K)(τ1 ≤ τ2, τ1 <∞) + P(aK,K)(τ2 ≤ τ1, τ2 <∞)
− P(aK,K)(τ1 = τ2 <∞),

we shall show that (i) the first two terms are of the order C1e−γ1aK +C2e−γ2K

while (ii) the third term is of smaller order.
(i) For the first term of last display it follows, by a change of measure, that

e−γ1aKE
(−γ1,0)
(aK,K)(e

−γ1X(τ1)1{τ1≤τ2,τ1<∞}).

We claim that, as K →∞, it holds that

E
(−γ1,0)
(aK,K)(e

−γ1X(τ1)1{τ1≤τ2,τ1<∞}) → C1. (52)

To prove this claim we will invoke the strong law of large numbers (slln), as in
Glasserman and Wang (1997). First note that by spatial inhomogeneity (τ1, τ2)
under P

(−γ1,0)
(u1,u2)

has the same law as (T1(u1), T2(u2)) under P
(−γ1,0)
(0,0) (where

Ti(ui) = inf{t ≥ 0 : Xi(t) ≤ −ui}). Since X has independent increments,
the slln implies that Xi(Ti(ui))/Ti(ui) → E

(−γ1,0)
(0,0) [Xi(1)] as ui → ∞. Also, it

holds that [Xi(Ti(ui))− ui]/ui converges to zero as ui →∞. Summarising, we
find that, as K →∞,

τ2(K)
τ1(aK)

=
1
a

τ2(K)
K

aK

τ1(aK)
→ 1

a

∂κ
∂θ1

(−γ1, 0)
∂κ
∂θ2

(−γ1, 0)
(53)
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P
(−γ1,0)
(aK,K) -a.s. The convexity of Σ now implies that the right-hand side of (53) is

bounded below by γ2
aγ1

(which is equal to 1 as γ2 = aγ1). Indeed, as Σ is convex
it holds that

[(u, v)− (−γ1, 0)] · ∇κ(−γ1, 0) ≤ 0

for all points (u, v) ∈ Σ (where ·, denotes the inner-product) and the inequality
follows by choosing (u, v) = (0,−γ2). Therefore, for K large enough, the left-
hand side of (52) is equal to E(−γ1,0)

(aK,K)(e
−γ1X(τ1)1{τ1<∞}). In view of the Cramér-

Lundberg asymptotics (28) the latter quantity converges to C1 as K →∞ and
the claim (52) follows.

The second term can be treated similarly to find that, as K →∞,

P(aK,K)(τ2 ≤ τ1, τ2 <∞) ∼ C2e−γ2K .

(ii) Note that the third term is dominated by ψsim(aK,K). Choose β ∈ (0, 1)
and write γβ = β(γ1, 0) + (1− β)(0, γ2). By strict convexity of the set Σ there
exists a −γ∗ ∈ Σ such that γ∗i > γβ

i , (i = 1, 2). By changing the measure, we
see that ψsim(aK,K) is equal to

e−(γ∗1 a+γ∗2 )KE
(−γ∗)
(aK,K)[e

γ∗2 X2(τsim)+γ∗1 X1(τsim)+κ(−γ∗1 ,−γ∗2 )τsim1{τsim<∞}].

Since Xi(τsim) < 0 and κ(−γ∗1 ,−γ∗2 ) ≤ 0, the expectation in this display is
bounded by 1. Therefore

ψsim(aK,K) ≤ e−(γ∗1 a+γ∗2 )K = o(e−(γβ
1 a+γβ

2 )K) = o(e−γ2K) = o(e−γ1aK) (54)

as K →∞ (recalling that aγ1 = γ2) and the proof is finished. �

4.2 Degenerate risk process asymptotics

To establish asymptotics for a risk-process with the particular structure de-
scribed in the introduction. To be more precise, we restrict ourselves to a
two-dimensional Lévy process (X1, X2) with Xi(t) = pit − S(t), i = 1, 2, for a
spectrally positive Lévy process S and still assume that (15) holds true, writing
κi for the cumulant of Xi. Note that the joint cumulant κ of (X1, X2) is in this
case related to κi by

κ(θ1, θ2) = κ1(θ1 + θ2)− θ2(p1 − p2) = κ2(θ1 + θ2) + θ1(p1 − p2).

