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Consider two insurance companies (or two branches of the same company) that divide between them both claims and premia in some specified proportions. We model the occurrence of claims according to a renewal process. One ruin problem considered is that when the corresponding two-dimensional risk process first leaves the positive quadrant; another is that of entering the negative quadrant. When the claims arrive according to a Poisson process we obtain a closed form expression for the ultimate ruin probability. In the general case we analyze the asymptotics of the ruin probability when the initial reserves of both companies tend to infinity, both under Cramér light-tail and under subexponential assumptions on the claim size distribution.

Introduction and main results

The multidimensional renewal risk model. In collective risk theory the reserves process X of an insurance company is modeled as

X(t) = x + pt -S(t), (1) 
where x denotes the initial reserve, p is the premium rate per unit of time and S(t) is a stochastic process modeling the amount of cumulative claims up to time t. Taking S to be a compound Poisson or compound renewal process yields the Cramér-Lundberg model and the Sparre-Andersen model, respectively.

Recently, several authors have studied extensions of classical risk theory towards a multidimensional reserves model [START_REF] Ambagaspitiya | On the distributions of two classes of correlated aggregate claims[END_REF] where X(t), x, p and S(t) are vectors, with possible dependence between the components of S(t). Indeed, the assumption of independence of risks may easily fail, for example in the case of reinsurance, when incoming claims have an impact on both insuring companies at the same time. In general, one can also consider situations where each claim event might induce more than one type of claim in an umbrella policy (see [START_REF] Sundt | On multivariate panjer recursions[END_REF]). For some recent papers considering dependent risks, see Dhaene andGoovaerts (1996, 1997), [START_REF] Goovaerts | The compound Poisson aproximation for a portfolio of dependent risks[END_REF], Müller (1997a,b), [START_REF] Denuit | Stochastic bounds on sums of dependent risks[END_REF], [START_REF] Ambagaspitiya | On the distributions of two classes of correlated aggregate claims[END_REF], [START_REF] Dhaene | The safest dependence structure among risks[END_REF], [START_REF] Hu | On the dependence of risks and the stop-loss premiums[END_REF] and [START_REF] Chan | Some results on the ruin probabilities in a two-dimensional risk model[END_REF].

Model and problem. In this paper we consider a particular two-dimensional risk model in which two companies split the amount they pay out of each claim in proportions δ 1 and δ 2 where δ 1 + δ 2 = 1, and receive premiums at rates c 1 and c 2 , respectively. Let U i denote the risk process of the i'th company U i (t) := -δ i S(t)

+ c i t + u i , i = 1, 2 ,
where u i denotes the initial reserve and

S(t) = N (t) i=1 σ i (2) 
for N (t) being a renewal process with i.i.d. inter-arrival times ζ i , and the claims σ i are i.i.d. random variables independent of N (t), with the distribution function F (x). We shall denote by λ and µ the reciprocals of the means of ζ i and σ i , respectively. We shall assume that the second company, to be called reinsurer, receives less premium per amount paid out, i.e.:

p 1 = c 1 δ 1 > c 2 δ 2 = p 2 . (3) 
On the other hand, the reinsurer needs to have larger reserves than the insurer, as in [START_REF] Cai | Multivariate risk model of phase-type[END_REF]. As usual in risk theory, we assume that p i > ρ := λ µ = Eσ/Eζ, which implies that U i (t) → ∞ a.s. as t → ∞ (i = 1, 2). Several ruin problems may be of interest. We consider here:

1. The first time τ or when (at least) one insurance company is ruined, i.e.

the exit time of (U 1 (t), U 2 (t)) from the positive quadrant:

τ or (u 1 , u 2 ) := inf{t ≥ 0 : U 1 (t) < 0. or U 2 (t) < 0}, (4) 
The associated ultimate/perpetual ruin probability will be denoted by

ψ or (u 1 , u 2 ) = P (u1,u2) [τ or (u 1 , u 2 ) < ∞] , (5) 
where P (u1,u2) denotes the probability measure conditioned on the event that the initial capitals are equal to (u 1 , u 2 ), i.e. (U 1 (0), U 2 (0)) = (u 1 , u 2 ).

2. The first time τ sim when the insurance companies experience simultaneous ruin, i.e. the entrance time of (U 1 (t), U 2 (t)) into the negative quadrant:

τ sim (u 1 , u 2 ) := inf{t ≥ 0 : U 1 (t) < 0 and U 2 (t) < 0}. ( 6 
)
The associated ultimate ruin probability will be denoted by

ψ sim (u 1 , u 2 ) = P (u1,u2) [τ sim (u 1 , u 2 ) < ∞] . (7) 
Let τ i (u i ) = inf{t ≥ 0 : U i (t) < 0}, i = 1, 2. We will consider also

ψ both (u 1 , u 2 ) = P (u1,u2) [(τ 1 (u 1 ) < ∞) ∩ (τ 2 (u 2 ) < ∞)] . (8) 
Clearly:

ψ sim (u 1 , u 2 ) ≤ ψ both (u 1 , u 2 ) = ψ 1 (u 1 ) + ψ 2 (u 2 ) -ψ or (u 1 , u 2 ), (9) 
where ψ i (u) := P u (τ i (u) < ∞) [START_REF] Borovkov | Large deviations for Markov chains in the quarter plane[END_REF] denotes the ruin probability of U i when U i (0) = u. 1Geometrical considerations and solution in the lower cone C. The solution of the degenerate two-dimensional ruin problem [START_REF] Asmussen | Erlangian approximations for finite-horizon ruin probabilities[END_REF] strongly depends on the relative sizes of the proportions δ = (δ 1 , δ 2 ) and premium rates c = (c 1 , c 2 ).

-see Figure 1. If, as assumed throughout, the angle of the vector δ with the u 1 axis is bigger than that of c, i.e. δ 2 c 1 > δ 1 c 2 , we note that starting with initial capital (u 1 , u 2 ) ∈ C in the cone C = {(u 1 , u 2 ) : u 2 ≤ (δ 2 /δ 1 )u 1 } situated below the line u 2 = (δ 2 /δ 1 )u 1 , the process (U 1 , U 2 ) will be subject to a "sim/or" ruin precisely at the first crossing time τ i (u i ) the u i axis. Thus, in the domain C "sim/or" ruin occurs iff there is ruin in the one-dimensional problem corresponding to the risk process U i with premium c i and claims δ i σ, and the solutions in the lower cone C coincide with the ultimate ruin probabilities ψ i (u i ) of the classical risk processes U i (t):

ψ or (u 1 , u 2 ) = ψ 2 (u 2 ), ψ sim (u 1 , u 2 ) = ψ 1 (u 1 ). (11) 
¡ ¡e e r r .

. In the opposite case

u 2 > (δ 2 /δ 1 )u 1 ( 12 
)
the solution is more complicated. Note that this is precisely the case of interest for reinsurance. Solution in the upper cone C c : piecewise linear barriers A key observation is that the "or" and "sim" ruin times τ in (4), [START_REF] Bahadur | On deviations of the sample mean[END_REF] are also equal to

τ (u 1 , u 2 ) = inf{t ≥ 0 : S(t) > b(t)}, (13) 
where

b(t) = b min (t) = min{(u 1 + c 1 t)/δ 1 , (u 2 + c 2 t)/δ 2 }
in the "or" case and

b(t) = b max (t) = max{(u 1 + c 1 t)/δ 1 , (u 2 + c 2 t)/δ 2 }
in the "sim" case. Our two dimensional problem may thus also be viewed as a one dimensional crossing problem over a piecewise linear barrier. Note the relation to asset-liability management models, in which regulatory requirements impose prescribed limits of variation for the difference between the assets P (t) of a company and its liabilities S(t) (see Gerber and Shiu (2003)), and which also translate typically into (several) linear barriers. Note that in the case that the initial reserves satisfy (u

1 , u 2 ) ∈ C, that is, u 2 /δ 2 ≤ u 1 /δ 1 , the barriers b min (t) := (u 2 + c 2 t)/δ 2 , b max := (u 1 + c 1 t)/δ 1
are linear and we see again that "or" and "sim" ruin always happen for the second and first company respectively. Thus, in the case u 1 ≤ u 2 , explicit formulas for ψ sim , ψ or and ψ both directly follow from the theory of one-dimensional ruin (see e.g. [START_REF] Rolski | Stochastic processes for insurance and finance[END_REF] or [START_REF] Asmussen | Ruin probabilities[END_REF]). In the case u 2 > u 1 , which is authentically two-dimensional, and if N is a Poisson process, we shall obtain (in Section 3) closed form solutions for ψ sim , ψ or and ψ both in terms of one-dimensional ruin functions (even though typically, multi-dimensional ruin problems do not admit analytic solutions).

Scaling. Let

X i (t) := U i (t)/δ i denote risk processes with drift p i , claims σ k and initial capitals x i = u i /δ i , i = 1, 2, and note that the process (X 1 (t), X 2 (t)) has the same ruin probability as the original two-dimensional process (U 1 (t), U 2 (t)). Thus, by scaling, it suffices to analyze the case when δ 1 = δ 2 = 1 (and c 1 = p 1 , c 2 = p 2 ). Our model becomes thus the particular case of (1) in which the components of the claims are equal.

In the future, we will write ψ or/sim/both (x 1 , x 2 ) for ψ or/sim/both (u 1 , u 2 ), with x i = u i /δ i , and S(t) for the common value of S i (t) (i = 1, 2) in the model [START_REF] Ambagaspitiya | On the distributions of two classes of correlated aggregate claims[END_REF].

Asymptotics. We next turn to the asymptotic behaviour of the different ruin probabilities ψ or/sim/both (x 1 , x 2 ) as the initial capitals x 1 , x 2 tend to infinity along a ray (i.e. x 1 /x 2 is constant). In this paper we shall consider two different situations: the "light-tailed" case when the Cramér-assumption holds and the case when the distribution of σ belongs to the class of subexponential distributions.

