Markus Bl Äser
email: mblaeser@cs.uni-sb.de

Christian Hoffmann
email: hoffmann@cs.uni-sb.de

Bl

ON THE COMPLEXITY OF THE INTERLACE POLYNOMIAL

Keywords: computational complexity, approximation, interlace polynomial, independent set polynomial, graph transformation

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we prove that the interlace polynomial is #P-hard to evaluate at every point of the plane, except at one line, where it is trivially polynomial time computable, and four lines and two points, where the complexity mostly is still open. This solves a problem posed by Arratia, Bollobás and Sorkin (2004). In particular, we observe that three specializations of the two-variable interlace polynomial, the vertex-nullity interlace polynomial, the vertex-rank interlace polynomial and the independent set polynomial, are almost everywhere #P-hard to evaluate, too. For the independent set polynomial, our reductions allow us to prove that it is even hard to approximate at every point except at -1 and 0.

Introduction

The number of Euler circuits in specific graphs and their interlacings turned out to be a central issue in the solution of a problem related to DNA sequencing by hybridization [START_REF] Arratia | Euler circuits and DNA sequencing by hybridization[END_REF]. This led to the definition of a new graph polynomial, the one-variable interlace polynomial [START_REF] Arratia | The interlace polynomial of a graph[END_REF]. Further research on this polynomial inspired the definition of a two-variable interlace polynomial q(G; x, y) containing as special cases the following graph polynomials: q N (G; y) = q(G; 2, y) is the original one-variable interlace polynomial which was renamed to "vertex-nullity interlace polynomial", q R (G; x) = q(G; x, 2) is the new "vertex-rank interlace polynomial" and I(G; x) = q(G; 1, 1 + x) is the independent set polynomial 1 [START_REF] Arratia | A two-variable interlace polynomial[END_REF].

Although the interlace polynomial q(G; x, y) is a different object from the celebrated Tutte polynomial (also known as dichromatic polynomial, see, for instance, [START_REF] Tutte | Graph Theory[END_REF]), they are also similar to each other. While the Tutte polynomial can be defined recursively by a deletion-contraction identity on edges, the interlace polynomial satisfies recurrence relations involving several operations on vertices (deletion, pivotization, complementation).

Besides the deletion-contraction identity, the so called state expansion is a well-known way to define the Tutte polynomial. Here the similarity to the two-variable interlace polynomial is especially striking: while the interlace polynomial is defined as a sum over all vertex subsets of the graph using the rank of adjacency matrices (see (2.1)), the state expansion of the Tutte polynomial can be interpreted as a sum over all edge subsets of the graph using the rank of incidence matrices (see (4.1)) [ABS04b, Section 1].

References to further work on the interlace polynomial can be found in [START_REF] Arratia | A two-variable interlace polynomial[END_REF] and [START_REF] Ellis-Monaghan | Distance hereditary graphs and the interlace polynomial[END_REF].

Previous work

The aim of this paper is to explore the computational complexity of evaluating2 the two-variable interlace polynomial q(G; x, y). For the Tutte polynomial this problem was solved in [START_REF] Jaeger | On the computational complexity of the Jones and the Tutte polynomials[END_REF]: Evaluating the Tutte polynomial is #P-hard at any algebraical point of the plane, except on the hyperbola (x -1)(y -1) = 1 and at a few special points, where the Tutte polynomial can be evaluated in polynomial time. For the two-variable interlace polynomial q(G; x, y), only on a one-dimensional subset of the plane (on the lines x = 2 and x = 1) some results about the evaluation complexity are known.

A connection between the vertex-nullity interlace polynomial and the Tutte polynomial of planar graphs [ABS04a, End of Section 7], [EMS07, Theorem 3.1] shows that evaluating q is #P-hard almost everywhere on the line x = 2 (Corollary 4.4).

It has also been noticed that q(G; 1, 2) evaluates to the number of independent sets of G [ABS04b, Section 5], which is #P-hard to compute [START_REF] Valiant | The complexity of enumeration and reliability problems[END_REF]. Recent work on the matching generating polynomial [START_REF] Averbouch | The complexity of multivariate matching polynomials[END_REF] implies that evaluating q is #P-hard almost everywhere on the line x = 1 (Corollary 4.10).

