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A two-dimensional ruin problem on the

positive quadrant: Laplace transform and

inversion

Florin Avram ∗ Martijn Pistorius† and Zbigniew Palmowski‡

June 27, 2006

Abstract

We consider an exit problem of a certain two-dimensional process
from a cone, inspired by applications in insurance and queueing theory.
One motivation is to study the joint ruin problem for two insurance
companies (insurance/reinsurance), or for two branches of the same
company, which divide between them both claims and premia in some
specified proportions, the goal being to split the risk (in particular
when the claims are big). Another motivation is to provide an ex-
ample of a multi-dimensional ruin model admitting analytic solutions.
Indeed, we succeed, in the particular case of exponential claims, to
derive the Laplace transform of the perpetual ruin probabilities and
subsequently to invert it.

1 A two dimensional ruin problem

In this paper we consider a particular two dimensional risk model in which
two companies split the amount they pay out of each claim in proportions
δ1 and δ2 where δ1 + δ2 = 1, and the premiums according to rates c1 and c2.
Let Ui denote the risk process of the i’th company

Ui(t) := −δiS(t) + cit + ui, i = 1, 2 ,
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where ui denotes the initial reserve and

S(t) =

N(t)∑

i=1

σi (1)

for N(t) being a Poisson process with intensity λ and the claims σi being
i.i.d. random variables independent of N(t) with distribution function F (x).
We shall denote by µ the reciprocals of the means of σi, respectively. We
shall assume that the second company, to be called reinsurer, gets smaller
profits per amount paid, i.e.:

p1 =
c1
δ1
>
c2
δ2

= p2. (2)

As usual in risk theory, we assume that pi > ρ := λ
µ
, which implies that in

the absence of ruin, Ui(t) → ∞ as t → ∞ (i = 1, 2). Ruin happens at the
time τ = τ(u1, u2) when at least one insurance company is ruined:

τ(u1, u2) := inf{t ≥ 0 : U1(t) < 0 or U2(t) < 0}, (3)

i.e. at the exit time of (U1(t), U2(t)) from the positive quadrant. In this
paper we will analyse the perpetual or ultimate ruin probability:

ψ(u1, u2) = P [τ(u1, u2) <∞] . (4)

Although ruin theory under multi-dimensional models admits rarely analytic
solutions, we are able to obtain in our problem a closed form solution for (4)
if σi are exponentially distributed with intensity µ.

Geometrical considerations. The solution of the two-dimensional
ruin problem (4) strongly depends on the relative sizes of the proportions
δ = (δ1, δ2) and premium rates c = (c1, c2) – see Figure 1. If, as assumed
throughout, the angle of the vector δ with the u1 axis is bigger than that of c,
i.e. δ2c1 > δ1c2, we note that starting with initial capital (u1, u2) ∈ C in the
cone C = {(u1, u2) : u2 ≤ (δ2/δ1)u1} situated below the line u2 = (δ2/δ1)u1,
the process (U1, U2) ends up hitting at time τ the u1 axis. Thus, in the domain
C ruin occurs iff there is ruin in the one-dimensional problem corresponding
to the risk process U2 with premium c2 and claims δ2 σ.

One dimensional reduction. A key observation is that τ in (3) is also
equal to

τ(u1, u2) = inf{t ≥ 0 : S(t) > b(t)},
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Figure 1: Geometrical considerations

where b(t) = min{(u1 + c1t)/δ1, (u2 + c2t)/δ2}. The two dimensional prob-
lem (4) may thus be also viewed as a one dimensional crossing problem over
a piecewise linear barrier. Note the relation to asset-liability management
models, in which regulatory requirements impose prescribed limits of varia-
tion for the difference between the assets P (t) of a company and its liabilities
S(t) (see [5]), and which also translate typically into (several) linear barriers.

In the case that the initial reserves u1 and u2 are such that (u1, u2) ∈ C,
that is, u2/δ2 ≤ u1/δ1, the barrier b is linear, b(t) = (u2 + c2t)/δ2, the ruin
happens always for the second company. Thus, as we already observed, the
problem (4) reduces in fact to the classical one-dimensional ultimate ruin
problem with premium c2 and claims δ2σ, i.e.