From the theory of large deviations of first passage times it is well known that
a central role in the description of the exponents is played by the support func-
tional Ĩ of the Cramér set, Σ, intersected with the positive quadrant:

Ĩ(a) = sup
−θ∈Σ∩R2

−

〈a,θ〉, a ∈ R2
+, (55)

where 〈·, ·〉 denotes the standard inner-product in R2 and R2
± = {(x1, x2) :

±xi ≤ 0}. In this section we explicitly solve this variational problem and relate
it to the asymptotics for ψsim and ψboth.
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The solution of the variational problem (55) gives rise to a division of the
upper cone Cc = {(x1, x2) ∈ R2 : x2 > x1 > 0} into three open (possibly empty)
sub-cones D1, D2 and D0 = D1∪D

c

2 defined in (18) and (19), where Dc

2 = Cc\D2

and D2 denotes the closure of D2. The sub-cones Di, i = 1, 2, are distinct and
contained in Cc:

Lemma 2 The following relation hold true for s1, s2 and γ1, γ2:
(a) s2 < γ2/γ1 < s1; (b) s1 < 1 and s2 > 0 iff κ′1(−γ2) < 0; (c) 0 < γ2 < γ1.

In particular, D1 ∪ D2 ⊂ Cc, D1 ∩ D
c

2 6= ∅ and D2 6= ∅ iff s2 > 0.

Proof of Lemma 2: (a,b) Writing

κ′1(s)
κ′2(s)

=
κ′2(s) + p1 − p2

κ′2(s)
= 1 +

p1 − p2

κ′2(s)
,

it follows that s1 < 1, since κ′2(−γ1) < 0, and that s2 < s1, since, by the
strict convexity of κ2, κ1/κ2 is strictly decreasing on the domain D of κi and
−γ1 < −γ2. Finally, note that on the ray x1/x2 = γ2/γ1 it holds that

x2

T (x1, x2)
=

p1 − p2

1− γ2/γ1
=
κ2(−γ1)− κ1(−γ1)

γ1 − γ2
=
κ2(−γ1)− κ2(−γ2)

γ1 − γ2
.

The strict convexity of κ2 thus implies that along the ray x1/x2 = γ2/γ1 it
holds that −κ′2(−γ2) < x2/T (x1, x2) < −κ′2(−γ1). In view of Lemma 4 below
we deduce that s2 < γ2/γ1. Similarly we prove that γ2/γ1 < s1. Part (c) follows
from (a) and (b). �

Denote by κ∗1 and κ∗2 the convex conjugates (34) and Θ1 and Θ2 for the
domains of κ1 and κ2, respectively and note that, for a = (a1, a2) with a2 > 0,
Ĩ(a) = a2Ĩ(a1/a2, 1). The solution of the variational problem (55) now reads
as follows:

Proposition 3 Let a ∈ (0, 1) with a 6= s1, s2 and suppose there exists a θ ∈
intΘ1 such that κ′1(−θ) = −v1

a. It holds that

Ĩ(a, 1) = γ2I(0,s2)(a) + γ(a)I(s2,s1)(a) + aγ1I(s1,1)(a),

where γ(a) := κ∗2(v
2
a)/v2

a = aκ∗1(v
1
a)/v1

a and

v1
a = a(p1 − p2)/(1− a), v2

a = v1
a/a = (p1 − p2)/(1− a). (56)

Further, γ(a) > aγ1 and γ(a) > γ2.

Proof of Proposition 3 The linear functional (u, v) 7→ −ua− v attains its
maximum over the closed set V = Σ ∩ R2

− at ∂Σ ∩ R2
− (where ∂Σ denotes the

boundary of Σ). If the maximum is attained in the interior of ∂Σ ∩ R2
−) the

maximiser (u∗, v∗) satisfies κ(u∗, v∗) = −v∗(p1 − p2) + κ1(u∗ + v∗) = 0 and

∇κ(u∗, v∗) = (κ′1(u
∗ + v∗), κ′2(u

∗ + v∗)) = κ′2(u
∗ + v∗)(a, 1).
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Denoting by θa the root of κ′1(−s) = −v1
a (which is also the root of κ′2(−s) =

−v2
a) it follows that

u∗ = −κ2(−θa)(p1 − p2) and v∗ = κ1(−θa)/(p1 − p2). (57)

In particular, u∗a + v∗ = θaa + (1 − a)κ1(−θa)/(p1 − p2) = −aκ∗1(v1
a)/v1

a. If
a ∈ (s2, s1), it follows from Lemma 4 below that κ1(−θa) < 0 < κ2(−θa) so that
u∗ < 0 and v∗ < 0 and (u∗, v∗) is indeed the maximiser. However, if a < s2 or
a > s1, κ1(−θa)κ2(−θa) > 0 and (u∗, v∗) /∈ R2

− and it can be directly verified
that the maximum is attained at (0,−γ2) if a < s2 and at (−γ1, 0) if a > s1.

