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Abstract

In this paper, we first prove some local estimates for bilinear op-
erators (closely related to the bilinear Hilbert transform and similar
singular operators) with truncated symbol. Such estimates, in ac-
cordance with the Heisenberg uncertainty principle correspond to a
description of “off-diagonal” decay. In addition they allow us to prove
global continuities in Lebesgue spaces for bilinear operators with spa-
tial dependent symbol.
Key words : Local estimates, multilinear operators, time-frequency
analysis.
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1 Introduction

The simplest bilinear operator is the product Π , defined by

∀ f, g ∈ S(R), Π(f, g)(x) := f(x)g(x).

Hölder’s inequalities give us the continuities on Lebesgue spaces for this op-
erator. So for all exponents 0 < p, q, r ≤ ∞ such that

1

p
+

1

q
=

1

r
, (1.1)

the operator Π is continuous from Lp(R)×Lq(R) into Lr(R). Also a natural
question appears : how can we modify this bilinear operation and simulta-
neous keep these continuities ?
First let T be a bilinear operator, acting from S(R) × S(R) into S ′(R).
It is well-known that we have a spatial representation of T with a kernel
K ∈ S ′(R3) and a frequential representation with a symbol σ ∈ S ′(R3) such
that (in distributional sense)

∀ f, g ∈ S(R), T (f, g)(x) =

∫

R2

K(x, y, z)f(y)g(z)dydz

=

∫

R2

eix(α+β)σ(x, α, β)f̂(α)ĝ(β)dαdβ. (1.2)

In the rest of this paper, we denote by Tσ the operator associated to the
symbol σ. The kernel and the symbol are related by the relation

K(x, y, z) =

∫

R2

ei[α(x−y)+β(x−z)]σ(x, α, β)dαdβ. (1.3)

For example, the product operator Π is given by the symbol σ(x, α, β) = 1.

A first class of bilinear symbols is the one satisfying the “bilinear Hörmander’s
condition” :

∀ a, b, c ≥ 0,
∣∣∂a

x∂b
α∂c

βσ(x, α, β)
∣∣ . (1 + |α| + |β|)−b−c . (1.4)
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The operators Tσ were already studied par R. Coifman and Y. Meyer in
[10, 11], C. Kenig and E.M. Stein in [17] and recently by L. Grafakos and
R. Torres in [16]. We know that under (1.4), the operator Tσ is bounded
from Lp(R) × Lq(R) in Lr(R) for all exponents p, q, r verifying (1.1) and
1 < p, q < ∞. In fact if the symbol is x-independent, one can just assume
an homogeneous decay in (1.4) (i.e. with (|α| + |β|)−b−c) and then these
operators can be decomposed with paraproducts, which were first exploited
by J.M. Bony in [7] and R. Coifman and Y. Meyer in [10]. The paraproducts
are studied with the linear tools (the Calderón-Zygmund decomposition, the
Littlewood-Paley theory and the concept of Carleson measure). In order
to get the continuities for x-dependent symbols, pointwise estimates of the
bilinear kernel are used. Mainly for a symbol σ satisfying (1.4), integrations
by parts allow us to obtain

|K(x, y, z)| . (1 + |x − y| + |x − z|)−M (1.5)

for any large enough integer M . This estimate is very useful and precisely
describes the “off-diagonal” decrease of the operator. Such an information
helps us to reduce the study of x-dependent symbols to the study of x-
independent symbols (and so to the study of paraproducts). Through these
ideas, this first class of symbols are well understood nowadays. We note
that this reduction (using pointwise estimates on the kernel) has already
been used in the linear case to study the pseudo-differential operators of the
well-known class op(S0

1,0). Thus “off-diagonal” estimates play an important
role.

Since the work of A.Calderón about the L2 boundedness of commutators
and Cauchy integrals ([8, 9] in the 70’s), more singular bilinear operators
have appeared. Mainly, he shew that the commutators and Cauchy integrals
can been decomposed by using the bilinear Hilbert transforms. The bilinear
Hilbert transform Hλ1,λ2

is defined by

∀ f, g ∈ S(R), Hλ1,λ2
(f, g)(x) := p.v.

∫

R
f(x − λ1y)g(x− λ2y)

dy

y
.