ψ(u1, u2) = ψ2(u2) := P (τ2(u2) <∞),

where τ2(u2) = inf{t ≥ 0 : U2(t) < 0} and ψ2(u2) is the ruin probability
of U2, with U2(0) = u2. The Pollaczeck-Khinchine formula, well known
from the theory of one-dimensional ruin (see e.g. [8] or [1]) yields then an
explicit series solution for ψ(u1, u2) = ψ2(u2) in the case of a general claims

distribution. For phase-type claims (β,B), i.e. with P [σ > x] = βeBx1, the
ruin probability may be written in a simpler matrix exponential form:

ψ2(u2) = ηeδ−1

2
(B+bη)u21
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with η = λ
p2

β(−B)−1 (see for example (4) in [2]), and in the case of expo-
nential claim sizes with intensity µ, it reduces to:

ψ2(u2) = C2e
−(γ2/δ2)u2 , (5)

where γ2 = µ− λδ2/c2 = µ− λ/p2 and C2 = λδ2
µc2

= λ
µp2

.

The rest of the paper is devoted to the opposite case u2/δ2 > u1/δ1 when
a barrier composed of two lines is involved. We shall analyze only the case
of exponential claim sizes.

2 The differential system for the exponential
claim sizes case

In this section we provide a differential system for the Laplace transform
of the ruin time which will be derived using level crossing arguments. We
consider here the Markovian model, that is when N(t) is a Poisson process
with intensity λ and claims sizes are exponentially distributed with param-
eter µ. The memoryless property of interarrival times and claim sizes gives
the possibility of embedding our Markovian jump model into a continuous
Markov modulated fluid model. This is achieved by a transformation which
replaces the jumps by linear movement in the same direction, creating thereby
a new continuous semi-Markovian model Ũ(t) called fluid embedding. The
smoothed process Ũ(t) is a continuous semi-Markovian process, has exactly
the same maxima and minima as the original one, and it will cross boundaries
continuously. Thus, the generator will be a first order differential operator,
and the integro-differential part corresponding to jumps has been removed.
The associated fluid model may be more manageable, in so far that the over-
shoots in first passage problems have been eliminated. In our case, the asso-
ciated embedding fluid model replaces the jumps in the direction (−δ1,−δ2)
by linear movement (x′ = x− δ1t, y

′ = y − δ2t) of duration equal to the size
of the jump.

Our new ”embedded” process is a semi-Markov process with two states
(going out of axes (so-called increasing state) and into the direction of axes
(so-called decreasing state)). Denote by φ(u1, u2, s) and ψ(u1, u2, s) the killed
ruin probabilities given that the process starts in a decreasing state and
increasing state respectively and write ψui

and φui
for the partial derivative

of ψ and φ with respect to ui. We have the following characterisation of φ
and ψ.
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Theorem 1 The vector (ψ(u1, u2, s), φ(u1, u2, s))
T giving the Laplace trans-

forms of two barrier problem in the cone C2 between x = 0, y = δ2
δ1
x, for

the embedded continuous semi-Markov process killed with intensity s, is the
solutions of the Feynman-Kac systems:

(
c1 0
0 −δ1

) (
ψu1

φu1

)
+

(
c2 0
0 −δ2

) (
ψu2

φu2

)

+
( −λ− s λ
µ −µ

) (
ψ
φ

)
=

(
0
0

)

with the boundary condition:
{
ψ(u1,

δ2
δ1
u1) = C2e

−γ2
δ2
δ1

u1 for all u1 ≥ 0,
φ(0, u2) = 1 for all u2 ≥ 0.

(6)

Proof. Conditioning on the first shared claim occurrence epoch we obtain:

ψ(u1, u2, s) = e−λhe−shψ(u1 + c1h, u2 + c2h, s)

+

∫ h

0

λe−λt dt

∫ u1+c1t

δ1
∧

u2+c2t

δ2

0

µe−µze−stψ(u1 + c1t− δ1z, u2 + c2t− δ2z, s)dz

+

∫ h

0

λe−λt dt

∫ ∞

u1+c1t

δ1
∧

u2+c2t

δ2

µe−µzdz.

Both integrals on the LHS go to 0 as h → 0. This implies that ψ is a
continuous function with respect to u1 and u2. Note that u1+c1t

δ1
∧ u2+c2t

δ2
=

u1+c1t
δ1

since we live in the upper cone. This gives after simple manipulation:

ψ(u1 + c1h, u2 + c2h, s) − ψ(u1, u2, s)

h
+
e−λhe−sh − 1

h
ψ(u1 + c1h, u2 + c2h, s)

+
1

h

∫ h

0

λe−λt dt

∫ (u1+c1t)/δ1

0

µe−µze−stψ(u1 + c1t− δ1z, u2 + c2t− δ2z, s)dz

+
1

h

∫ h

0

λe−λt dte−µ(u1+c1t)/δ1 = 0.