Finally, note that κ∗1(v) = κ∗2(v+p1−p2). Moreover, v1
a = a(p1−p2)/(1−a) =

(p1 − p2)/(1 − a) − (p1 − p2) = v2
a − (p1 − p2). Also, from the definition of κ∗i

and strict convexity, we see that κ∗i (s) > −γis for all s 6= −κ′i(−γi). �
We are now ready to state the asymptotics of ψboth and ψsim in the setting

of this subsection.

Theorem 6 Let a ∈ (0, 1). Assume that the Cramér assumptions (46) hold
true and there exists a θ ∈ intΘ1 such that κ′1(−θ) = −v1

a.
(i) If (aK,K) /∈ D0, then, as K →∞,

ψsim(aK,K) ∼ ψboth(aK,K) ∼

{
C1e−γ1aK (aK,K) ∈ Dc

1

C2e−γ2K (aK,K) ∈ D2,

where the region 0 < a < s2 is understood to be empty if s2 = 0.
(ii) If (aK,K) ∈ D0, then logψsim(aK,K) ∼ −γ(a)K as K →∞.
(iii) Suppose S is a compound Poisson process and let s2 > 0. If (aK,K) ∈

D0, then logψboth(aK,K) ∼ −γ(a)K as K →∞.

The proof of the Theorem is based on the following estimates that link ψsim

and ψboth to one-dimensional finite time ruin probabilities.

Lemma 3 (i) ψ1(x1)− ψ1(x1, T ) + ψ2(x2, T ) ≤ ψsim(x1, x2) ≤ ψboth(x1, x2).
(ii) ψboth(x1, x2) ≤ ψ1(x1)− ψ1(x1, T ) + e−γ2x2P

(−γ2)
x1 (τ1 < T ).

Proof: By a change of measure, it follows that

ψboth(x1, x2) = ψ1(x1)− ψ1(x1, T ) + e−γ2x2E
(−γ2)
(x1,x2)

[eγ2X2(τ2)1{τ1<T<τ2<∞}]

≤ ψ1(x1)− ψ1(x1, T ) + e−γ2x2P (−γ2)
x1

(τ1 < T ).

Further, for the first inequality, we note that

ψsim(x1, x2) = ψ2(x2, T ) + P(x1,x2)

(
inf
s<T

X2(s) > 0, inf
T≤s<∞

X1(s) < 0
)
.

Since infs<T X2(s) ≥ infs<T X1(s) it follows that the second term in this display
is bounded below by ψ1(x1)− ψ1(x1, T ). �
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Next write Ti = xi/[−κ′i(−γi)], T̃i = xi/(−κ′i(−γ3−i)) for a tilted version of
Ti and recall T (x1, x2) was defined in (36). The following result shows that it is
equivalent to let the initial reserves x1, x2 tend to infinity while keeping x1/x2

constant or while keeping xi/T (x1, x2) constant, enabling us to link the asymp-
totics of the two-dimensional ruin problem to asymptotics of one-dimensional
ruin probabilities:

Lemma 4 (i) x1/x2 = a iff xi/T (x1, x2) = vi
a (i = 1, 2).

(ii) Ti < T (x1, x2) ⇔ T̃3−i < T (x1, x2) ⇔ (x1, x2) ∈ Di.

Proof: It is a matter of algebra to check that relation (i) follows by inserting the
definition (36) of T (x1, x2) and the expression for vi

a. The relation (ii) follows
then by using that κ′1(s) = p1 − p2 + κ′2(s) and applying the first relation for
a = si. �

Remark. (Interpretation Di) The previous Lemma implies that we can
give an alternative definition of the cones Di as Di = {(x1, x2) ∈ Cc : Ti <
T (x1, x2)}. Noting that T (x1, x2) is the first time that X1 and X2 are equal
and that, in view of Lemma 1, E(−γi)

xi [τi] ∼ Ti we thus deduce that Di is the set
of all rays Ra := {x1 = ax2} such that

E(−γi)
xi

[τi] < T (x1, x2)

for (x1, x2) ∈ Ra large enough. Similarly, Di
c

is the set of all rays such that
E

(−γi)
xi [τi] > T (x1, x2). for large enough initial reserves. The set Di corresponds

thus to the rays with expected time of ruin of company i before the reserves of
both companies are equal.