A key ingredient of [START_REF] Jaeger | On the computational complexity of the Jones and the Tutte polynomials[END_REF] is to apply graph transformations known as stretching and thickening of edges. For the Tutte polynomial, these graph transformations allow us to reduce the evaluation at one point to the evaluation at another point. For the interlace polynomial no such graph transformations have been given so far.

Our results

We develop two graph transformations which are useful for the interlace polynomial: cloning and combing of vertices. Applying cloning or combing allows us to reduce the evaluation of the interlace polynomial at some point to the evaluation of it at another point, see Theorem 3.3 and Theorem 3.5. We exploit this to obtain the following new results about the computational complexity of q(G; x, y).

We prove that the two-variable interlace polynomial q(G; x, y) is #P-hard to evaluate at almost every point of the plane, Theorem 4.12, see also Figure 1. Even though there are some unknown (gray, in Figure 1) lines left on the complexity map for q, this solves a challenge posed in [ABS04b, Section 5]. In particular we obtain the new result that evaluating the vertex-rank interlace polynomial q R (G; x) is #P-hard at almost every point (Corollary 4.13). Our techniques also give a new proof that the independent set polynomial is #P-hard to evaluate almost everywhere (Remark 4.11).

Apart from these results on the computational complexity of evaluating the interlace polynomial exactly, we also show that the values of the independent set polynomial (which is the interlace polynomial q(G; x, y) on the line x = 1) are hard to approximate almost everywhere (Theorem 5.4).

Preliminaries

Interlace Polynomials

We consider undirected graphs without multiple edges but with self loops allowed. Let G = (V, E) be such a graph and A ⊆ V . By G[A] we denote (A, {e|e ∈ E, e ⊆ A}), the subgraph of G induced by A. The adjacency matrix of G is the symmetric n × n-matrix M = (m ij) over F 2 = {0, 1} with m i,j = 1 iff {i, j} ∈ E. The rank of this matrix is its rank over F 2 . Slightly abusing notation we write rk(G) for this rank. This allows us to define the two-variable interlace polynomial.

Definition 2.1 ([ABS04b]

). Let G = (V, E) be an undirected graph. The interlace polynomial q(G; x, y) of G is defined as

q(G; x, y) = A⊆V (x -1) rk(G[A]) (y -1) |A|-rk(G[A]) .
(2.1)

In Section 3 we will introduce graph transformations (graph cloning and graph combing) which perform one and the same operation (cloning one single vertex, adding a comb to one single vertex, resp.) on every vertex of a graph. Instead of relating the interlace polynomial of the original graph directly to the interlace polynomial of the transformed graph, we will analyze how, say, cloning one single vertex changes the interlace polynomial. To express this, we must be able to treat the vertex being cloned in a particular way, differently from the other vertices. This becomes possible using a multivariate version of the interlace polynomial, in which each vertex has its own variable. Once we can express the effect of cloning one vertex by an appropriate substitution of the vertex variable in the multivariate interlace polynomial, cloning all the vertices amounts to a simple substitution of all vertex variables and brings us back to a bivariate interlace polynomial. This procedure has been applied successfully to the Tutte polynomial [START_REF] Sokal | The multivariate Tutte polynomial (alias Potts model) for graphs and matroids[END_REF][START_REF] Bläser | Hip hip hooray for Sokal[END_REF].

We choose the following multivariate interlace polynomial, which is similar to the multivariate Tutte polynomial of Sokal [START_REF] Sokal | The multivariate Tutte polynomial (alias Potts model) for graphs and matroids[END_REF] and a specialization of the multivariate interlace polynomial defined by Courcelle [START_REF] Courcelle | A multivariate interlace polynomial[END_REF].