Cramér/Light-tailed case.

Definition 1 We will say that a two-dimensional renewal risk process X = (X 1 , X 2 ) satisfies the Cramér-conditions if there exist constants

γ i > 0 (i = 1, 2) such that E[e γi(σ1-piζ1) ] = 1. (14) 
Note that while stronger assumptions have been used in the literature, in our essentially one-dimensional setup -see (13) -a local condition at γ 1 will suffice -see Theorem 1.

In the case that S is a compound Poisson process the Cramér condition can equivalently be formulated in terms of the characteristic exponent κ i (s

) = t -1 log E[e sXi(t) ] = p i s + λ(E[e -σs ] -1) of X i (t) = p i t -S(t), as the existence of γ i > 0 (i = 1, 2) such that κ i (-γ i ) = 0. ( 15 
)
By Θ i , i = 1, 2, we denote the domain of κ i , the set of x ∈ R for which κ i (x) is finite. By [START_REF] Borovkov | Kendall's identity for the first crossing time revisited[END_REF] the solution in the lower cone C of the "or/sim" problems coincide with the ultimate ruin probabilities ψ i (x i ) of the processes X i (t) i = 1, 2. Letting thus the initial reserves x 1 , x 2 of both companies tend to infinity within the cone C along a ray x 1 /x 2 = a with a ≥ 1, we find by the Cramér-Lundberg approximation that lim K→∞ ψ sim/both (aK, K)

e -γ1aK = C 1 , lim K→∞ ψ or (aK, K) e -γ2K = C 2 , (16) 
where C 1 , C 2 are non-negative finite constants that, in the case that S is a compound Poisson process, are given explicitly by

C i = -κ i (0)/κ i (-γ i ). ( 17 
)
Next we turn to the asymptotic behaviour of ψ or/sim/both (x 1 , x 2 ) if the initial reserves tend to infinity along a ray x 1 /x 2 = a with a < 1. In this case we find different asymptotic results within sub-cones, as typical in such cases; see for example [START_REF] Borovkov | Large deviations for Markov chains in the quarter plane[END_REF] and [START_REF] Ignatyuk | Boundary effects in large deviations problems[END_REF]. We identify two cones D i , i = 1, 2, adjoining the boundaries x 1 = 0 and x 1 = x 2 respectively, throughout which or/sim ruin are due to the first/second company in D 1 /D 2 , and to the second/first company in

D c 2 /D c 1 .
More precisely, these cones

D 1 = {(x 1 , x 2 ) ∈ C c : x 1 < x 2 s 1 }, D 2 = {(x 1 , x 2 ) ∈ C c : x 1 < x 2 s 2 } (18)
are separated by the rays

R s1 = {x 1 = s 1 x 2 }, R s2 = {x 1 = s 2 x 2 } with s 1 = κ 1 (-γ 1 ) κ 2 (-γ 1 ) , s 2 = κ 1 (-γ 2 ) κ 2 (-γ 2 ) + . (19) 
In Section 4.2 below it will be verified that s 2 < s 1 < 1, so that the rays R s1 and R s2 are disjoint subsets of C c , and an intuitive explanation is given for the form of the sub-cones. For a more detailed intuitive explanation of the different behavior in these sub-cones, see the remark following Lemma 4. Note that our results are sometimes sharper than the classical ones -see Theorem 7, and that they are obtained directly from classical one-dimensional convergence results in renewal theory, obtained by [START_REF] Arfwedson | Research in collective risk theory[END_REF] and [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF].

Throughout the paper we write

f (x) ∼ h(x) as x → ∞ if lim x→∞ f (x)/h(x) = 1, f (x) ∼ log h(x) if log f (x) ∼ log h(x) and f (x) = o(h(x)) as x → ∞ if lim x→∞ f (x)/h(x) = 0.
Theorem 1 Let S be a compound Poisson process as in (2) and let a < 1. Assume that (15) holds and let κ 1 (-γ 1 ) > -∞.

(a) It holds that, as K → ∞,

ψ or (aK, K) ∼ C 2 e -γ2K + C 1 e -γ1aK , ψ both (aK, K) = o(C 2 e -γ2K + C 1 e -γ1aK ). (b) Assume that there exists an x ∈ int Θ 2 with κ 2 (x) = p1-p2 1-a . As K → ∞, ψ sim (aK, K) ∼ ψ both (aK, K) ∼ C 1 e -γ1aK , s 1 < a < 1 C 2 e -γ2K , 0 < a < s 2 , ψ both (aK, K) = o(min{C 1 e -γ1aK , C 2 e -γ2K }), a ∈ (s 2 , s 1 ),
where the region 0 < a < s 2 is understood to be empty if s 2 = 0. Further, if s 2 > 0 and a ∈ (s 2 , s 1 ), ψ sim (aK, K) ∼ log ψ both (aK, K).

The asymptotics in part (a) do not depend on the particular structure of the risk process considered here; in Theorem 5 we shall show that these asymptotics remain valid for a general two-dimensional Lévy process. This extension implies that the asymptotics in Theorem 1(a) also remain valid if the cumulative claims process S is taken as in (2) with a general renewal process N . Indeed, note that the ruin probabilities ψ or/both/sim do not change if we replace X = (X 1 , X 2 ) by a two-dimensional compound Poisson process with unit rate and jump sizes distributed as (σ n -

p 1 ζ n , σ n -p 2 ζ n ).
To show the asymptotics in (b) we shall exploit the special (degenerate) structure of the risk process in [START_REF] Arfwedson | Research in collective risk theory[END_REF]. In Theorem 7 of Section 4.3, we obtain even sharper asymptotics (a two term asymptotic expansion) in the case that S is a compound Poisson process with exponential jumps.

Subexponential case. For any distribution function G on [0, ∞) we denote the tail by

G(x) = 1 -G(x). The distribution G is called subexponential if G(x) > 0 for all x and lim x→∞ G * 2 (x)/G(x) = 2 ,
where G * 2 is the fold of G with itself. A distribution function G on R belongs to the class S * introduced by Klüppelberg (1988) if and only if G(x) > 0 for all x and

x 0 G(x -y)G(y) dy ∼ 2νG(x), as x → ∞, (20) 
where

ν = ∞ 0 G(x) dx.
Note that any distribution from S * is subexponential. Its integrated tail distribution G I is defined as G I (x) = ν -1 x 0 G(y)dy. The subexponential distributions model claim sizes resulting from catastrophic events like earthquakes, storms, terrorist attacks etc. Insurance companies use the lognormal distribution (which is subexponential) to model car claims -see [START_REF] Rolski | Stochastic processes for insurance and finance[END_REF] for details. Let F denote the distribution of the claim size σ and define

H(aK, K) = ∞ 0 F (max {aK + m 1 t, K + m 2 t}) dt (21) 
for

m i = p i E[ζ] -E[σ] (i = 1, 2
). If a ≥ 1 and if F I is subexponential distribution, then it follows from the one-dimensional reduction and Embrechts and Veraverbeke (1982) (see also [START_REF] Zachary | A note on Veraverbeke's Theorem[END_REF]) that

lim K→∞ ψ or (aK, K) F I (K) = 1 m 2 µ , lim K→∞ ψ sim (aK, K) F I (aK) = 1 m 1 µ , where µ = E[σ] -1 .
If a < 1 the asymptotics of ψ or/sim/both are as follows:

Theorem 2 If a < 1, F ∈ S * and E[ζ 2+δ ] < ∞ for some δ > 0, then it holds that ψ or (aK, K) ∼ 1 m 1 µ F I (aK) + 1 m 2 µ F I (K) -H(aK, K) , (22) 
ψ sim (aK, K) ∼ ψ both (aK, K) ∼ H(aK, K) (23) 
as K → ∞.

Note that, in contrast to the case of light tails, the asymptotic probability of joint ruin of both companies at the same time appears in the asymptotics for ψ or (aK, K) (and is equal to H(aK, K)). This is what we might expect -"large" claims cause often bankruptcy not only of the insurance company but of a whole chain of reinsurers.

Contents. The rest of the paper is organised as follows. Section 2 is devoted to auxiliary results regarding one-dimensional first passage times for spectrally negative Lévy processes. In Section 3 an explicit form of the ruin probabilities ( 5) and ( 7) is derived in the case that N is a Poisson process. The proofs of the asymptotics for the Cramèr case of light-tailed claims, and the subexponential case are presented in Sections 4 and 5, respectively.

Preliminaries

Let X be a spectrally negative Lévy process, i.e. a stochastic process with càdlàg paths without positive jumps that has stationary independent increments defined on some probability space (Ω, F, P ) that satisfies the usual conditions. By (P x , x ∈ R) we denote the family of measures conditioned on {X(0) = x} with P 0 = P . We exclude the case that X has monotone paths. If X is of bounded variation, X takes the form of X(t) = pt -S(t), where S(t) is a subordinator and p > 0 is called the infinitesimal drift of X.