Note that last 3 terms on the LHS of above equation have limits as h → 0,
since ψ is a continuous function. Thus ψ is a differentiable function of (u1, u2).
Taking h→ 0 we derive:

c1ψu1
(u1, u2, s) + c2ψu2

(u1, u2, s) + (−λ− s)ψ(u1, u2, s)

+λ

∫ u1/δ1

0

µe−µzψ(u1 − δ1z, u2 − δ2z, s)dz + λe−µu1/δ1 = 0

5



which is equivalent to

c1ψu1
(u1, u2, s) + c2ψu2

(u1, u2, s) + (−λ− s)ψ(u1, u2, s) + λφ(u1, u2, s) = 0,

where φ(u1, u2, s) = 1 − µ
∫ u1/δ1
0

ψ(u1 − δ1z, u2 − δ2z, s)e
−µz dz for non-

ruin probability ψ(u1, u2, s) = 1 − ψ(u1, u2, s). This gives first equation
in Feynman-Kac systems. To derive second one, we use integration-by-parts
formula:

φ(u1, u2, s) = 1 −
∫ u1/δ1

0

d

dz
(−e−µz)ψ(u1 − δ1z, u2 − δ2z, s)dz

= 1 − ψ(u1 − δ1z, u2 − δ2z, s)(−e−µz)|u1/δ1
0

−
∫ u1/δ1

0

d

dz
ψ(u1 − δ1z, u2 − δ2z, s)e

−µzdz

= 1 − ψ(u1, u2, s) + ψ

(
0, u2 −

δ2
δ1
u1, s

)
e−µu1/δ1

+δ1

∫ u1/δ1

0

ψu1
(u1 − δ1z, u2 − δ2z, s)e

−µzdz

+δ2

∫ u1/δ1

0

ψu2
(u1 − δ1z, u2 − δ2z, s)e

−µzdz.

Note that,

−φu1
(u1, u2, s) = µ

∫ u1/δ1

0

ψu1
(u1 − δ1z, u2 − δ2z, s)e

−µz dz

+
µ

δ1
ψ

(
0, u2 −

δ2
δ1
u1, s

)
e−µu1/δ1 .

Moreover,

−φu2
(u1, u2, s) = µ

∫ u1/δ1

0

ψu2
(u1 − δ1z, u2 − δ2z, s)e

−µz dz

and 1 − ψ(u1, u2, s) = ψ(u1, u2, s). Hence

µφ(u1, u2, s) = µψ(u1, u2, s) − δ1φu1
(u1, u2, s) − δ2φu2

(u1, u2, s)

which gives second equation in Feynman-Kac formula. Boundary conditions
follows immediately. QED
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It will be useful to use the linear transformation:
(
x
y

)
= A

(
r
w

)
=

(
δ1 c1
δ2 c2

) (
r
w

)

with inverse transformation:

(
r
w

)
= A−1

(
x
y

)
= d−1

(
c2 −c1
−δ2 δ1

) (
x
y

)

where d := δ1c2 − δ2c1 < 0.
Note that:

• during drift periods, r is constant and w increases, at rate w′ = 1

• during jump periods, w is constant and r decreases, at rate r′ = −1.

Thus, in these new coordinates, the time is split between moving in the
direction of the axes, and at any time T = Tw + Tr, where Tw/Tr are the
total times of winning (upward drifting)/reducing the reserves (jumping).
Note that w = w0 + Tw, r = r0 − Tr holds.

In terms of the (r, w) variables, Feynman-Kac system becomes:

(
ψw

−φr

)
+

(
−λ− s λ
µ −µ

) (
ψ
φ

)
=

(
0
0

)
(7)

with {
ψ(r, 0) = C2e

−γ2 δ2r,
φ(r,− δ1

c1
r) = 1,

(8)

for all r ≥ 0. Recall that the upper cone is described be inequalities r ≥ 0
and w ≤ 0. Following the steps used in the proof of differentiability of ψ one
can prove that ψ is in class C2.

Eliminating φ, we find

ψrw − (λ+ s)ψr + µψw − sµψ = 0 (9)

with
{
ψ(r, 0) = C2e

−γ2 δ2r,
λ−1{(λ+ s)ψ(r,− δ1

c1
r) − ψw(r,− δ1

c1
r)} = 1.