Lemma 5 Let a ∈ (0, 1). The following hold true:
(a) aκ∗(−γi)

1 (v1
a)/v1

a = κ
∗(−γi)
2 (v2

a)/v2
a.

(b) γ2 + κ
∗(−γ2)
2 (v2

a)/v2
a = γ1 + aκ

∗(−γ1)
1 (v1

a)/v1
a = γ(a).

Proof: (a) follows from Proposition 3 and for (b) we note that κ(−γ2)
2 (s) =

κ2(s− γ2) so that κ∗(−γ2)
2 (v) = supβ(vβ − κ2(β − γ2)). �

Proof of Theorem 6: The result for ψsim(aK,K) follows by combining
Lemmas 4 - 5 with the asymptotics given in Proposition 2 and Theorem 3.
More specifically, if x1, x2 → ∞ according to the ray x1/x2 = a < s2 (or
equivalently the ray xi/T (x1, x2) = vi

a < −κ′i(−γi)) then ψ2(K,T ) ∼ C2e−γ2K

and log(ψ1(aK)−ψ1(aK, T )) is of the order −aκ∗1(v1
a)K/v1

a = −γ(a)K < −γ2K.
In view of Lemma 5 it follows that the lower bound for ψsim(aK,K) in Lemma
3 is equivalent to C2e−γ2K as K → ∞. Also, ψsim(x1, x2) ≤ ψ2(K) which is
equivalent to C2e−γ2K as K →∞. Similarly, one can verify that in the case a >
s1 we have ψsim(aK,K) and ψboth(aK,K) are both equivalent to C1e−γ1aK . In
the intermediate area a ∈ (s2, s1) we see that the logarithm of each of the terms
of the lower bound is of the order −aκ∗1(v1

a)K/v1
a = −κ∗2(v2

a)K/v2
a = −γ(a)K.
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For the upper bound we use the inequality (54) giving ψsim(aK,K) ≤ exp{(au+
v)K} for (u, v) = (u∗, v∗) defined in (57) and recall that au∗ + v∗ = −γ(a).

Finally, we turn to an upper bound of ψboth if a ∈ (s2, s1). By Theorem 3 the
first term of the lower bound in Lemma 3 is of the order O(K−1/2e−γ(a)K) and
the second term of the order O(K−1/2e−γ(a)K) if κ′1(−γ2) < 0 (using Lemma
2) and O(e−(γ2+γ3)K) if κ′1(−γ2) > 0 where −γ3 > 0 solves κ1(−s − γ2) =
0. We conclude that the lower and upper bound are of smaller order than
min{e−γ1aK , e−γ2K} as K →∞ (using Lemma 2) (where the case of κ′1(−γ2) =
0 follows by adding a small drift to the process). Also, by comparing lower and
upper bound we see that ψboth(aK,K) ∼log ψsim(aK,K) if a ∈ (s2, s1) and
s2 > 0. �

4.3 Sharp asymptotics for exponential jumps

Restricting ourselves to the case that S is a compound Poisson process with
exponential jumps, we can obtain explicit and more precise results, exploiting
the explicit form of the ruin probabilities found in Corollary 4. It is a matter
of calculus to verify from Example 1 that, for i = 1, 2, the vector of means is
given by

(κ′1(−γi), κ′2(−γi)) =
(
p1 −

p2
i

ρ
, p2 −

p2
i

ρ

)
.

From the previous section we know that the areas with different asymptotic
behaviour of the ruin probabilities are separated by the rays

s1 =
p2
1
ρ − p1

p2
1
ρ − p2

, s2 =
(p2

2
ρ − p1)+
p2
2
ρ − p2

.

Further, let γ3 be the largest root of the equation κ
(−γ2)
1 (−s) = 0 and set the

corresponding ray, s3, equal to

s3 =
κ

(−γ2)′
1 (−γ3)

κ
(−γ2)′
2 (−γ3)

=
κ′1(−γ3 − γ2)
κ′2(−γ3 − γ2)

.