Definition 2.2. Let G = (V, E) be an undirected graph. For each v ∈ V let x v be an indeterminate. Writing x A for v∈A x v , we define the following multivariate interlace polynomial:

P (G; u, x) = A⊆V x A u rk(G[A]) .
Substituting each x v in P (G; u, x) by x, we obtain another bivariate interlace polynomial:

P (G; u, x) = A⊆V x |A| u rk(G[A]
) .

An easy calculation proves that q and P are closely related:

Lemma 2.3. Let G be a graph. Then we have the polynomial identities q(G; x, y) = P (G; x-1 y-1 , y -1) and P (G; u, x) = q(G; ux + 1, x + 1).

Evaluating Graph Polynomials

Given ξ, υ ∈ Q we want to analyze the following computational problem:

Input: Graph G Output: q(G; ξ, υ)
This is what we mean by "evaluating the interlace polynomial q at the point (ξ, υ)". As an abbreviation for this computational problem we write q(ξ, υ), which should not be confused with the expression q(G; ξ, υ) denoting just a value in Q. Evaluating other graph polynomials such as P , q N , q R and I is defined accordingly.

If P 1 and P 2 are computational problems we use P 1 T P 2 (P 1 m P 2) to denote a polynomial time Turing reduction (polynomial time many-one reduction, resp.) from P 1 to P 2 . For instance, Lemma 2.3 gives Corollary 2.4. For ξ, υ ∈ Q, υ = 1, we have q(ξ, υ) m P (ξ-1 υ-1 , υ -1). For µ, ξ ∈ Q we have P (µ, ξ) m q(µξ + 1, ξ + 1).

Here Q denotes some finite dimensional field extension Q ⊆ Q ⊆ R, which has a discrete representation. As √ 2 will play an important role but we are not able to use arbitrary real numbers as the input for a Turing machine, we use Q instead of Q or R. We fix some Q for the rest of this paper. This construction is done in the spirit of Jaeger, Vertigan, and Welsh [START_REF] Jaeger | On the computational complexity of the Jones and the Tutte polynomials[END_REF] who also propose to adjoin a finite number of points to Q in order to talk about the complexity at irrational points. To some extent, this is an ad hoc construction, but it is sufficient for this work.

Graph Transformations for the Interlace Polynomial

Now we describe our graph transformations, the cloning and combing of vertices. The main results of this section are Theorem 3.3 and Theorem 3.5 which describe the effect of cloning and combing on the interlace polynomial.

Cloning

Cloning vertices in the graph yields our first graph transformation.

Cloning one vertex. Let G = (V, E) be a graph. Let a ∈ V be some vertex (the one which will be cloned) and N the set of neighbors of a, V ′ = V \ {a} and M = V ′ \ N . The graph G with a cloned, G aa , is obtained out of G in the following way: Insert a new isolated vertex a ′ . Connect a ′ to all vertices in N . If a does not have a self loop, we are done. Otherwise connect a and a ′ and insert a self loop at a ′ . Thus, adjacency matrices of the original (cloned, resp.) graph are

B = a N M a b 1 0 N 1 A 11 A 12 M 0 A 21 A 22 and B aa = a ′ a N M a ′ b b 1 0 a b b 1 0 N 1 1 A 11 A 12 M 0 0 A 21 A 22 , resp, (3.1)
where b = 1 if a has a self loop and b = 0 otherwise. As the first column of B aa equals its second column, as well as the first row equals the second row, we can remove the first row and the first column of B aa without changing the rank. This also holds when we consider the adjacency matrices of G[A] (G aa [A], resp.) instead of G (G aa resp.) for A ⊆ V ′ . Thus we have for any

A ⊆ V ′ rk(G aa [A]) = rk(G[A]), (3.2) rk(G aa [A ∪ {a, a ′ }]) = rk(G aa [A ∪ {a}]) = rk(G aa [A ∪ {a ′ }]) = rk(G[A ∪ {a}]). (3.3) Let x = (x v) v∈V (
Gaa) be a labeling of the vertices of G aa by indeterminates. Define X to denote the following labeling of the vertices of G: X

v := x v for all v ∈ V ′ , X a := (1 + x a)(1 + x a ′) -1 = x a + x a ′ + x a x a ′ . Then we have Lemma 3.1. P (G aa ; u, x) = P (G; u, X).
Proof. On the one hand we have