By the absence of positive jumps, the moment generating function of X(t) exists for all θ ≥ 0 and is given by E e θX(t) = exp t κ(θ) , θ ≥ 0 for some function κ(θ), called Laplace exponent, which is well defined at least on the positive half axis, where it is convex with the property lim θ→∞ κ(θ) = +∞. Let Φ(0) denote its largest root. On [Φ(0), ∞) the function κ is strictly increasing and we denote its right-inverse function by

Φ : [0, ∞) → [Φ(0), ∞).
Each measure P (c) in the exponential family of measures P := {P (c) : c such that κ(c) < ∞} is defined by its the Radon-Nikodym derivative Λ (c)

dP (c) dP Ft = Λ (c) (t) = exp (cX(t) -κ(c)t) . (24) 
By

P (c) x
we shall denote the translation of P (c) under which X(0) = x. The characteristic function of the process X under the measure P (c) ∈ P is given by

κ c (θ) = κ(c + θ) -κ(c). (25) 

Cramér asymptotics

Results concerning spectrally negative Lévy processes are conveniently expressed in terms of the so-called scale function

W (q) : [0, ∞) → [0, ∞) defined by its Laplace transform: ∞ 0 e -αx W (q) (x) dx = 1 κ(α) -q ,
where κ(α) is the Laplace exponent of X(t). As may be seen from the fluctuation theory of spectrally negative Lévy processes (e.g. [START_REF] Bertoin | Lévy processes[END_REF], [START_REF] Bingham | Fluctuation theory in continuous time[END_REF]) the Laplace transform in t of the survival probability up to time t:

ψ(x, t) = 1 -ψ(x, t) = 1 -P x (τ < t), for τ = inf{t ≥ 0 : X(t) < 0} is for x ≥ 0 equal to Ψ (q) (x) = Φ(q) -1 W (q) (x) -W (q) (x), (26) 
where W (q) denotes the corresponding scale function and its anti-derivative W (q) (x) =

x 0 W (q) (y)dy. Letting q ↓ 0 in the expression qΨ (q) we recover that,

if κ (0) > 0, ψ(x) = ψ(x, ∞) = 1 -W (x)/W (∞), (27) 
where, by a Tauberian theorem,

W (∞) := lim x→∞ W (x) = 1 κ (0 + ) = Φ (0 +
). The Cramér-Lundberg approximation states that, if there exists a γ > 0 with κ(-γ) = 0 and if X is a classical risk process, it holds that

lim x→∞ e γx ψ(x) = C = -κ (0)/κ (-γ), ( 28 
)
where C is understood to be zero if κ + (-γ) = -∞, where κ + denotes the rightderivative of κ. [START_REF] Bertoin | Cramér's estimate for Lévy processes[END_REF] showed that this result remains valid if X is a Lévy process (not just spectrally negative). The parameter γ is called the adjustment coefficient.

The following result, given for later reference, concerns the expected time of ruin.

Lemma 1 Suppose that κ (0 + ) ∈ (-∞, 0). Then, as x → ∞, x/E x [τ ] → κ (0 + ).
Proof: Applying the optional stopping theorem to the martingale X t -tκ (0 + ) and the bounded stopping time τ ∧ T shows that

E x [X τ ∧T ] -x = E x [τ ∧ T ]κ (0 + ).
Since |X τ ∧T | is dominated by S τ -X τ which has finite expectation it follows by letting T → ∞ and invoking the dominated convergence theorem that the previous display is valid with τ ∧ T replaced by τ . The assertion now follows by noting that E x [X τ ] remains finite as x → ∞.

Example 1 If, under P , X is a drift p minus a compound Poisson process with rate λ and exponential jump sizes with mean µ, then κ(θ) = pθ -λθ/(µ + θ) and its scale function W (q) is given by

W (q) (x) = p -1 A + e q + (q)x -A -e q -(q)x ,
where A ± = µ+q ± (q)

q + (q)-q -(q) with q + (q) = Φ(q) and q -(q) the smallest root of κ(θ) = q. Inserting the found expression for W (q) in ( 26) we see that in this case

Ψ (q) (x) = q -1 [1 -(1 + q -(q)/µ)e -q -(q)x ]. (29) 
From ( 27) one can verify that, if, as assumed throughout, p > λ µ , then ψ(x) = Ce -γx , where the adjustment coefficient is γ = µ -λ/p and C = λ/(µp). Further, under P (c) , X is still a drift p minus a compound Poisson process with exponential jumps but with the changed rates λ c = λ µ µ+c and µ c = µ + c. In particular, λ -γ = µ p and µ -γ = λ/p are the parameters of the corresponding measure.

Example 2 If X(t) = mt + σB(t) where B(t) is standard Brownian motion, then κ(θ) = σ 2
2 θ 2 + mθ and the scale function W (q) is given by

W (q) (x) = 2 σ 2 (q + (q) -q -(q))
e q + (q)x -e q -(q)x , where q + (q) = Φ(q) and q -(q) is the smallest root of κ(θ) = q and Ψ (q) reads as

Ψ (q) (x) = q -1 [1 -e -q -(q)x ]. (30) 
In particular, if m < 0, ψ(x) = e -γx , where γ = 2m σ 2 is the adjustment coefficient. Further, under P (c) , X is still Brownian motion, but the drift changes to m+cσ 2 . The drift of the measure associated to c = -γ is -m, i.e. the Brownian motion switches its drift.

Generalization of ballot theorem

Denoting by

I(t) = inf 0≤s≤t X(s) ∧ 0
the infimum of X, the well-known ballot theorem states that, if X has bounded variation, then

P (X(t) ∈ dz, I(t) ≥ 0) = z p t P (X(t) ∈ dz), (31) 
where p denotes the infinitesimal drift of X. The next result generalizes the ballot theorem to general starting point x ≥ 0 and allows for unbounded variation. We shall derive the result under the condition (AC) that the one-dimensional distributions of X are absolutely continuous with respect to the Lebesgue measure P (X(t) ∈ dx) dx, t > 0.

(AC)

Proposition 1 Let X be a spectrally negative Lévy process satisfying (AC) and write p(t, x) for a version of P (X(t)∈dx) dx . Then for t > 0 and x, z ≥ 0 it holds that

P x (X(t) ∈ dz, I(t) ≥ 0) = P x (X(t) ∈ dz) ( 32 
)
-z t 0 1 (t -s) P (X(t -s) ∈ dz)p(s, -x)ds.
Let us sketch the idea of the proof of this result. First of all, writing T (z) = inf{t ≥ 0 : X(t) > z}, note that equation ( 32) is equivalent to

P x (X(t) ∈ dz, I(t) < 0) = t 0 p(t -s, -x)P (T (z) ∈ ds)dz (33) = z t 0 1 t -s P (X(t -s) ∈ dz)p(s, -x)ds,
where the second equality follows by Kendall's identity (see (75) below). Heuristically, [START_REF] Pistorius | A potential theoretical review of some exit problems of spectrally negative Lévy processes[END_REF] follows by conditioning on the last time t -s when X(t) crosses 0 before arriving in dz, which is the first time the time-reversed process, starting in z, downcrosses 0, and then using that the time-reversed process, having the same law as -X and thus being spectrally positive, hits 0 when first downcrossing 0.

From this result we can recover the ballot theorem:

Corollary 1 Let X(t) denote a spectrally negative Lévy process of bounded variation. Then (31) holds true.

The proofs of Proposition 1 and Corollary 1 are deferred to the Appendix 6.

Asymptotics of finite time ruin probabilities

For the analysis of the two-dimensional ruin problems we shall need a characterisation of the asymptotics of the finite time ruin probability ψ(x, t) = P x [I t < 0] of the spectrally negative Lévy process X as x and t go to infinity according to a ray x/t = a. The asymptotics are expressed in terms of the adjustment coefficient γ and the convex conjugate

κ * of κ, κ * (v) = sup β∈R [vβ -κ(-β)]. (34) 
If v ∈ K := {-κ (x) : x ∈ intΘ}, where intΘ is the interior of the domain Θ = {x ∈ R : κ(x) < ∞} of κ then an explicit expression for κ * (v) read as

κ * i (v) = -κ i (-θ v )θ v -κ i (-θ v ), where θ = θ v is the unique root of κ (-θ) = -v.
Proposition 2 Suppose that there exists a γ ≥ 0 with κ(-γ) = 0 and κ (-γ) < 0 and assume that a ∈ K. Then, as x → ∞,

ψ(ax, x) ∼ Ce -γax , 0 < a < -κ (-γ), log ψ(ax, x) ∼ -κ * (a)x, a > -κ (-γ), ψ(ax, ∞) -ψ(ax, x) ∼ Ce -γax , a > -κ (-γ), log(ψ(ax, ∞) -ψ(ax, x)) ∼ -κ * (a)x, 0 < a < -κ (-γ).
Proof: We only prove the statements regarding ψ(ax, x) as the proof for ψ(ax, ∞) -ψ(ax, x) is similar. Changing measure with Λ (-γ) and using that κ(-γ) = 0, it follows that e γax ψ(ax, x) = e γax P ax (τ

< x) = E (-γ) ax [e γX(τ ) 1 {τ <x} ] = E (-γ) ax [e γX(τ ) ] -E (-γ) ax [e γX(τ ) 1 {τ >x} ].
The first expectation converges to C by ( 28) and, if a < -κ (-γ), the second one converges to zero by the bounded convergence theorem in conjunction with the law of large numbers. Indeed, it holds that

P (-γ) ax (τ ≤ x) = P (-γ) (I(x) ≤ -ax) ≥ P (-γ) (X(x) ≤ -ax) = P (-γ) (X(x)/x ≤ -a)
and, in view of the strong law of large numbers, the latter probability, converges to 1 as x → ∞.

Next we consider the case a > -κ (-γ). Employing Λ (-θa) as a change of measure and using that θ a > 0, X(τ ) ≤ 0 and κ(-θ a ) > 0, we find the upper bound ψ(ax, x) = e -aθax E (-θa) ax [e θaX(τ )+κ(-θa)τ 1 {τ <x} ] ≤ e -aθax+κ(-θa)x = e -xκ * (a) .

To establish the lower bound we invoke the classical asymptotics of [START_REF] Bahadur | On deviations of the sample mean[END_REF]: for a ∈ K, it holds that P (X(n) < -an

+ n ) ∼ cn -1/2 e -nκ * (a) for n = o( √ n), as n → ∞, (n ∈ N). Therefore, we find that log ψ(ax, x) = log P (I(x) < -ax) ≥ log P (X( x ) < -ax) ∼ log P (X( x ) < -ax) ∼ -[x]κ * (a) ∼ -xκ * (a),
where x is the largest integer smaller or equal to x.