The set D3 is defined as D2 but with s2 replaced by s3. Note that s2 > 0 iff
ρ < ρ∗ = p2

2/p1 or equivalently κ′1(−γ2) < 0. Note that in this case it holds that
s2 = s3 or D2 = D3. In the case that ρ > ρ∗ we have that s2 = 0, s3 > 0, and γ3

is given in (44), and the asymptotic behaviour of ψboth(aK,K) asK →∞ differs
according to whether or not (aK,K) lies in D3. Denote by IA = IA(aK,K)
the indicator of the set A which is one if (aK,K) ∈ A and zero else and write
f(K) ≈ g1(K) + g2(K) as K →∞ if limK→∞[f(K)− gi(K)]/g3−i(K) = 1.
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Theorem 7 Let a ∈ (0,∞). As K →∞ it holds that

ψor(aK,K) ≈ C1e−γ1aKID1 + C2e−γ2KIDc
2

+K−1/2e−γ(a)K(D1IDc
1
+ C2D

(−γ2)
1 ID2),

ψsim(aK,K) ≈ C1e−γ1aKIDc
1
+ C2e−γ2KID2

+K−1/2e−γ(a)K(D2IDc
2
+ C1D

(−γ1)
2 ID1),

ψboth(aK,K) ≈ C1e−γ1aKIDc
1
+ e−γ2K min{C2, (p2/p1)e−γ3aK}ID3

+K−1/2e−γ(a)K(D1ID1 + C2D
(−γ2)
1 IDc

3
),

where γ(a) = aκ∗1(v
1
a)/v1

a = κ∗2(v
2
a)/v2

a,

Ci =
ρ

pi
, Di =

θv − θ′v
θv|θ′v|

√
2πκ′′i (−θv)

√
p1 − p2

1− a
, (58)

D
(−γ)
i is Di calculated for P (−γ) and θ′v < 0 is such that κi(−θ′v) = κi(−θv) for

v = vi
a.

Proof: Recalling that p2 > ρ we can directly verify that the Cramér as-
sumptions (15) are satisfied and that limθ↑−µ κ

′
i(θ) = −∞, i = 1, 2. The result

then follows by combining Corollary 4 with the finite time ruin asymptotics in
Theorem 3, using Lemmas 4 and 5, as in the previous subsection. �

5 Proof of subexponential asymptotics

Throughout this section we shall assume that the distribution F ∈ S∗, that is
the claim sizes σ are subexponential, and that Eζ2+δ <∞ for some δ > 0. Let

I
(i)
[x,y](w) =

∫ y

x

F (w +mit) dt

for i = 1, 2. Note that

H(aK,K) = I
(2)
[0,T ](K) + I

(1)
[T,∞](aK) (59)

and
1

m2µ
F I(K) =

1
µ
I
(2)
[0,∞](K),

1
m1µ

F I(aK) =
1
µ
I
(1)
[0,∞](aK). (60)

Straightforward calculations show that

I
(1)
[T,∞](aK) = (m2/m1)I

(2)
[T,∞](K). (61)

We first prove asymptotics:

lim
K→∞

ψsim(aK,K)
H(aK,K)

= 1. (62)
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Let T0 = 0, Tn =
∑n

i=1 ζi and Ξ0 = 0,Ξn =
∑n

i=1(σi − Eσ). From Fatou’s
lemma and Theorem 2 of Foss et al. (2005) we have

lim sup
K→∞

∫
P (maxn(Ξn − g(n)) > K)∑∞

n=1 F (K + g(n))
P (G ∈ dg) ≤ 1 ,

where Gi(n) = aiK + piTn − nEσ −K and G(n) = maxi=1,2Gi(n) are random
discrete time processes on a possible function realisations g : N → R (with
a1 = a, a2 = 1). Let V = {Tn > −L+ n(Eζ − ε) for all n}. Now,∫

P (maxn(Ξn − g(n)) > K)∑∞
n=1 F (K + g(n))

P (G ∈ dg)

≥
∫
P (maxn(Ξn − g(n)) > K)∑∞

n=1 F (K + g(n))
1{V} P (G ∈ dg)

≥ 1∑∞
n=1 F (maxi=1,2(aiK + pi(Eζ − ε)n− nEσ))∫
P (max

n
(Ξn − g(n)) > K)1{V} P (G ∈ dg)

≥ 1∑∞
n=1 F (maxi=1,2(aiK + pi(Eζ − ε)n− nEσ))(∫
P (max

n
(Ξn − g(n)) > K) P (G ∈ dg)

−
∫
P (max

n
(Ξn − g(n)) > K)1{Vc} P (G ∈ dg)