P (G aa ; u, x) = A⊆V ′ x A (u rk(Gaa[A]) + x a u rk(Gaa[A∪{a}]) + x a ′ u rk(Gaa[A∪{a ′ }]) + x a x a ′ u rk(Gaa[A∪{a,a ′ }])) = A⊆V ′ x A (u rk(G[A]) + (x a + x a ′ + x a x a ′)u rk(G[A∪{a}])) by (3.2), (3.3). q(G k ; x, y) = q(G; (x -1) y k -1 y -1 + 1, y k).
(3.5) Theorem 3.3 also implies the following reduction for the interlace polynomial, which is the foundation for our results in Section 4. Proposition 3.4. Let B 2 = {0, -1, -2} and x be an indeterminate. For µ ∈ Q, ξ ∈ Q \ B 2 we have P (µ, x) T P (µ, ξ). (For any µ ∈ Q, we write P (µ, x) to denote the following computational problem: given a graph G compute P (G; µ, x), which is a polynomial in x with coefficients in Q.)

Proof. Let µ and ξ be given such that they fulfill the precondition of the proposition. Given a graph G =: G 1 with n vertices, we build G 2 , G 3 , . . . , G n+1 , where G i is obtained out of G by cloning each vertex i -1 times. This is possible in time polynomial in n. By Theorem 3.3, a call to an oracle for P (µ, ξ) with input G i gives us P (G; µ, (1 + ξ) i -1) for i = 1, . . . , n + 1. The restriction on ξ guarantees that for i = 1, 2, 3, . . . the expression (1+ξ) i -1 evaluates to pairwise different values. Thus, for P (G; µ, x), which is a polynomial in x of degree ≤ n, we have obtained the values at n + 1 distinct points. Using Lagrange interpolation we determine the coefficients of P (G; µ, x).

Combs

The comb transformation sometimes helps, when cloning has not the desired effect. Let G = (V, E) be a graph and a ∈ V some vertex. Then we define the k-comb of G at a as G a,k = (V ∪ {a 1 , . . . , a k }, E ∪ {{a, a 1 }, . . . , {a, a k }}), with a 1 , . . . , a k being new vertices.

Using similar arguments as with vertex cloning, combing of vertices yields a point-topoint reduction for the interlace polynomial, too. The proof of the following theorem can be found in [START_REF] Bläser | On the complexity of the interlace polynomial[END_REF].

Theorem 3.5. Let G be a graph and G k be obtained out of G by performing a k-comb operation at every vertex. Then

P (G k ; u, x) = p(k, u, x) |V (G)| P (G; u, x/p(k, u, x)), (3.6) where p(k, u, x) = (1 + x) k (xu 2 + 1) -xu 2 .

Complexity of evaluating the Interlace Polynomial exactly

The goal of this section is to uncover the complexity maps for P and q as indicated in Figure 1. While the left hand side (complexity map for P) is intended to follow the arguments which prove the hardness, the right hand side (complexity map for q) focuses on presenting the results. Remark 4.1. P (µ, 0) and P (1, ξ) are trivially solvable in polynomial time for any µ, ξ ∈ Q, as P (G; µ, 0) = 1 and P (G; 1, ξ) = (1 + ξ) |V | . Thus, on the thick black lines x = 0 and u = 1 in the left half of Figure 1, P can be evaluated in polynomial time. By Lemma 2.3, these lines in the complexity map for P correspond to the point (1, 1) and the line x = y, resp., in the complexity map for q, see the right half of Figure 1.

Identifying hard points

We want to establish Corollary 4.4 and Remark 4.5 which tell us, that P is #P-hard to evaluate almost everywhere on the dashed hyperbola in Figure 1 and at (0, 1). To this end we collect known hardness results about the interlace polynomial.