We shall also need the following sharper result that was obtained by [START_REF] Arfwedson | Research in collective risk theory[END_REF]. The current statement is from Höglund (1990) (Cor. 2.3).

Theorem 3 Let X(t) = ax + pt -S(t), where S is a compound Poisson process with positive jumps. Suppose that there exists a γ ≥ 0 with κ(-γ) = 0 and κ (-γ) < 0 and assume that a ∈ K. Then, there exists a positive constant D such that, as x → ∞,

ψ(ax, x) ∼ Dx -1/2 e -κ * (a)x , a > -κ (-γ), ψ(ax, ∞) -ψ(ax, x) ∼ Dx -1/2 e -κ * (a)x , 0 < a < -κ (-γ). If θ a is the root of κ(-s) = κ(-θ a ), then D = θ a -θ a |θ a θ a | 2πκ (-θ a ) . ( 35 
)
3 Exact two-dimensional ruin probabilities

In this section we propose methods for computing the ruin probabilities of the model with equal claims in the case when (x 1 , x 2 ) ∈ C c and S(t) is a general spectrally positive Lévy process. The generalisation of the ballot theorem derived in the previous section enables us to express the ruin probabilities for general claim size distributions in terms of the one-dimensional distributions in Proposition 4 in Subsection 3.2. Specializing to the case of a compound Poisson process with exponential jumps or a Brownian motion this leads to explicit expressions.

3.1

The probability of crossing a piecewise linear barrier.

In the case x 2 > x 1 , the survival probabilities ψ or (x 1 , x 2 )/ψ sim (x 1 , x 2 ) are given by the probability that the process S stays below piecewise linear barriers

b min (t) = min i=1,2 {x i + p i t}, b max (t) = max i=1,2 {x i + p i t}
formed by the lines t → x 1 + p 1 t and t → x 2 + p 2 t, which cross at

T = T (x 1 , x 2 ) = x 2 -x 1 p 1 -p 2 . ( 36 
)
In the first case for example, this requires staying below the barrier x 1 + p 1 t between the times 0 and T and subsequently staying below the barrier x 2 + p 2 t after time T . In the case when S is Markovian (not necessarily a spectrally positive Lévy process), this yields by conditioning at time T :

ψ or (x 1 , x 2 ) = ∞ 0 ψ 1 (dz, T |x 1 )ψ 2 (x 2 + p 2 T -z),
where

ψ i (dz, T |x) := P 0 (S(t) ≤ x + p i t, ∀t ∈ [0, T ], S(T ) ∈ dz) (37) 
is the density at time T of the paths S(T ) which "survive" the upper barrier x + p i t and where we used the fact that x 1 + p 1 T = x 2 + p 2 T . We find it convenient to reformulate this result in terms of the two coordinates of our reserves process

X i (t) := x i + p i t -S(t), i = 1, 2, their infima I i (t) = inf 0≤s≤t X i (s) ∧ 0
and the coordinate-wise densities of the "non-ruined" paths

ψ i (dz, T |x i ) = P xi (I i (T ) ≥ 0, X i (T ) ∈ dz). (38) 
We arrive thus at the following result, which relates the survival probability of the two dimensional process to the one dimensional survival characteristics of its coordinates:

Theorem 4 Let X(t) be a two-dimensional Lévy process (1) with equal cumulative claims S(t) = S 1 (t) = S 2 (t) given by an arbitrary Lévy process. If x 2 > x 1 , p 2 < p 1 , then the two-dimensional survival probabilities associated to the or/sim ruin problems ( 5), [START_REF] Bertoin | Lévy processes[END_REF], are given by:

ψ or (x 1 , x 2 ) = ∞ 0 ψ 1 (dz, T |x 1 ) ψ 2 (z), ψ sim (x 1 , x 2 ) = ∞ 0 ψ 2 (dz, T |x 2 ) ψ 1 (z),
where T is given in [START_REF] Sundt | On multivariate panjer recursions[END_REF], ψ i (dz, T |x i ) in [START_REF] Zachary | A note on Veraverbeke's Theorem[END_REF] and ψ i (z) = P z (I i (∞) ≥ 0) are perpetual one-dimensional survival probabilities.

Proof: Recall that

ψ or (x 1 , x 2 ) = P (x1,x2) (min{X 1 (t), X 2 (t)} ≥ 0 for all t ≥ 0).
Next, we note that, if x 2 > x 1 , it holds that the minimum

min{X 1 (t), X 2 (t)} = min{x 1 -x 2 + (p 1 -p 2 )t, 0} + X 2 (t)
is equal to X 1 (t) for t ≤ T and X 2 (t) for t > T , where T was defined in [START_REF] Sundt | On multivariate panjer recursions[END_REF].

Applying subsequently the Markov property of X 2 at time T shows that

ψ or (x 1 , x 2 ) = P (x1,x2) (X 1 (t) ≥ 0 for t ≤ T, X 2 (t) ≥ 0 for t ≥ T ) = ∞ 0 P x1 (X 1 (T ) ∈ dz, I 1 (T ) ≥ 0) P z (I 2 (∞) ≥ 0).
Similarly, the probability ψ sim (x 1 , x 2 ) that S stays below the barrier b max (t) can be seen to be equal to

ψ sim (x 1 , x 2 ) = ∞ 0 P x2 (X 2 (T ) ∈ dz, I 2 (T ) ≥ 0) P z (I 1 (∞) ≥ 0).

Particular cases of Theorem 4

Combining Theorem 4 with Proposition 1 yields an expression for ψ or (x 1 , x 2 ) in terms of the one-dimensional distributions of S. In the case that S is a compound Poisson process the next result, whose proof can be found in Section 6, expresses the one-dimensional distributions of S as a series:

Corollary 2 Suppose S is a compound Poisson process whose jump sizes σ i have the pdf f . If x 2 > x 1 , Theorem 4 holds true where ψ i (dz, T |x i ) is given by [START_REF] Pinelis | Asymptotics equivalence of the probabilities of large deviations for sums and maximum of indpendent random variables. Limit theorems of probability theory[END_REF] with

P xi (X(t) ∈ dx) = e -λt δ xi+pit (dx) + p(t, x i + p i t -x)dx and p(t, z) = e -λt ∞ n=1 (λt) n n! f n (z) ( 39 
)
is the density of S(t).

If, in addition, the claims sizes σ i follow a phase-type distribution (β, B), i.e. P [σ > x] = βe Bx 1, the solution simplifies. Indeed, in this case the onedimensional ruin probability may be written in a simple matrix exponential form:

ψ i (x i ) = η i e Q i xi 1 (40) 
with 

Q i = B + bη i and η i = λ pi β(-B) -1 (
ψ or (x 1 , x 2 ) = P x1 (I 1 (T ) < 0) + η 2 ∞ 0 e Q 2 z ψ 1 (dz, T |x 1 )1, (41) 
ψ sim (x 1 , x 2 ) = P x2 (I 2 (T ) < 0) + η 1 ∞ 0 e Q 1 z ψ 2 (dz, T |x 2 )1, ( 42 
)
where

Q i = B + bη i and η i = λ pi β(-B) -1 .
In the special case of exponential claims σ i with rate µ equation (41) can be developed further by employing the technique of change of measure and by applying the Markov property of X i . Indeed, as a particular case of the phasetype relation (41), we see that

ψ or (x 1 , x 2 ) = P x1 (I 1 (T ) < 0) + C 2 E x1 [e -γ2X1(T ) 1 {I1(T )≥0} ]. ( 43 
)
By a change of measure and using that -γ 2 x 1 + κ 1 (-γ 2 )T = -γ 2 x 2 we find that the second term in (43) is equal to

C 2 e -γ2x1+κ1(-γ2)T E x1 [Λ (-γ2) (T )1 {I1(T )≥0} ] = C 2 e -γ2x2 P (-γ2) x1 (I 1 (T ) ≥ 0).
The probability ψ sim can be treated using similar arguments. In conclusion, the original two-dimensional ruin problems ψ or /ψ sim /ψ both have been reduced to one-dimensional finite time ruin problems ψ

(c) i (x, t) = P (c)
x [I i (t) < 0], as follows:

Corollary 4 Suppose S is a compound Poisson process with exponential jumps. If x 2 > x 1 , it holds that

ψ sim (x 1 , x 2 ) = ψ 2 (x 2 , T ) + ψ 1 (x 1 )ψ (-γ1) 2 (x 2 , T ), ψ or (x 1 , x 2 ) = ψ 1 (x 1 , T ) + ψ 2 (x 2 )ψ (-γ2) 1 (x 1 , T ), ψ both (x 1 , x 2 ) = w 1 (x 1 , T ) + ψ 2 (x 2 )ψ (-γ2) 1 (x 1 , T ),
where w 1 (x, t) = w λ,µ,p1 (x, t) is given by

w λ,µ,p (x, t) = P x (I(∞) < 0, I(t) ≥ 0) = ψ(x) -ψ(x, t)
for I(t) defined for X(t) = pt -S(t).