The x-independent symbol is

σ(α, β) = iπsign(λ1α + λ2β)

and so is singular on a whole line in the frequency plane. A.Calderón con-
jectured that these operators are continuous on Lebesgue spaces. This fa-
mous conjecture was first partially solved by M. Lacey and C. Thiele in
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[19, 20, 21, 22]. Then L. Grafakos and X. Li show in[15, 23] some uniform
(with respect to the parameters λ1 and λ2) continuities. These proofs use a
technical time frequency analysis, which was proven by C. Muscalu, T. Tao
and C. Thiele in [25, 26, 27] and independently by J. Gilbert and A. Nahmod
in [13, 14]. They also get a very important result in the study of bilinear
operators : continuities in Lebesgue spaces for more singular operators than
those of the first class. We are interested by these bilinear operators and
we will deal with them and some “smooth spatial perturbations”. So we
replace in (1.4) the quantity |α| + |β| = d((α, β), 0) by the lower quantity
d((α, β), ∆), where ∆ is a line in the frequency plane :

∆ :=
{
(α, β) ∈ R2, λ1α + λ2β = 0

}
.

We assume that ∆ is nondegenerate, i.e. λ1 and λ2 are non vanishing reals
and not equal, in order that ∆ be a graph over the three variables α, β and
α + β. We assume that the symbol σ satisfies

∀ a, b, c ≥ 0,
∣∣∂a

x∂b
α∂c

βσ(x, α, β)
∣∣ . (1 + |λ1α + λ2β|)

−b−c . (1.6)

In the previous mentioned papers, the main result is the following one : if σ
is x-independent and satisfies (1.6) (or the homogeneous version) then Tσ is
continuous from Lp(R)×Lq(R) in Lr(R) for every exponents 0 < p, q, r ≤ ∞
verifying

0 <
1

r
=

1

p
+

1

q
<

3

2
and 1 < p, q ≤ ∞.

So there is a natural question (asked in [2]) : if an x-dependent symbol satis-
fies (1.6), is the operator Tσ continuous from Lp(R)×Lq(R) into Lr(R) with
the same exponents p, q, r ? In [1], A. Benyi, C. Demeter, A. Nahmod, R. Tor-
res, C. Thiele and P. Villarroya proved a general result for singular integrals
kernels. As an example, they can apply their result to pseudo-differential
operators associated to symbols σ(x, α, β) = τ(x, λ1α + λ2β) with τ in the
class S0

1,0 because of a modulation invariant condition imposed. Here we are
able to treat general symbols satisfying (1.6) and complete the answer to the
question in [2]. These operators do not fall under the scope of [1] because
they do not have modulation invariance. On the other hand, the general
operators in [1] cannot be realized as pseudo-differential bilinear operators
with symbols verifying (1.6) because of the minimal regularity assumptions
required in the kernels.
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With this aim, we would like to use the same arguments as for the symbols
satisfying (1.4), where we have seen the important role of the “off-diagonal”
decay of the bilinear kernel, obtained with integrations by parts. For our
more singular operators, integration by parts does not work : to obtain a
description of “off-diagonal” estimates is the most important difficulty.

We now come to our main result. For notation, we denote the norm in Lp(E)
for any measurable set E ⊂ R by ‖ ‖p,E,dx (or ‖ ‖p,E if there is no confusion
for the variable). For an interval I, we set

Ck(I) :=

{
x ∈ R, 2k ≤ 1 +

d(x, I)

|I|
< 2k+1

}
(1.7)

the scaled corona around I. So we have C0(I) = 2I and Ck(I) ⊂ 2k+1I. We
will first prove the following result :

Theorem 1.1. Let ∆ be a nondegenerate line of the frequency plane. Let
p, q be exponents such that

1 < p, q ≤ ∞ and 0 <
1

r
=

1

q
+

1

p
<

3

2
.

Then for all δ ≥ 1, there is a constant C = C(p, q, r, ∆, δ) such that for all
interval I ⊂ R, for all symbol σ ∈ C∞(R3) satisfying

∀ a, b, c ≥ 0
∣∣∂a

x∂b
α∂c

βσ(x, α, β)
∣∣ .

(
|I|−1 + d((α, β), ∆)

)−b−c
, (1.8)

we have the following local estimate : for all functions f, g ∈ S(R)

(
1

|I|

∫

I

|Tσ(f, g)(x)|r dx

)1/r

≤ C

[∑

k≥0

2−kδ

(
1

|2k+1I|

∫

Ck(I)

|f(x)|pdx

)1/p
]

[∑

k≥0

2−kδ

(
1

|2k+1I|

∫

Ck(I)

|g(x)|qdx

)1/q
]

.