Let t(G; x, y) denote the Tutte polynomial of an undirected graph G = (V, E). It may be defined by its state expansion as Theorem 4.2 ([Ver05]). Evaluating the Tutte polynomial of planar graphs at (ξ, ξ) is #P-hard for all ξ ∈ Q except for ξ ∈ {0, 1, 2, 1 ± √ 2}.

t(G; x, y) = B⊆E(G) (x -1) r(E)-r(B) (y -1) |B|-r(B) , (4.1
We will profit from this by a connection between the interlace polynomial and the Tutte polynomial of planar graphs. This connection is established via medial graphs. For any planar graph G one can build the oriented medial graph G m , find an Euler circuit C in G m and obtain the circle graph H of C. The whole procedure can be performed in polynomial time. For details we refer to [START_REF] Ellis-Monaghan | Distance hereditary graphs and the interlace polynomial[END_REF]. We will use Theorem 4.3 ([ABS04a, End of Section 7]; [EMS07, Theorem 3.1]). Let G be a planar graph, G m be the oriented medial graph of G and H be the circle graph of some Euler circuit C of G m . Then q(H; 2, y) = t(G; y, y). Thus we have t(υ, υ) m P (1 υ-1 , υ -1), where t(υ, υ) denotes the problem of evaluating the Tutte polynomial of a planar graph at (υ, υ).

Proof. See the references for q(H; 2, y) = t(G; y, y) and use Lemma 2.3.

We set α = √ 2 and β = 1/ √ 2. Let B 1 = {±1, ±β, 0}. Theorem 4.2 and Theorem 4.3 yield Corollary 4.4. Evaluating the vertex-nullity interlace polynomial q N is #P-hard almost everywhere. In particular, we have:

• The problem q N (2) is trivially solvable in polynomial time.

• For any υ ∈ Q \ {0, 1, 2, 1 ± α} the problem q N (υ) = q(2, υ) is #P-hard. Or, in other words, for any µ ∈ Q \ B 1 the problem P (µ, 1/µ) is #P-hard.

Remark 4.5. P (0, 1) is #P-hard, as P (G; 0, 1) equals the number of independent sets of G, which is #P-hard to compute [START_REF] Valiant | The complexity of enumeration and reliability problems[END_REF].

Reducing to hard points

The cloning reduction allows us to spread the collected hardness over almost the whole plane: Combining Corollary 4.4 and Remark 4.5 with Proposition 3.4 we obtain Proposition 4.6. Let B 1 = {±1, ±β, 0} and B 2 = {0, -1, -2} (as defined on Pages 104 and 102, resp.). Let (µ, ξ)

∈ ((Q \ B 1) ∪ {0}) × (Q \ B 2). Then P (µ, ξ) is #P-hard.
This tells us that P is #P-hard to evaluate at every point in left half of Figure 1 not lying on one of the seven thick lines (three of which are solid gray ones, two of which are solid black ones, and two of which are dashed ones). Using the comb reduction we are able to reveal the hardness of the interlace polynomial P on the lines x = -1 and x = -2:

Proposition 4.7. For µ ∈ Q \ B 1 the problem P (µ, -1) is #P-hard. Proposition 4.8. For µ ∈ ((Q \ B 1) \ { 1 2 }) ∪ {0} the problem P (µ, -2
) is #P-hard. The proofs of the preceding propositions can be found in [START_REF] Bläser | On the complexity of the interlace polynomial[END_REF].

Summing up

First we summarize our knowledge about P . Theorem 4.9. Let β = 1/ √ 2. (1) P (µ, ξ) is computable in polynomial time on the lines µ = 1 and ξ = 0.

(2) For (µ, ξ) ∈ (Q \ {-1, -β, β, 1}) × (Q \ {0}) \ {(1/2, -2)} the problem P (µ, ξ) is #P-hard.
Proof. Summary of Remark 4.1, Proposition 4.6, Proposition 4.7, Proposition 4.8. The hardness of P (0, -1) follows from Corollary 4.10.

We have not given any argument why P (0, -1) is #P-hard. This follows from [START_REF] Averbouch | The complexity of multivariate matching polynomials[END_REF].