Remark. Recall (see Example 1) that shifting the measure from P to P (-γi) for a Lévy risk processes with premium p and exponential claim sizes of intensity µ is equivalent to using the parameters μi := µ -γi , λi := λ -γi under P . When ρ > ρ * := p 2 2 /p 1 we find that the adjustment parameter of X 1 under P (-γ2) is positive and equals to

γ = γ 3 = µ p 2 (ρ -p 2 2 /p 1 ), (44) 
in the opposite case, ρ ≤ ρ * , this coefficient is zero. Moreover, the asymptotic constant C 3 in the first case satisfies C 3 C 2 = p2 p1 . Similarly, we find that under P (-γ1) , the drift of X 2 is always negative, κ (-γ1) 2 (0) = κ 2 (-γ 1 ) < 0, so that the adjustment parameter of X 2 is always zero. Noticing that ψ

(-γ2) 1 (x 1 , T ) = w (-γ2) 1 (x 1 , T ) + (1 -C 3 e -γ3x1
)I [ρ>ρ * ] and combining with above Corollary leads to

ψ sim (x 1 , x 2 ) = C 2 e -γ2x2 + ω 2 (x 1 , x 2 ), ψ or (x 1 , x 2 ) = C 1 e -γ1x1 -ω 1 (x 1 , x 2 ) + e -γ2x2 (C 2 -(p 2 /p 1 )e -γ3x1 ) + , ψ both (x 1 , x 2 ) = ω 1 (x 1 , x 2 ) + e -γ2x2 max{C 2 , (p 2 /p 1 )e -γ3x1 }, where x + = max{x, 0}, γ i = µ -λ/p i (i = 1, 2), C i = λ/(µp i ) and ω i (x 1 , x 2 ) = C 1 e -γ1x1 w λ1, µ1,pi (x i , T ) -C 2 e -γ2x2 w λ2, µ2,pi (x i , T ). ( 45 
)
An explicit formula for w λ,µ,p (x, t) = P x (t < τ < ∞) can be extracted from the literature [START_REF] Asmussen | Approximation for the probability of ruin within finite time[END_REF], Knessl and Peters (1994) (with p = 1) and Pervozvansky (1998)] -see Appendix 6.

Remark. In view of the fact (Example 2) that the perpetual ruin probability of a Brownian motion with drift is given by an exponential, the representation in Corollary 4 remains valid if S is replaced by a Brownian motion. In this case ψ(x, t) is given in terms of inverse Gaussian distributions.

Two dimensional Cramér asymptotics

We now turn to the asymptotics of the ruin probabilities ψ or /ψ sim /ψ both (x 1 , x 2 ) in the case that the initial reserves tend to infinity according to a ray x 1 /x 2 . Section 4.1 is devoted to asymptotics for general two-dimensional Lévy processes (implying the result for a Cramér-Lundberg process as in Theorem 1(a)). In Section 4.2 we derive asymptotics for the particular (degenerated) risk process given in the introduction and we consider in Section 4.3 the example of exponential jumps.

General asymptotics

Let X = (X 1 , X 2 ) now be a two-dimensional Lévy process and assume that X 1 , X 2 do not have monotone paths. We will denote by

κ(θ) = κ(θ 1 , θ 2 ) = log E[e θ1X1(1)+θ2X2(1) ]
the joint cumulant of X = (X 1 , X 2 ), by Θ = {θ : κ(θ) < ∞} the domain of κ and by Σ the Cramér set,

Σ = {θ = (θ 1 , θ 2 ) ∈ Θ : κ(θ 1 , θ 2 ) ≤ 0}.
Suppose that the Cramér assumption hold for X 1 and X 2 , that is, there exist

γ 1 , γ 2 > 0 such that κ(-γ 1 , 0) = κ(0, -γ 2 ) = 0. ( 46 
)
Moreover, assume the following condition is satisfied by the partial derivatives of κ: ∂κ ∂u (u, v)

(u,v)=(-γ1,0) + ∂κ ∂v (u, v) (u,v)=(0,-γ2) > -∞. ( 47 
)
By (P (x,y) , x, y ∈ R) we will denote the family measures under which X(0) = (x, y) and, for c = (c 1 , c 2 ) ∈ ×, P (c) denotes the measure with Radon-Nikodym derivative with respect to P given by

dP (c) dP Ft = exp(c 1 X 1 (t) + c 2 X 2 (t) -κ(c 1 , c 2 )t),
where F t denotes the P -completed sigma-algebra generated by (X s , s ≤ t). We shall also use the notation ( 4) - [START_REF] Borovkov | Large deviations for Markov chains in the quarter plane[END_REF] for the different ruin times of interest in this setting.

Theorem 5 Suppose that the Cramér assumptions ( 46) and (47) hold and let a > 0. Then, as K → ∞,

ψ or (aK, K) ∼ C 2 e -γ2K + C 1 e -γ1aK , (48) ψ both (aK, K) = o(C 2 e -γ2K + C 1 e -γ1aK ), ( 49 
)
where C 1 and C 2 are given in [START_REF] Dhaene | On the dependency of risks in the individual life model[END_REF].

Proof: We start with a few estimates. On the one hand, it holds that

ψ or (aK, K) = ψ 1 (aK) + ψ 2 (K) -ψ both (aK, K) ≤ ψ 1 (aK) + ψ 2 (K), (50) 
while, on the other hand,

ψ or (aK, K) ≥ max{ψ 1 (aK), ψ 2 (K)}. ( 51 
)
Note that, in view of (50) and the Cramér-Lundberg asymptotics [START_REF] Müller | Stochastic orderings generated by integrals: a unified study[END_REF], the asymptotics (48) imply those of (49):

lim K→∞ ψ both (aK, K) C 1 e -γ1aK + C 2 e -γ2K = 0.
The rest of the proof is therefore devoted to showing (48).

If

γ 1 a > γ 2 [resp. γ 1 a < γ 2 ]
, it follows, in view of the Cramér-Lundberg asymptotics [START_REF] Müller | Stochastic orderings generated by integrals: a unified study[END_REF], that the lower bound (51) and upper bound (50) are of the same order of magnitude,

C 2 e -γ2K [resp. C 1 e -γ1aK ], as K → ∞. Thus (48) is valid if γ 1 a = γ 2 .
Next we turn to the case γ 1 a = γ 2 . In this case we have to show that

ψ or (aK, K) ∼ C 1 e -γ1aK + C 2 e -γ2K as K → ∞.
Noting that (with τ 1 = τ 1 (aK) and τ 2 = τ 2 (K)) it holds that

ψ or (aK, K) = P (aK,K) (τ 1 ≤ τ 2 , τ 1 < ∞) + P (aK,K) (τ 2 ≤ τ 1 , τ 2 < ∞) -P (aK,K) (τ 1 = τ 2 < ∞),
we shall show that (i) the first two terms are of the order C 1 e -γ1aK + C 2 e -γ2K while (ii) the third term is of smaller order. (i) For the first term of last display it follows, by a change of measure, that e -γ1aK E (-γ1,0) (aK,K) (e -γ1X(τ1) 1 {τ1≤τ2,τ1<∞} ).

We claim that, as K → ∞, it holds that

E (-γ1,0) (aK,K) (e -γ1X(τ1) 1 {τ1≤τ2,τ1<∞} ) → C 1 . ( 52 
)
To prove this claim we will invoke the strong law of large numbers (slln), as in [START_REF] Glasserman | Counterexamples in importance sampling for large deviations probabilities[END_REF]. First note that by spatial inhomogeneity (τ 1 , τ 2 ) under P (-γ1,0) (u1,u2) has the same law as (T 1 (u 1 ), T 2 (u 2 )) under P (-γ1,0) (0,0) (where

T i (u i ) = inf{t ≥ 0 : X i (t) ≤ -u i }). Since X has independent increments, the slln implies that X i (T i (u i ))/T i (u i ) → E (-γ1,0) (0,0) [X i (1)] as u i → ∞. Also, it holds that [X i (T i (u i )) -u i ]/u i converges to zero as u i → ∞. Summarising, we find that, as K → ∞, τ 2 (K) τ 1 (aK) = 1 a τ 2 (K) K aK τ 1 (aK) → 1 a ∂κ ∂θ1 (-γ 1 , 0) ∂κ ∂θ2 (-γ 1 , 0) (53) 
P (-γ1,0) (aK,K) -a.s. The convexity of Σ now implies that the right-hand side of ( 53) is bounded below by γ2 aγ1 (which is equal to 1 as γ 2 = aγ 1 ). Indeed, as Σ is convex it holds that

[(u, v) -(-γ 1 , 0)] • ∇κ(-γ 1 , 0) ≤ 0
for all points (u, v) ∈ Σ (where •, denotes the inner-product) and the inequality follows by choosing (u, v) = (0, -γ 2 ). Therefore, for K large enough, the lefthand side of ( 52) is equal to E (-γ1,0) (aK,K) (e -γ1X(τ1) 1 {τ1<∞} ). In view of the Cramér-Lundberg asymptotics [START_REF] Müller | Stochastic orderings generated by integrals: a unified study[END_REF] the latter quantity converges to C 1 as K → ∞ and the claim (52) follows.

The second term can be treated similarly to find that, as K → ∞,

P (aK,K) (τ 2 ≤ τ 1 , τ 2 < ∞) ∼ C 2 e -γ2K .
(ii) Note that the third term is dominated by (aK, K). Choose β ∈ (0, 1) and write γ β = β(γ 1 , 0) + (1 -β)(0, γ 2 ). By strict convexity of the set Σ there exists a -γ * ∈ Σ such that γ * i > γ β i , (i = 1, 2). By changing the measure, we see that

ψ sim (aK, K) is equal to e -(γ * 1 a+γ * 2 )K E (-γ * ) (aK,K) [e γ * 2 X2(τsim)+γ * 1 X1(τsim)+κ(-γ * 1 ,-γ * 2 )τsim 1 {τsim<∞} ].
Since X i (τ sim ) < 0 and κ(-γ * 1 , -γ * 2 ) ≤ 0, the expectation in this display is bounded by 1. Therefore

ψ sim (aK, K) ≤ e -(γ * 1 a+γ * 2 )K = o(e -(γ β 1 a+γ β 2 )K ) = o(e -γ2K ) = o(e -γ1aK ) (54)
as K → ∞ (recalling that aγ 1 = γ 2 ) and the proof is finished.