(10)

7



We may remove the linear terms by switching to the function

h(r, w) := eµre−(λ+s)w ψ(r, w)

in terms of which we get:
hrw + µλ h = 0 (11)

with the boundary conditions:

{
h(r, 0) = C2e

−(γ2−µ) r for all r ≥ 0,

hw(r,− δ1r
c1

) = −λeµr−(λ+s)
δ1r

c1 for all r ≥ 0.

As direct solutions of both systems are not obvious, we shall proceed in
the next section by obtaining an equation for the double Laplace transform
of ψ(u1, u2) in u1, u2 and inverting this transform in the complex plane using
Bromwich type contours.

3 The Laplace transform

First note that process (U1(t)/δ1, U2(t)/δ2) has the same ruin probability as
the original two-dimensional process (U1(t), U2(t)). Thus it suffices to analyze
the case when δ1 = δ2 = 1 and c1 = p1, c2 = p2. Let xi = ui/δi. In this
section we will write ψ(x1, x2) for ψ(u1, u2) under above assumptions. By
conditioning at the position of the process at time T (time of crossing two
lines composing barrier b(t)):

T = T (x1, x2) =
x2 − x1

p1 − p2
(12)

it was shown in [3] that if x2 > x1, it holds that

ψ(x1, x2) := 1 − ψ(x1, x2) =

∫ ∞

0

ψ2(z) P̃(x1,T )(dz), (13)

where
P̃(x1,T )(dx) = Px1

( inf
s≤T

U1(s) > 0, U1(T ) ∈ dz)/dz

and
ψ2(z) := 1 − ψ2(z) = 1 − C2e

−γ2z. (14)

8



Suprun [7] (see also Bertoin [4], Lem. 1) gives the resolvent of a spectrally
negative Lévy process killed as it enters the nonpositive half-line as

1

q
Px1

( inf
s≤eq

U1(s) > 0, U1(eq) ∈ dz)/dz

= exp{−q+(q)z}W (q)(x1) − 1{x1≥z}W
(q)(x1 − z), (15)

where q+(q) largest root of κ(α) = q, where the κ characteristic exponent of
Ui/δ1, and W (q) : [0,∞) → [0,∞), called the q-scale function, is continuous
and increasing function with Laplace transform

∫ ∞

0

e−αxW (q)(y)dy = (κ(α) − q)−1, θ > q+(q).

Note that the characteristic exponent of U1/δ1 is given by

κ(α) = p1α− λα

µ+ α
.

Now we obtain the Laplace transform of the non-ruin probability with
respect to the initial reserves:

ψ̃(p, q) =

∫ ∞

0

∫ ∞

0

e−px1e−qx2 ψ(x1, x2) dx1 dx2.

Note that

ψ̃(p, q) =

∫ ∞

0

∫ x1

0

e−px1e−qx2ψ(x1, x2)dx2dx1+

∫ ∞

0

∫ ∞

x1

e−px1e−qx2ψ(x1, x2)dx2dx1.

The first Laplace transform is given by

∫ ∞

0

∫ x1

0

e−px1e−qx2 [1 − C2e
−γ2x2]dx2dx1 =

1

p

[(1 − C2)(p+ q) + γ2]

(p+ q)(p+ q + γ2)
:= A.

Writing s = p + q and r = (p1 − p2)q we see from (13) and (15) that the

9



second Laplace transform is given by

∫ ∞

0

∫ ∞

x1

e−px1e−qx2ψ(x1, x2)dx2dx1 = (p1 − p2)

∫ ∞

0

e−sx1 dx1

∫ ∞

0

[1 − C2e
−γ2z]

×[e−q+(r)zW (r)(x1) − 1z≤x1
W (r)(x1 − z)]dz

=
p1 − p2

κ(s) − r

[
(1 − C2)q

+(r) + γ2

q+(r)(γ2 + q+(r))
− 1

s
+

C2

γ2 + s

]

=
p1 − p2

κ(s) − r

[
γ2(q

+(r)/µ+ 1)

q+(r)(γ2 + q+(r))
− (µ+ p+ q)(1 − C2)

(p + q)(γ2 + p+ q)

]

:= C − B.

Note that A− B is equal to

(1 − C2)p2

p(κ(s) − r)
=

(µ+ p+ q)(p2 − ρ)

pp1(z1(q) − p)(z2(q) − p)
,

where

z1(q) =
−(p2q + p1(q + γ1)) −

√
(p2q + p1(q + γ1))2 − 4p1qp2(q + γ2)

2p1
,

z2(q) =
−(p2q + p1(q + γ1)) +

√
(p2q + p1(q + γ1))2 − 4p1qp2(q + γ2)

2p1

.