Corollary 4.10. Evaluating the independent set polynomial I(λ) = P (0, λ) = q(1, 1 + λ) is #P-hard at all λ ∈ Q except at λ = 0, where it is computable in polynomial time.

Proof. The matching generating polynomial of a graph G is defined as k≥0 m(G; k)x k , where m(G; k) denotes the number of matching of size k in G. [START_REF] Averbouch | The complexity of multivariate matching polynomials[END_REF] proves that g(ξ) is #P-hard for all ξ ∈ R \ {0}. As the matchings of a graph are the independent sets of its line graph, the result follows.

Remark 4.11. Note that, except for the point (0, -1), the statement of Corollary 4.10 is also a direct consequence of Proposition 4.6 and Proposition 4.8, without using [START_REF] Averbouch | The complexity of multivariate matching polynomials[END_REF].

Lemma 5.3. For every λ ∈ Q, 0 = |1 + λ| = 1, and every ε, 0 < ε < 1, there is no randomized polynomial time 2 n 1-ε -approximation algorithm for I(λ) unless RP = NP.

Theorem 5.4. For every λ ∈ Q \ {-1, 0} and every ε, 0 < ε < 1, there is no randomized polynomial time 2 n 1-ε -approximation algorithm (and thus also no FPRAS) for I(λ) unless RP = NP.

Proof. Lemma 5.3 gives the inapproximability at λ ∈ Q \ {-2, -1, 0}. By (3.6) we could turn an approximation algorithm for I(-2) into an approximation algorithm for I(2) which would imply RP = NP by Lemma 5.3.

Proof of Lemma 5.3. Fix λ ∈ Q, 0 = |1 + λ| = 1, and ε, 0 < ε < 1. Assume we have a randomized 2 n 1-ε -approximation algorithm A for I(λ). Given a graph G, Theorem 3.3 and Theorem 3.5, resp., will allow us to evaluate the independent set polynomial at a point ξ with |ξ| that large, that an approximation of I(G; ξ) can be used to recover the degree of I(G; x), which is the size of a maximum independent set of G. As computing this number is NP-hard, a randomized 2 n 1-ε -approximation algorithm for I(G; λ) would yield an RP-algorithm for an NP-hard problem, which implies RP = NP. Let G = (V, E) be a graph with |V | = n. We distinguish two cases. If |1 + λ| > 1, we choose a positive integer l such that (nl) 1-ε ≥ n 2 and with ξ := (1 + λ) l -1 we have |ξ| > 2 2(nl) 1-ε +n+2 .

(5.1)

As λ and ε are constant, this can be achieved by choosing l = poly(n). If 0 < |1 + λ| < 1, we choose a positive integer l such that with ξ := λ (1+λ) l (5.1) holds. By Theorem 3.3 (Theorem 3.5, resp. ≤ c2 n |ξ| -1 ≤ 2 log n+n |ξ| -1 (5.1) < 1 2 .

(5.3)

Figure 1 :

 1 Figure 1: Complexity of the interlace polynomials P and q. α = √ 2, β = 1/ √ 2

) where r(B) is the F 2 -rank of the incidence matrix of G[B] = (V, B), the subgraph of G induced by B. (Note that r(B) equals the number of vertices of G[B] minus the number of components of G[B], which is the rank of B in the cycle matriod of G.) For details about the Tutte polynomial we refer to standard literature [Tut84, BO92, Wel93]. The complexity of the Tutte polynomial has been studied extensively. In particular, the following result is known.

) we have I(G; ξ) = I(G l ; λ) (I(G; ξ) = (1 + λ) -l|V | I(G l ; λ), resp.). Algorithm A returns on input G l within time poly(nl) = poly(n) an approximation Ĩ(G l ; λ),such that with Ĩ(G; ξ) := Ĩ(G l ; λ) (Ĩ(G; ξ) := Ĩ(G l ;λ) (1+λ) l|V | , resp.) we have 2 -(nl) 1-ε I(G; ξ) ≤ Ĩ(G; ξ) ≤ 2 (nl) 1-ε I(G; ξ) (5.2)with high probability.Let c be the size of a maximum independent set of G, and let N be the number of independent sets of maximum size. We haveI(G; x) = N x c +

See Section 2.2 for a precise definition.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Acknowledgement

We would like to thank Johann A. Makowsky for valuable comments on an earlier version of this work and for drawing our attention to [AM07].