Degenerate risk process asymptotics

To establish asymptotics for a risk-process with the particular structure described in the introduction. To be more precise, we restrict ourselves to a two-dimensional Lévy process (X 1 , X 2 ) with X i (t) = p i t -S(t), i = 1, 2, for a spectrally positive Lévy process S and still assume that (15) holds true, writing κ i for the cumulant of X i . Note that the joint cumulant κ of (X 1 , X 2 ) is in this case related to κ i by

κ(θ 1 , θ 2 ) = κ 1 (θ 1 + θ 2 ) -θ 2 (p 1 -p 2 ) = κ 2 (θ 1 + θ 2 ) + θ 1 (p 1 -p 2 ).
From the theory of large deviations of first passage times it is well known that a central role in the description of the exponents is played by the support functional Ĩ of the Cramér set, Σ, intersected with the positive quadrant:

Ĩ(a) = sup -θ∈Σ∩R 2 - a, θ , a ∈ R 2 + , (55) 
where •, • denotes the standard inner-product in R 2 and R 2 ± = {(x 1 , x 2 ) : ±x i ≤ 0}. In this section we explicitly solve this variational problem and relate it to the asymptotics for ψ sim and ψ both .

The solution of the variational problem (55) gives rise to a division of the upper cone [START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the probability of large claims[END_REF] and [START_REF] Foss | The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk[END_REF], where D (a)

C c = {(x 1 , x 2 ) ∈ R 2 : x 2 > x 1 > 0} into three open (possibly empty) sub-cones D 1 , D 2 and D 0 = D 1 ∪D c 2 defined in
s 2 < γ 2 /γ 1 < s 1 ; (b) s 1 < 1 and s 2 > 0 iff κ 1 (-γ 2 ) < 0; (c) 0 < γ 2 < γ 1 . In particular, D 1 ∪ D 2 ⊂ C c , D 1 ∩ D c 2 = ∅ and D 2 = ∅ iff s 2 > 0.
Proof of Lemma 2: (a,b) Writing

κ 1 (s) κ 2 (s) = κ 2 (s) + p 1 -p 2 κ 2 (s) = 1 + p 1 -p 2 κ 2 (s) ,
it follows that s 1 < 1, since κ 2 (-γ 1 ) < 0, and that s 2 < s 1 , since, by the strict convexity of κ 2 , κ 1 /κ 2 is strictly decreasing on the domain D of κ i and -γ 1 < -γ 2 . Finally, note that on the ray

x 1 /x 2 = γ 2 /γ 1 it holds that x 2 T (x 1 , x 2 ) = p 1 -p 2 1 -γ 2 /γ 1 = κ 2 (-γ 1 ) -κ 1 (-γ 1 ) γ 1 -γ 2 = κ 2 (-γ 1 ) -κ 2 (-γ 2 ) γ 1 -γ 2 .
The strict convexity of κ 2 thus implies that along the ray

x 1 /x 2 = γ 2 /γ 1 it holds that -κ 2 (-γ 2 ) < x 2 /T (x 1 , x 2 ) < -κ 2 (-γ 1 )
. In view of Lemma 4 below we deduce that s 2 < γ 2 /γ 1 . Similarly we prove that γ 2 /γ 1 < s 1 . Part (c) follows from (a) and (b). Denote by κ * 1 and κ * 2 the convex conjugates (34) and Θ 1 and Θ 2 for the domains of κ 1 and κ 2 , respectively and note that, for a = (a 1 , a 2 ) with a 2 > 0, Ĩ(a) = a 2 Ĩ(a 1 /a 2 , 1). The solution of the variational problem (55) now reads as follows:

Proposition 3 Let a ∈ (0, 1) with a = s 1 , s 2 and suppose there exists a θ

∈ int Θ 1 such that κ 1 (-θ) = -v 1 a . It holds that Ĩ(a, 1) = γ 2 I (0,s2) (a) + γ(a)I (s2,s1) (a) + aγ 1 I (s1,1) (a), where γ(a) := κ * 2 (v 2 a )/v 2 a = aκ * 1 (v 1 a )/v 1 a and v 1 a = a(p 1 -p 2 )/(1 -a), v 2 a = v 1 a /a = (p 1 -p 2 )/(1 -a). (56) 
Further, γ(a) > aγ 1 and γ(a) > γ 2 .

Proof of Proposition 3

The linear functional (u, v) → -ua -v attains its maximum over the closed set

V = Σ ∩ R 2 -at ∂Σ ∩ R 2 -(where ∂Σ denotes the boundary of Σ). If the maximum is attained in the interior of ∂Σ ∩ R 2 -) the maximiser (u * , v * ) satisfies κ(u * , v * ) = -v * (p 1 -p 2 ) + κ 1 (u * + v * ) = 0 and ∇κ(u * , v * ) = (κ 1 (u * + v * ), κ 2 (u * + v * )) = κ 2 (u * + v * )(a, 1).
Denoting by θ a the root of κ 1 (-s) = -v 1 a (which is also the root of κ 2 (-s) = -v 2 a ) it follows that

u * = -κ 2 (-θ a )(p 1 -p 2 ) and v * = κ 1 (-θ a )/(p 1 -p 2 ). (57) 
In particular,

u * a + v * = θ a a + (1 -a)κ 1 (-θ a )/(p 1 -p 2 ) = -aκ * 1 (v 1 a )/v 1 a . If a ∈ (s 2 , s 1 ), it follows from Lemma 4 below that κ 1 (-θ a ) < 0 < κ 2 (-θ a ) so that u * < 0 and v * < 0 and (u * , v * ) is indeed the maximiser. However, if a < s 2 or a > s 1 , κ 1 (-θ a )κ 2 (-θ a ) > 0 and (u * , v * ) / ∈ R 2
-and it can be directly verified that the maximum is attained at (0, -γ 2 ) if a < s 2 and at (-

γ 1 , 0) if a > s 1 . Finally, note that κ * 1 (v) = κ * 2 (v+p 1 -p 2 ). Moreover, v 1 a = a(p 1 -p 2 )/(1-a) = (p 1 -p 2 )/(1 -a) -(p 1 -p 2 ) = v 2 a -(p 1 -p 2 )
. Also, from the definition of κ * i and strict convexity, we see that κ * i (s) > -γ i s for all s = -κ i (-γ i ). We are now ready to state the asymptotics of ψ both and ψ sim in the setting of this subsection.

Theorem 6 Let a ∈ (0, 1). Assume that the Cramér assumptions (46) hold true and there exists a

θ ∈ int Θ 1 such that κ 1 (-θ) = -v 1 a . (i) If (aK, K) / ∈ D 0 , then, as K → ∞, ψ sim (aK, K) ∼ ψ both (aK, K) ∼ C 1 e -γ1aK (aK, K) ∈ D c 1 C 2 e -γ2K (aK, K) ∈ D 2 ,
where the region 0 < a < s 2 is understood to be empty if s 2 = 0.

(ii) If (aK, K) ∈ D 0 , then log ψ sim (aK, K) ∼ -γ(a)K as K → ∞.

(iii) Suppose S is a compound Poisson process and let s 2 > 0. If (aK, K) ∈ D 0 , then log ψ both (aK, K) ∼ -γ(a)K as K → ∞.

The proof of the Theorem is based on the following estimates that link ψ sim and ψ both to one-dimensional finite time ruin probabilities.

Lemma 3 (i) ψ 1 (x 1 ) -ψ 1 (x 1 , T ) + ψ 2 (x 2 , T ) ≤ ψ sim (x 1 , x 2 ) ≤ ψ both (x 1 , x 2 ). (ii) ψ both (x 1 , x 2 ) ≤ ψ 1 (x 1 ) -ψ 1 (x 1 , T ) + e -γ2x2 P (-γ2) x1 (τ 1 < T ).
Proof: By a change of measure, it follows that

ψ both (x 1 , x 2 ) = ψ 1 (x 1 ) -ψ 1 (x 1 , T ) + e -γ2x2 E (-γ2) (x1,x2) [e γ2X2(τ2) 1 {τ1<T <τ2<∞} ] ≤ ψ 1 (x 1 ) -ψ 1 (x 1 , T ) + e -γ2x2 P (-γ2) x1 (τ 1 < T ).
Further, for the first inequality, we note that

ψ sim (x 1 , x 2 ) = ψ 2 (x 2 , T ) + P (x1,x2) inf s<T X 2 (s) > 0, inf T ≤s<∞ X 1 (s) < 0 .
Since inf s<T X 2 (s) ≥ inf s<T X 1 (s) it follows that the second term in this display is bounded below by ψ 1 (x 1 ) -ψ 1 (x 1 , T ).

Next write

T i = x i /[-κ i (-γ i )], T i = x i /(-κ i (-γ 3-i ))
for a tilted version of T i and recall T (x 1 , x 2 ) was defined in [START_REF] Sundt | On multivariate panjer recursions[END_REF]. The following result shows that it is equivalent to let the initial reserves x 1 , x 2 tend to infinity while keeping x 1 /x 2 constant or while keeping x i /T (x 1 , x 2 ) constant, enabling us to link the asymptotics of the two-dimensional ruin problem to asymptotics of one-dimensional ruin probabilities:

Lemma 4 (i) x 1 /x 2 = a iff x i /T (x 1 , x 2 ) = v i a (i = 1, 2). (ii) T i < T (x 1 , x 2 ) ⇔ T 3-i < T (x 1 , x 2 ) ⇔ (x 1 , x 2 ) ∈ D i .
Proof: It is a matter of algebra to check that relation (i) follows by inserting the definition (36) of T (x 1 , x 2 ) and the expression for v i a . The relation (ii) follows then by using that κ 1 (s) = p 1 -p 2 + κ 2 (s) and applying the first relation for a = s i .