)
. (63)

Note that ψsim(aK,K) =
∫
P (maxn(Ξn − g(n)) > K) P (G ∈ dg) which is the

first component in (63). We prove that

lim
ε→0

lim
K→∞

∑∞
n=1 F (maxi=1,2(aiK + pi(Eζ − ε)n− nEσ))

H(aK,K)
= 1. (64)

Indeed, note that
∑∞

n=1 F (maxi=1,2(aiK + pi(Eζ − ε)n − nEσ)) ∼
∫ T

0
F (K +

(m2 − p2ε)t) dt+
∫∞

T
F (aK + (m1 − p1ε)t) dt. Now,

∫ T

0

F (K + (m2 − p2ε)t) dt =
m2

m2 − p2ε

∫ m2−p2ε
m2

T

0

F (K +m2t) dt

which is bounded above by

m2

m2 − p2ε

∫ T

0

F (K +m2t) dt

and below by ∫ T

0

F (K +m2t) dt.
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Thus

lim
ε→0

lim
K→∞

∫ T

0
F (K + (m2 − p2ε)t) dt∫ T

0
F (K +m2t) dt

= 1.

Similarly,
∫∞

T
F (aK+(m1−p1ε)t) dt =

∫∞
0
F (aK+(m1−p1ε)t) dt−

∫ T

0
F (aK+

(m1 − p1ε)t) dt and

lim
ε→0

lim
K→∞

∫ T

0
F (aK + (m1 − p1ε)t) dt∫ T

0
F (aK +m1t) dt

= 1,

lim
ε→0

lim
K→∞

∫∞
0
F (aK + (m1 − p1ε)t) dt∫∞
0
F (aK +m1t) dt

= 1

since
∫∞
0
F (aK + (m1 − p1ε)t) dt = m1

m1−p1ε

∫∞
0
F (aK + m1t) dt. This proves

(64). Moreover, second component in (63) is neglible with respect to H(aK,K).
Indeed, ∫

P (max
n

(Ξn − g(n)) > K)1{Vc} P (G ∈ dg)

≤
∞∑

n=1

P (Tn < −L+ n(Eζ − ε))P (max
n

(Ξn − nEσ) > K).

The first term goes to 0 as L→∞ by Fug and Nagaev (1971), Th. 2 and 3 (see
Nagaev (1969) and Pinelis (1985)) and the assumption Eζ2+δ <∞. The second
term is asymptotically equivalent to F I(K) (see Embrechts and Veraverbeke
(1982); Zachary (2004)) which is of order (up to constant) of H(aK,K) (see
(59) - (61)). Hence we proved that

lim sup
K→∞

ψsim(aK,K)
H(aK,K)

≤ 1. (65)

We will prove now the lower bound of ψsim(aK,K). First note that taking
interarrival times ζ ∨ c for some c > 0 instead of original ζ we decrease the ruin
probability. Without loss of generality we can then assume that ζ > c for some
c > 0. Similarly as before, from Fatou’s lemma and Theorem 2 of Foss et al.
(2005) we have

1 ≤ lim inf
K→∞

1∑∞
n=1 F (maxi=1,2(aiK + pi(Eζ + ε)n− nEσ))(

ψsim(aK,K)−
∫
P (max

n
(Ξn − g(n)) > K)1{Uc} P (G ∈ dg)

)
,

where U = {Tn < L+ n(Eζ + ε) for all n}. We have∫
P (max

n
(Ξn − g(n)) > K)1{Uc} P (G ∈ dg)

≤
∞∑

n=1

P (Tn < L+ n(Eζ + ε))P (max
n

(Ξn − nEσ) > K)
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which is negligible with respect to H(aK,K) when K → ∞ and L → ∞. In
the same way as above we can prove that

lim
ε→0

lim
K→∞

∑∞
n=1 F (maxi=1,2(aiK + pi(Eζ + ε)n− nEσ))

H(aK,K)
= 1.

Thus

lim inf
K→∞

ψsim(aK,K)
H(aK,K)

≥ 1 (66)

and in view of (65) we see that (62) holds.
In the same way (considering functional of minimum instead of maximum)

we can prove that

lim
K→∞

ψor(aK,K)∫∞
0
F (min {aK +m1t,K +m2t}) dt

= 1 (67)

which gives (22). Recall that ψboth(aK,K) ≥ ψsim(aK,K) hence

lim inf
K→∞

ψboth(aK,K)
H(aK,K)

≥ 1.