Similarly, C can be written as

p1 − p2

κ(s) − r

γ2(q
+(r)/µ+ 1)

q+(r)(γ2 + q+(r))

=
(µ+ p + q)(p2 − ρ)

pp1(z1(q) − p)(z2(q) − p)

[
p

(p1 − p2)(q
+(q(p1 − p2)) + µ)

p2(q+(q(p1 − p2))(γ2 + q+(q(p1 − p2))

]
.

Thus, the Laplace transform is given by

ψ̃(p, q) =
(µ+ p+ q)(p2 − ρ)(1 + ph(q))

pp1(p− z1(q))(p− z2(q))
, (16)

where

h(q) =
(p1 − p2)(q

+(q(p1 − p2)) + µ)

p2(q+(q(p1 − p2))(γ2 + q+(q(p1 − p2))
.

10



Noting that q+(q(p1 − p2)) is the largest root of κ(α) = q(p1 − p2) and z2(q)
is the largest root of κ(v + q) = q(p1 − p2) we identify

q+(q(p1 − p2)) = z2(q) + q.

Hence

h(q) =
(p1 − p2)(z2(q) + q + µ)

p2(q + z2(q))(γ2 + q + z2(q))
. (17)

4 Spectral representation

In this subsection we invert the Laplace transform found in the previous
section. To perform the inversion we shall employ the method of residues.
For an overview of the theory of Laplace transforms see e.g. [9]; a recent
application to one-dimensional ruin is given in [6]. The residues method
leads to a spectral representation of the non-ruin probability ψ(x1, x2) given
in Theorem 2.

First we extend ψ̃(p, q) to Re p < 0, Re q < 0. Then Mellin’s formula
gives the following expression for ψ(x1, x2):

ψ(x1, x2) =

(
1

2πi

)2 ∫ α+i∞

α−i∞

∫ β(q)+i∞

β(q)−i∞

ψ̃(p, q)ex2qex1p dp dq (18)

for α > 0 and β(q) > z2(q).
The Laplace transform ψ̃(p, q) is regular in

P = {(p, q) : q /∈ [q+, q−], q 6= 0, q 6= −γ2, p 6= z1(q), p 6= z2(q)},

where

q+ = − 1

p1 − p2
(
√
λ+

√
p1µ)2,

q− = − 1

p1 − p2

(
√
λ−√

p1µ)2.

Consider the two-dimensional contour that is the product of contour given
in Figure 2 (for q) and the contour consisting of line [α − iR, α + iR] and
semicircle (for p). Note that |z2(q)| < |q| for large |q|, thus |h(q)| is dominated
by A01/|q| for certain constant A0 and it tends to 0 as |q| → ∞. Thus

11



q + q - a

Figure 2: Bromwich contour

|ψ̃(p, q)| ∼ (A1|p|2+A2|q|)/(A3|p|3+A4|p|2|q|+A5|p||q|2) for certain constants
Ai (i = 1, . . . , 5) that goes to 0 as |p| → ∞ or |q| → ∞. Hence Mellin’s
integral (18) equals to:

(
1

2πi

)2 ∮ ∮
ψ̃(p, q)ex2qex1p dp dq −

(
1

2πi

)2 ∫

q+→q
−

∮
ψ̃(p, q)ex2qex1p dp dq

−
(

1

2πi

)2 ∫

q
−
→q+

∮
ψ̃(p, q)ex2qex1p dp dq,

where integrals
∫

q+→q
−

and
∫

q
−
→q+

are integrals along lines of the contour
from q+ to q− and from q− to q+ respectively.

In the sequel we will analyze two separate cases:

ρ <
p2

2

p1

, (19)

ρ >
p2

2

p1

(20)

12



In the first case

z2(−γ2) =
µ

p2

(
p2

2

p1
− ρ

)
≥ 0

and z1(−γ2) = 0 and in the second case z2(−γ2) = 0 and

z1(−γ2) =
µ

p2

(
p2

2

p1

− ρ

)
≤ 0.