Remark. (Interpretation D i ) The previous Lemma implies that we can give an alternative definition of the cones D i as

D i = {(x 1 , x 2 ) ∈ C c : T i < T (x 1 , x 2 )}. Noting that T (x 1 , x 2 )
is the first time that X 1 and X 2 are equal and that, in view of Lemma 1, E

(-γi) xi [τ i ] ∼ T i we thus deduce that D i is the set of all rays R a := {x 1 = ax 2 } such that E (-γi) xi [τ i ] < T (x 1 , x 2 ) for (x 1 , x 2 ) ∈ R a large enough. Similarly, D i c is the set of all rays such that E (-γi) xi [τ i ] > T (x 1 , x 2 )
. for large enough initial reserves. The set D i corresponds thus to the rays with expected time of ruin of company i before the reserves of both companies are equal.

Lemma 5 Let a ∈ (0, 1). The following hold true: (a) aκ * (-γi) 1

(v 1 a )/v 1 a = κ * (-γi) 2 (v 2 a )/v 2 a . (b) γ 2 + κ * (-γ2) 2 (v 2 a )/v 2 a = γ 1 + aκ * (-γ1) 1 (v 1 a )/v 1 a = γ(a).
Proof: (a) follows from Proposition 3 and for (b) we note that κ

(-γ2) 2 (s) = κ 2 (s -γ 2 ) so that κ * (-γ2) 2 (v) = sup β (vβ -κ 2 (β -γ 2 )
). Proof of Theorem 6: The result for ψ sim (aK, K) follows by combining Lemmas 4 -5 with the asymptotics given in Proposition 2 and Theorem 3. More specifically, if x 1 , x 2 → ∞ according to the ray x 1 /x 2 = a < s 2 (or equivalently the ray

x i /T (x 1 , x 2 ) = v i a < -κ i (-γ i )) then ψ 2 (K, T ) ∼ C 2 e -γ2K and log(ψ 1 (aK)-ψ 1 (aK, T )) is of the order -aκ * 1 (v 1 a )K/v 1 a = -γ(a)K < -γ 2 K.
In view of Lemma 5 it follows that the lower bound for ψ sim (aK, K) in Lemma 3 is equivalent to C 2 e -γ2K as K → ∞. Also, ψ sim (x 1 , x 2 ) ≤ ψ 2 (K) which is equivalent to C 2 e -γ2K as K → ∞. Similarly, one can verify that in the case a > s 1 we have ψ sim (aK, K) and ψ both (aK, K) are both equivalent to C 1 e -γ1aK . In the intermediate area a ∈ (s 2 , s 1 ) we see that the logarithm of each of the terms of the lower bound is of the order -aκ *

1 (v 1 a )K/v 1 a = -κ * 2 (v 2 a )K/v 2 a = -γ(a)K.
For the upper bound we use the inequality (54) giving ψ sim (aK, K) ≤ exp{(au+ v)K} for (u, v) = (u * , v * ) defined in (57) and recall that au * + v * = -γ(a). Finally, we turn to an upper bound of ψ both if a ∈ (s 2 , s 1 ). By Theorem 3 the first term of the lower bound in Lemma 3 is of the order O(K -1/2 e -γ(a)K ) and the second term of the order O(K -1/2 e -γ(a)K ) if κ 1 (-γ 2 ) < 0 (using Lemma 2) and O(e -(γ2+γ3)K ) if κ 1 (-γ 2 ) > 0 where -γ 3 > 0 solves κ 1 (-s -γ 2 ) = 0. We conclude that the lower and upper bound are of smaller order than min{e -γ1aK , e -γ2K } as K → ∞ (using Lemma 2) (where the case of κ 1 (-γ 2 ) = 0 follows by adding a small drift to the process). Also, by comparing lower and upper bound we see that ψ both (aK, K) ∼ log ψ sim (aK, K) if a ∈ (s 2 , s 1 ) and s 2 > 0.

Sharp asymptotics for exponential jumps

Restricting ourselves to the case that S is a compound Poisson process with exponential jumps, we can obtain explicit and more precise results, exploiting the explicit form of the ruin probabilities found in Corollary 4. It is a matter of calculus to verify from Example 1 that, for i = 1, 2, the vector of means is given by

(κ 1 (-γ i ), κ 2 (-γ i )) = p 1 - p 2 i ρ , p 2 - p 2 i ρ .
From the previous section we know that the areas with different asymptotic behaviour of the ruin probabilities are separated by the rays

s 1 = p 2 1 ρ -p 1 p 2 1 ρ -p 2 , s 2 = ( p 2 2 ρ -p 1 ) + p 2 2 ρ -p 2 .
Further, let γ 3 be the largest root of the equation κ (-γ2) 1

(-s) = 0 and set the corresponding ray, s 3 , equal to

s 3 = κ (-γ2) 1 (-γ 3 ) κ (-γ2) 2 (-γ 3 ) = κ 1 (-γ 3 -γ 2 ) κ 2 (-γ 3 -γ 2 ) .
The set D 3 is defined as D 2 but with s 2 replaced by s 3 . Note that s 2 > 0 iff ρ < ρ * = p 2 2 /p 1 or equivalently κ 1 (-γ 2 ) < 0. Note that in this case it holds that s 2 = s 3 or D 2 = D 3 . In the case that ρ > ρ * we have that s 2 = 0, s 3 > 0, and γ 3 is given in (44), and the asymptotic behaviour of ψ both (aK, K) as K → ∞ differs according to whether or not (aK, K) lies in D 3 . Denote by I A = I A (aK, K) the indicator of the set A which is one if (aK, K) ∈ A and zero else and write

f (K) ≈ g 1 (K) + g 2 (K) as K → ∞ if lim K→∞ [f (K) -g i (K)]/g 3-i (K) = 1. Theorem 7 Let a ∈ (0, ∞). As K → ∞ it holds that ψ or (aK, K) ≈ C 1 e -γ1aK I D1 + C 2 e -γ2K I D c 2 +K -1/2 e -γ(a)K (D 1 I D c 1 + C 2 D (-γ2) 1 I D2 ), ψ sim (aK, K) ≈ C 1 e -γ1aK I D c 1 + C 2 e -γ2K I D2 +K -1/2 e -γ(a)K (D 2 I D c 2 + C 1 D (-γ1) 2 I D1 ), ψ both (aK, K) ≈ C 1 e -γ1aK I D c 1 + e -γ2K min{C 2 , (p 2 /p 1 )e -γ3aK }I D3 +K -1/2 e -γ(a)K (D 1 I D1 + C 2 D (-γ2) 1 I D c 3 ), where γ(a) = aκ * 1 (v 1 a )/v 1 a = κ * 2 (v 2 a )/v 2 a , C i = ρ p i , D i = θ v -θ v θ v |θ v | 2πκ i (-θ v ) p 1 -p 2 1 -a , (58) 
D (-γ) i is D i calculated for P (-γ) and θ v < 0 is such that κ i (-θ v ) = κ i (-θ v ) for v = v i a .
Proof: Recalling that p 2 > ρ we can directly verify that the Cramér assumptions ( 15) are satisfied and that lim θ↑-µ κ i (θ) = -∞, i = 1, 2. The result then follows by combining Corollary 4 with the finite time ruin asymptotics in Theorem 3, using Lemmas 4 and 5, as in the previous subsection.

Proof of subexponential asymptotics

Throughout this section we shall assume that the distribution F ∈ S * , that is the claim sizes σ are subexponential, and that Eζ 2+δ < ∞ for some δ > 0. Let

I (i) [x,y] (w) = y x F (w + m i t) dt for i = 1, 2. Note that H(aK, K) = I (2) [0,T ] (K) + I (1) [T,∞] (aK) (59) and 1 m 2 µ F I (K) = 1 µ I (2) [0,∞] (K), 1 m 1 µ F I (aK) = 1 µ I (1) [0,∞] (aK). ( 60 
)
Straightforward calculations show that

I (1) [T,∞] (aK) = (m 2 /m 1 )I (2) [T,∞] (K). (61) 
We first prove asymptotics: 

lim K→∞ ψ sim (aK, K) H(aK, K) = 1. ( 62 
) Let T 0 = 0, T n = n i=1 ζ i and Ξ 0 = 0, Ξ n = n i=1 (σ i -Eσ).
P (max n (Ξ n -g(n)) > K) ∞ n=1 F (K + g(n)) P (G ∈ dg) ≤ 1 , where G i (n) = a i K + p i T n -nEσ -K and G(n) = max i=1,2 G i (n) are random discrete time processes on a possible function realisations g : N → R (with a 1 = a, a 2 = 1). Let V = {T n > -L + n(Eζ -) for all n}. Now, P (max n (Ξ n -g(n)) > K) ∞ n=1 F (K + g(n)) P (G ∈ dg) ≥ P (max n (Ξ n -g(n)) > K) ∞ n=1 F (K + g(n)) 1 {V} P (G ∈ dg) ≥ 1 ∞ n=1 F (max i=1,2 (a i K + p i (Eζ -)n -nEσ)) P (max n (Ξ n -g(n)) > K)1 {V} P (G ∈ dg) ≥ 1 ∞ n=1 F (max i=1,2 (a i K + p i (Eζ -)n -nEσ)) P (max n (Ξ n -g(n)) > K) P (G ∈ dg) -P (max n (Ξ n -g(n)) > K)1 {V c } P (G ∈ dg) . (63) 
Note that ψ sim (aK, K) = P (max n (Ξ n -g(n)) > K) P (G ∈ dg) which is the first component in (63). We prove that lim