We prove now the asymptotic upper bound. Note that

ψboth(aK,K) = P (ζ2(K) <∞)− P (ζ2(K) <∞, ζ1(aK) = ∞).

Appealing to Veraverbeke’s Theorem (see Embrechts and Veraverbeke (1982);
Zachary (2004) gives an alternative short proof for this result) we see that

P (ζ2(K) <∞) = ψi(aiK) ∼ 1
m2µ

F I(K).

Hence for large K we have

P (ζ2(K) <∞) ≤ (1 + δ)
1

m2µ
F I(K) (68)

for given δ > 0. Moreover, writing M = min{n : Tn ≥ T} − 1 and Ξn for
independent copy of Ξn starting from 0, for given ε > 0 and sufficiently large L
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we have

P (ζ2(K) <∞, ζ1(aK) = ∞) ≥
∫
P (max

n>M
(Ξn − g2(n)) > K,

max
n≤M

(Ξn − g1(n)) < aK,max
n>M

(Ξn − g1(n)) < aK)

1{U∩V} P (G1 ∈ dg1, G2 ∈ dg2)

≥
∫
P (max

n>M
(Ξn − g2(n)) > K,max

n≤M
(Ξn − g1(n)) < aK)

1{U∩V} P (G1 ∈ dg1, G2 ∈ dg2)

−
∫
P (max

n>M
(Ξn − g1(n)) > aK)1{U∩V} P (G1 ∈ dg1)

≥
∫
P (max

n>M
(Ξn − g2(n)) > K,max

n≤M
(Ξn − g1(n)) < aK,ΞM > −εM)

1{U∩V} P (G1 ∈ dg1, G2 ∈ dg2)

−
∫
P (max

n>M
(Ξn − g1(n)) > aK)1{U∩V} P (G1 ∈ dg1)

≥
∫
P (max

n>M
(Ξn−M − g2(n)) > K + εM)P (max

n≤M
(Ξn − g1(n)) < aK,ΞM > −εM)

1{U∩V} P (G1 ∈ dg1, G2 ∈ dg2)

−
∫
P (max

n>M
(Ξn − g1(n)) > aK)1{U∩V} P (G1 ∈ dg1)

From Theorem 2 of Foss et al. (2005), for large K and given κ > 0 above
expression could bounded below by:

(1− κ)
∫ ∑

n:Tn≥T

F (K + p2Tn − δ2n)1{U∩V} P (G2 ∈ dg2)

−
∫ ∑

n:Tn≥T

F (aK + p1Tn − δ1n)1{U∩V} P (G1 ∈ dg1)

≥ (1− 2κ)

(
1−

∞∑
n=1

P (Tn < −L+ n(Eζ − ε))−
∞∑

n=1

P (Tn > L+ n(Eζ + ε))

)
(∫ ∞

T

F (K +m2t) dt−
∫ ∞

T

F (aK +m1t) dt
)
.

giving for sufficiently large L

(1− δ)
(∫ ∞

T

F (K +m2t) dt−
∫ ∞

T

F (aK +m1t) dt
)
. (69)

From (59), (68) and (69) we have

ψboth(aK,K) ≤ (1 + δ)I(2)
[0,∞)(K)− (1− δ)

(
I
(2)
[T,∞)(K)− I

(1)
[T,∞)(aK)

)
≤ H(aK,K) + δ

(
2I(2)

[T,∞)(K) + I
(2)
[0,T ](K)− I

(1)
[T,∞)(aK)

)
.
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Note that expression in brackets is of order (up to constant) of H(aK,K) as
K → ∞ (see (59) and (61)). Taking then first K → ∞ and then δ → 0 we
derive

lim sup
K→∞

ψboth(aK,K)
H(aK,K)

≤ 1

which completes the proof. �

6 Appendix

Lemma 1 (Explicit ruin) The inverse Laplace transform of Ψ
(q)

(x) in (29)
is given by

ψ(x, t) = 1− ψ(x, t) = [1− Ce−γx]I(γ>0) + w(x, t),

where γ = µ− λ/p, C = λ
µp , and

w(x, t) =
1
π

√
λ

µp

∫ s+

s−

ea(q)x−qt sin(b(q)x− φ(q))
dq
q

(70)

where s± = (
√
λ±√µp)2 and

a(q) =
λ− µp− q

2p
, b(q) =

√
4pqµ− (λ− µp− q)2

2p
, (71)