In the first case from Cauchy theorem we have

(
1

2πi

)2 ∮ ∮
ψ̃(p, q)ex2qex1p dq dp

= Resp=0,q=0ψ̃(p, q)epx1eqx2 + Resp=0,q=−γ2
ψ̃(p, q)epx1eqx2

+Resp=z2(−γ2),q=−γ2
ψ̃(p, q)epx1eqx2 + Resp=z1(0),q=0ψ̃(p, q)epx1eqx2

and in the second:

(
1

2πi

)2 ∮ ∮
ψ̃(p, q)ex2qex1p dq dp

= Resp=0,q=0ψ̃(p, q)epx1eqx2 + Resp=0,q=−γ2
ψ̃(p, q)epx1eqx2

+Resp=z1(−γ2),q=−γ2
ψ̃(p, q)epx1eqx2 + Resp=z1(0),q=0ψ̃(p, q)epx1eqx2.

Formally we take contour from Figure 2 with q± + ε and q ± εi for q ∈
[q+, q−]. Then take a limit with ε ↓ 0. Note that Arg[(z − q+)(z − q−)] =
Arg(z − q+) + Arg(z − q−) implies that if

z = q + iε, z ∈ [q+, q−], ε > 0,

then
lim
ε→0

Arg(z − q+) = π, lim
ε→0

Arg(z − q−) = 0;

if
z = q − iε, z ∈ [q+, q−], ε > 0,

then
lim
ε→0

Arg(z − q+) = −π, lim
ε→0

Arg(z − q−) = 0.
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Hence considering continuous spectrum p = z1(q) and p = z2(q) for q ∈
[q+, q−] we have

(
1

2πi

)2 ∫

q+→q
−

∮
ψ̃(p, q)ex2qex1p dp dq

+

(
1

2πi

)2 ∫

q
−
→q+

∮
ψ̃(p, q)ex2qex1p dp dq

=
1

2πi

∫ q
−

q+

(
ψ̃+(z+(q), q)ex2qex1z+(q) − ψ̃−(z−(q), q)ex2qex1z−(q)

)
dq

− 1

2πi

∫ q
−

q+

(
ψ̃+(z−(q), q)ex2qex1z−(q) − ψ̃−(z+(q), q)ex2qex1z+(q)

)
dq,

where

ψ̃+(p, q) =
(µ+ p+ q)(p2 − ρ)(1 + ph+(q))

pp1(z+(q) − z−(q))
,

ψ̃−(p, q) =
(µ+ p+ q)(p2 − ρ)(1 + ph−(q))

pp1(z−(q) − z+(q))

and h±(q) is a h(q) when we put z± instead of z2(q) and

z−(q) = a(q) − ib(q), z+(q) = a(q) + ib(q) (21)

for

a(q) =
−(p1µ− λ+ p2q + p1q)

2p1
,

b(q) =

√
4p1(p2qµ+ p2q2 − λq) − (p1µ− λ+ p2q + p1q)2

2p1

.

Straightforward calculations gives:

Resp=0,q=0ψ̃(p, q)epx1eqx2 = 1, Resp=z1(0),q=0ψ̃(p, q)epx1eqx2 = −C1e
−γ1x1 .

Note that limq→−γ2
(q+γ2)h(q) = 0 in the first case and limq→−γ2

(q+γ2)h(q) =
p1z1(−γ2)/(p2γ2) in the second case. In the first case (19) we have then

Resp=0,q=−γ2
ψ̃(p, q)epx1eqx2 = 0, Resp=z2(−γ2),q=−γ2

ψ̃(p, q)epx1eqx2 = 0

14



and in the second case (20)

Resp=0,q=−γ2
ψ̃(p, q)epx1eqx2 = −C2e

−γ2x2

and
Resp=z1(−γ2),q=−γ2

ψ̃(p, q)epx1eqx2 =
p2

p1

e−γ3x1e−γ2x2,

where γ3 = µ
p2

(
ρ− p2

2

p1

)
. From above we derive the main Theorem 2.

Theorem 2 Let x2 > x1. If ρ <
p2
2

p1
holds, then

ψ(x1, x2) = 1 − C1e
−γ1x1 + ω(x1, x2),

where

ω(x1, x2) =
1

4π

∫ q
−

q+

(h− − h+)(q)
(
f(z+(q), q) − f(z−(q), q)

)
dq

with z+(q) and z−(q) given in (21) and

f(p, q) =
(µ+ p+ q)(p2 − ρ)

p1b(q)
epx1eqx2

and h+(q) = g(z+(q), q), h−(q) = g(z−(q), q), where

g(p, q) =
(p1 − p2)(p+ q + µ)

p2(q + p)(γ2 + q + p)
.

If ρ >
p2
2

p1
holds, then

ψ(x1, x2) = 1 − C1e
−γ1x1 − C2e

−γ2x1 +
p2

p1
e−γ3x1e−γ2x2 + ω(x1, x2).
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