→0 lim K→∞ ∞ n=1 F (max i=1,2 (a i K + p i (Eζ -)n -nEσ)) H(aK, K) = 1. (64) Indeed, note that ∞ n=1 F (max i=1,2 (a i K + p i (Eζ -)n -nEσ)) ∼ T 0 F (K + (m 2 -p 2 )t) dt + Thus lim →0 lim K→∞ T 0 F (K + (m 2 -p 2 )t) dt T 0 F (K + m 2 t) dt = 1. Similarly, ∞ T F (aK +(m 1 -p 1 )t) dt = ∞ 0 F (aK +(m 1 -p 1 )t) dt- T 0 F (aK + (m 1 -p 1 )t) dt and lim →0 lim K→∞ T 0 F (aK + (m 1 -p 1 )t) dt T 0 F (aK + m 1 t) dt = 1, lim →0 lim K→∞ ∞ 0 F (aK + (m 1 -p 1 )t) dt ∞ 0 F (aK + m 1 t) dt = 1 since ∞ 0 F (aK + (m 1 -p 1 )t) dt = m1 m1-p1 ∞ 0 F (aK + m 1 t) dt.
This proves (64). Moreover, second component in ( 63) is neglible with respect to H(aK, K). Indeed,

P (max n (Ξ n -g(n)) > K)1 {V c } P (G ∈ dg) ≤ ∞ n=1 P (T n < -L + n(Eζ -))P (max n (Ξ n -nEσ) > K).
The first term goes to 0 as L → ∞ by Fug and Nagaev (1971), Th. 2 and 3 (see [START_REF] Nagaev | Integral limit theorems taking large deviations into account when Cramér's condition does not hold[END_REF] and [START_REF] Pinelis | Asymptotics equivalence of the probabilities of large deviations for sums and maximum of indpendent random variables. Limit theorems of probability theory[END_REF]) and the assumption Eζ 2+δ < ∞. The second term is asymptotically equivalent to F I (K) (see [START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the probability of large claims[END_REF]; [START_REF] Zachary | A note on Veraverbeke's Theorem[END_REF]) which is of order (up to constant) of H(aK, K) (see (59) -( 61)). Hence we proved that lim sup

K→∞ ψ sim (aK, K) H(aK, K) ≤ 1. ( 65 
)
We will prove now the lower bound of ψ sim (aK, K). First note that taking interarrival times ζ ∨ c for some c > 0 instead of original ζ we decrease the ruin probability. Without loss of generality we can then assume that ζ > c for some c > 0. Similarly as before, from Fatou's lemma and Theorem 2 of Foss et al.

(

) we have 1 ≤ lim inf K→∞ 1 ∞ n=1 F (max i=1,2 (a i K + p i (Eζ + )n -nEσ)) ψ sim (aK, K) -P (max n (Ξ n -g(n)) > K)1 {U c } P (G ∈ dg) , 2005 
where U = {T n < L + n(Eζ + ) for all n}. We have

P (max n (Ξ n -g(n)) > K)1 {U c } P (G ∈ dg) ≤ ∞ n=1 P (T n < L + n(Eζ + ))P (max n (Ξ n -nEσ) > K)
which is negligible with respect to H(aK, K) when K → ∞ and L → ∞. In the same way as above we can prove that which gives [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF]. Recall that ψ both (aK, K) ≥ ψ sim (aK, K) hence lim inf K→∞ ψ both (aK, K) H(aK, K) ≥ 1.

We prove now the asymptotic upper bound. Note that

ψ both (aK, K) = P (ζ 2 (K) < ∞) -P (ζ 2 (K) < ∞, ζ 1 (aK) = ∞).
Appealing to Veraverbeke's Theorem (see [START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the probability of large claims[END_REF]; [START_REF] Zachary | A note on Veraverbeke's Theorem[END_REF] gives an alternative short proof for this result) we see that

P (ζ 2 (K) < ∞) = ψ i (a i K) ∼ 1 m 2 µ F I (K).
Hence for large K we have

P (ζ 2 (K) < ∞) ≤ (1 + δ) 1 m 2 µ F I (K) (68) 
for given δ > 0. Moreover, writing M = min{n : T n ≥ T } -1 and Ξ n for independent copy of Ξ n starting from 0, for given > 0 and sufficiently large L Note that expression in brackets is of order (up to constant) of H(aK, K) as K → ∞ (see ( 59) and ( 61)). Taking then first K → ∞ and then δ → 0 we derive lim sup K→∞ ψ both (aK, K) H(aK, K) ≤ 1 which completes the proof.

Appendix

Lemma 1 (Explicit ruin) The inverse Laplace transform of Ψ (q) (x) in ( 29) is given by ψ(x, t) = 1 -ψ(x, t) = [1 -Ce -γx ]I (γ>0) + w(x, t),

where γ = µ -λ/p, C = λ µp , and w(x, t) = 1 π λ µp s+ s-e a(q)x-qt sin(b(q)x -φ(q)) dq q (70)

where s ± = ( √ λ ± √ µp) 2 and a(q) = λ -µp -q 2p , b(q) = 4pqµ -(λ -µp -q) 2 2p , (71)

φ(q) = arccos pµ + λ -q 2 √ λµp . ( 72 
)
Proof of Corollary 2: The transition probability P (X 1 (t) ∈ dz) of X 1 can be found explicitly by conditioning on the number of jumps of the compound Poisson process S up till time t:

P (X 1 (t) ∈ dz) = ∞ n=0 e -λt (λt) n n! F n (d(tp 1 -z)), (73) 
where F n (dx) is the n-fold convolution of F (dx) and F 0 = δ 0 , the delta in zero. If the jump-size σ is a continuous random variable the only atom of P (X 1 (t) ∈ dz) occurs in the absence of jumps, that is, P (X 1 (t) ∈ dz) = e -λt δ 0 (d(tp 1 -z)) + p 1 (t, z)dz,

where p 1 (t, z) = e -λt ∞ n=1 (λt) n n! f n (tp 1 -z) with f is the probability density function of σ. The assertion now follows by noting that in this case the identity in (76) remains valid when we take instead of P (X 1 (t) ∈ dz) the measure p 1 (t, z)dz (as the atom only affects one t and we are integrating over t).

Proofs of Section 2

Proof of Proposition 1: Write Q t and Q t for the semi-groups corresponding to X (resp. X = -X) killed upon entering the negative half-axis (-∞, 0). By Hunt's switching identity (e.g. [START_REF] Bertoin | Lévy processes[END_REF], Thm II.1.5) it holds for nonnegative measurable functions f, g that

R Q t f (x)g(x)dx = R f (x) Q t g(x)dx. (74) 
Moreover,

R f (x) Q t g(x)dx = R f (x)E -x [g(-X(t))1 {t<T (0)} ]dx = R E x [f (X(t))]g(x)dx - R f (x) t 0 E 0 [g(-X(t -s))]P -x [T (0) ∈ ds] = R E x [f (X(t))]g(x)dx - R f (x) t 0 E 0 [g(-X(t -s))]P [T (x) ∈ ds],
where in the third line we used duality (e.g. [START_REF] Bertoin | Lévy processes[END_REF] Prop. II.1.1), the strong Markov property and the fact that X is spectrally negative (and thus X(T (0)) = 0). Combining the last line and (74) with Kendall's identity, which is valid for spectrally negative Lévy processes (e.g. [START_REF] Bertoin | Lévy processes[END_REF], Cor. VII.3, or [START_REF] Borovkov | Kendall's identity for the first crossing time revisited[END_REF]) and relates the distributions of X(t) and the passage time T (x):

tP (T (z) ∈ dt)dz = zP (X(t) ∈ dz)dt, (75)

shows that the following equality between measures holds true: P (X(t -s) ∈ dz)P (-X(s) ∈ dx)ds, so that, under the assumption (AC), the stated result follows.

Proof of Corollary 1: Write e(q) for an independent exponential time with mean q -1 . Taking the Laplace transform in t of (32) yields P x (X(e(q)) ∈ dz, I(e(q)) ≥ 0) = P x (X(e(q)) ∈ dz) -u q (-x)E[e -qT (z) ]dz = u q (z -x) -u q (-x)E[e -qT (z) ]dz, (77) where u q (x) = P (X(e(q))∈dx) dx is a version of the potential density of X. From the fluctuation theory of spectrally negative Lévy processes it is well known (see e.g. [START_REF] Bingham | Fluctuation theory in continuous time[END_REF]) that E[e -qT (z) ] = e -Φ(q)z for z > 0 and that u q (y) = Φ (q)e -Φ(q)y -W (q) (-y)1 y<0 (see [START_REF] Pistorius | A potential theoretical review of some exit problems of spectrally negative Lévy processes[END_REF] or [START_REF] Bingham | Fluctuation theory in continuous time[END_REF] for a proof). Inserting these expressions into (77) and subsequently taking the limit x ↓ 0 shows that P 0 (X(e(q)) ∈ dz, I(e(q)) ≥ 0) = W (q) (0 + )e -Φ(q)z dz = p -1 e -Φ(q)z dz, where the second equality follows from a Tauberian theorem and the form of the exponent κ in this case. In view of the form of the Laplace transform of T (z) and Kendall's identity (75) the proof is done.
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  see for example (4) in Asmussen et al. (2002)). Combining this explicit formula (40) with Theorem 4 yields the following result: Corollary 3 Suppose S is a compound Poisson process with phase-type jumps (β, B). If x 2 > x 1 , it holds that

Note that our notation is slightly different from that of[START_REF] Cai | Multivariate risk model of phase-type[END_REF]: their ψ and became our ψ both .
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we have

From Theorem 2 of Foss et al. (2005), for large K and given κ > 0 above expression could bounded below by:

giving for sufficiently large L

From ( 59), ( 68) and (69) we have

[T,∞) (K) -I

[T,∞) (aK)

≤ H(aK, K) + δ 2I

[T,∞) (K) + I

[0,T ] (K) -I

[T,∞) (aK) .