φ(q) = arccos
(
pµ+ λ− q

2
√
λµp

)
. (72)

Proof of Corollary 2: The transition probability P (X1(t) ∈ dz) of X1 can
be found explicitly by conditioning on the number of jumps of the compound
Poisson process S up till time t:

P (X1(t) ∈ dz) =
∞∑

n=0

e−λt (λt)
n

n!
F ?n(d(tp1 − z)), (73)

where F ?n(dx) is the n-fold convolution of F (dx) and F ?0 = δ0, the delta
in zero. If the jump-size σ is a continuous random variable the only atom of
P (X1(t) ∈ dz) occurs in the absence of jumps, that is,

P (X1(t) ∈ dz) = e−λtδ0(d(tp1 − z)) + p1(t, z)dz,

where p1(t, z) = e−λt
∑∞

n=1
(λt)n

n! f?n(tp1 − z) with f is the probability density
function of σ. The assertion now follows by noting that in this case the identity
in (76) remains valid when we take instead of P (X1(t) ∈ dz) the measure
p1(t, z)dz (as the atom only affects one t and we are integrating over t). �
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6.1 Proofs of Section 2

Proof of Proposition 1: Write Qt and Q̂t for the semi-groups corresponding
to X (resp. X̂ = −X) killed upon entering the negative half-axis (−∞, 0).
By Hunt’s switching identity (e.g. Bertoin (1996), Thm II.1.5) it holds for
nonnegative measurable functions f, g that∫

R
Qtf(x)g(x)dx =

∫
R
f(x)Q̂tg(x)dx. (74)

Moreover,∫
R
f(x)Q̂tg(x)dx =

∫
R
f(x)E−x[g(−X(t))1{t<T (0)}]dx

=
∫

R
Ex[f(X(t))]g(x)dx−

∫
R
f(x)

∫ t

0

E0[g(−X(t− s))]P−x[T (0) ∈ ds]

=
∫

R
Ex[f(X(t))]g(x)dx−

∫
R
f(x)

∫ t

0

E0[g(−X(t− s))]P [T (x) ∈ ds],

where in the third line we used duality (e.g. Bertoin (1996) Prop. II.1.1), the
strong Markov property and the fact that X is spectrally negative (and thus
X(T (0)) = 0). Combining the last line and (74) with Kendall’s identity, which
is valid for spectrally negative Lévy processes (e.g. Bertoin (1996), Cor. VII.3,
or Borovkov and Burq (2001)) and relates the distributions of X(t) and the
passage time T (x):

tP (T (z) ∈ dt)dz = zP (X(t) ∈ dz)dt, (75)

shows that the following equality between measures holds true:

Px(X(t) ∈ dz, inf
0<s≤t

X(s) ≥ 0)dx = Px(X(t) ∈ dz)dx

− z

∫ t

0

1
s
P (X(s) ∈ dz)P (−X(t− s) ∈ dx)ds,

= Px(X(t) ∈ dz)dx (76)

− z

∫ t

0

1
(t− s)

P (X(t− s) ∈ dz)P (−X(s) ∈ dx)ds,

so that, under the assumption (AC), the stated result follows. �

Proof of Corollary 1: Write e(q) for an independent exponential time
with mean q−1. Taking the Laplace transform in t of (32) yields

Px(X(e(q)) ∈ dz, I(e(q)) ≥ 0) = Px(X(e(q)) ∈ dz)− uq(−x)E[e−qT (z)]dz
= uq(z − x)− uq(−x)E[e−qT (z)]dz, (77)

where uq(x) = P (X(e(q))∈dx)
dx is a version of the potential density of X. From

the fluctuation theory of spectrally negative Lévy processes it is well known
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(see e.g. Bingham (1975)) that E[e−qT (z)] = e−Φ(q)z for z > 0 and that
uq(y) = Φ′(q)e−Φ(q)y −W (q)(−y)1y<0 (see Pistorius (2004) or Bingham(1975)
for a proof). Inserting these expressions into (77) and subsequently taking the
limit x ↓ 0 shows that

P0(X(e(q)) ∈ dz, I(e(q)) ≥ 0) = W (q)(0+)e−Φ(q)zdz = p−1e−Φ(q)zdz,

where the second equality follows from a Tauberian theorem and the form of
the exponent κ in this case. In view of the form of the Laplace transform of
T (z) and Kendall’s identity (75) the proof is done. �
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