On the other hand we have

Cloning all vertices. Fix some k. Given a graph G, the graph G k is obtained by cloning each vertex of G exactly k -1 times. Note that the result of the cloning is independent of the order in which the different vertices are cloned. For a ∈ V (G) let a 1 , . . . , a k be the corresponding vertices in G k . For a vertex labeling x of G k we define the vertex labeling (3.4)

As we will use it in the proof of Theorem 4.12, we note the following identity for q, which can be derived from Theorem 3.3 using Lemma 2.3: Now we turn to the complexity of q, see also the right half of Figure 1.

Theorem 4.12. The two-variable interlace polynomial q is #P-hard to evaluate almost everywhere. In particular, we have:

(1) q(ξ, υ) is computable in polynomial time on the line ξ = υ.

(2) Let ξ ∈ Q \ {1} and x be an indeterminate. Then q(ξ, 1) is as hard as computing the whole polynomial q(x, 1). (3) q(ξ, υ) is #P-hard for all

Proof of Theorem 4.12 (Sketch).

(1) and (3) follow from Remark 4.1 and Theorem 4.9 using Lemma 2.3. For ξ = 1, (3.5) gives q(G k ; ξ, 1) = q(G; k(ξ -1) + 1, 1), which yields enough points for interpolation in the same way as in Proposition 3.4 using k = 1, 2, 3, . . . This proves (2).

Theorem 4.12 implies Corollary 4.13. Let β = 1/ √ 2. Evaluating the vertex-rank interlace polynomial q R (G; x) is #P-hard at all ξ ∈ Q except at ξ = 0, 1-β, 1+β (complexity open) and ξ = 2 (computable in polynomial time).

Inapproximability of the Independent Set Polynomial

Provided we can evaluate the independent set polynomial at some fixed point, cloning (combing, resp.) of vertices allows us to evaluate it at very large points. In this section we exploit this to prove that the independent set polynomial is hard to approximate. Similar results are shown in [START_REF] Leslie | Inapproximability of the Tutte polynomial[END_REF] for the Tutte polynomial.

Definition 5.1. Let λ ∈ Q and ε > 0. By a randomized 2 n 1-ε -approximation algorithm for I(λ) we mean a randomized algorithm, that, given a graph G with n nodes, runs in time polynomial in n and returns Ĩ(G;

In [START_REF] Leslie | Inapproximability of the Tutte polynomial[END_REF], (non)approximability in the weaker sense of (not) admitting an FPRAS is considered.

Definition 5.2. Let λ ∈ Q. A fully polynomial randomized approximation scheme (FPRAS) for I(λ) is a randomized algorithm, that given a graph G with n nodes and an error tolerance ε, 0 < ε < 1, runs in time polynomial in n and 1/ε and returns Ĩ(G

If we could evaluate I(G; ξ) exactly, we could try all c ∈ {1, . . . , n} to find the one for which I(G;ξ) ξ c is a good estimation for N , 1 ≤ N ≤ 2 n . This c is unique as |ξ| > 2 n 2 . The following calculation shows that this is also possible using the approximation algorithm A.

Using A we compute Ñ (c) := Ĩ(G;ξ) ξ c for all c ∈ {1, . . . , n}. We claim that c is the unique c with 2

(5.4) Let us prove this claim. As 1 ≤ N ≤ 2 n and by (5.3), we know that > 2 (nl) 1-ε +n+1 .

When c ≥ c + 1 we have | Ñ (c)| < 2 -(nl) 1-ε -1 by similar arguments. This shows that any integer c, c = c, does not fulfill (5.4). Thus, c can be found in randomized polynomial time using A.