In particular, with the Hardy-Littlewood’s operator MHL, we have

(
|I|−1

∫

I

|Tσ(f, g)|r
)1/r

. inf
I

MHL (|f |p)1/p inf
I

MHL (|g|q)1/q
. ‖f‖∞‖g‖∞.
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The weight (|I|−1+d((α, β), ∆))−N is not integrable over the whole frequency
plane (even if N is large enough due to the modulation invariance) and there-
fore we cannot have a pointwise estimate of the bilinear kernel (such (1.5)
when we assume (1.4)). So such a result is interesting because it precisely
describes “off-diagonal” estimates for the bilinear operator :

Corollary 1.2. With the same notations as Theorem 1.1, for all large enough
δ, there exists a constant C = C(p, q, r, ∆, δ) such that for any measurable
sets E, F ⊂ R we have for all functions f ∈ Lp(E) and g ∈ Lq(F ) :

‖Tσ(f, g)‖r,I ≤ C

(
1 +

d(I, E)

|I|

)−δ (
1 +

d(I, F )

|I|

)−δ

‖f‖p,E‖g‖q,F . (1.9)

This corollary is a direct application of the previous Theorem. So in spite of
the fact that the symbol could be much more singular than those satisfying
only (1.4), we almost obtain the pointwise estimate (1.5). Here we have
a description of the same fast decrease for the bilinear kernel, not with a
pointwise estimate, but with local estimates at the scale |I|. These local
estimates are less precise than the pointwise estimate but we will see that
they are sufficient and they can have the same role.

We note that Theorem 1.1 is in accordance with the Heisenberg’s uncertainty
principle, which tell us that if we want to localize at the scale |I| in the spatial
domain, we cannot localize in the frequency domain at a lower scale than
|I|−1. For example, ou Theorem 1.1 applies if the symbol is supported in
the domain {(α, β), d((α, β), ∆) ≥ |I|−1} and it is this case that we consider
first in the proof. In fact in (1.8), we allow instead a nice behavior around
the line ∆. With this point of view, we could call Theorem 1.1 : an “high
frequency estimate”. In this expression, the term ”frequency” corresponds to
the distance between the point (α, β) to the line of singularity ∆. We prefer
the expression “local estimates”, because we will use the spatial fast decay
in order to get the following result.

Theorem 1.3. Let ∆ be an nondegenerate line of the frequency plane. Let
p, q be exponents such that

1 < p, q ≤ ∞ and 0 <
1

r
=

1

q
+

1

p
<

3

2
.

For all symbol σ ∈ C∞(R3) satisfying

∀ a, b, c ≥ 0
∣∣∂a

x∂
b
α∂c

βσ(x, α, β)
∣∣ . (1 + d((α, β), ∆))−b−c ,
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the associated operator Tσ is bounded from Lp(R) × Lq(R) into Lr(R).

This result answers a question of [2]. In addition it will allow us to define
a bilinear pseudodifferential calculus, based on these operators : in a next
paper [4], we will define classes for bilinear pseudo-differential operators of
order (m1, m2) and study their action on Sobolev spaces. In order to carry
on the work of [2], we will give rules of symbolic calculus for the duality
and the composition and also complete the construction of a bilinear pseudo-
differential calculus.

Remark 1.4. The proof of Theorem 1.1 is a shake between a localization
argument and the “classical” time-frequency analysis used for these bilinear
operators. So it is quite easy to obtain a version of our Theorems 1.1 and 1.3
for (n − 1)-linear operators Tσ with a nondegenerate space ∆ of dimension
k < n/2, by following the ideas of [25]. By using the results of [28], we
are able to obtain the same results for a multidimensional problem ; and by
using the uniform estimates of [26], it seems possible to obtain uniform (with
respect to the nondegenerate line ∆) local estimates.

The plan of this article is as follows. We first prove Theorem 1.1 in Section
2 for x-independent symbols. Then in Section 3 we get the same result for
maximal bilinear operators and we conclude the proof of Theorem 1.1 in the
general case. Then in Section 4, we use these local estimates to obtain global
continuities for bilinear operators in weighted Lebesgue and Sobolev spaces
and in particular we prove Theorem 1.3.

2 Proof of Theorem 1.1 for x-independent sym-

bol.

In this section, we assume that the symbol σ is x-independent and is sup-
ported on the domain :

{
(α, β), d((α, β), ∆) ≥ |I|−1

}
.

We divide the proof in two subsections. First, we will quickly recall the
decomposition of our bilinear operator Tσ by combinatorial model sums. So
we will reduce the problem to a study of the “restricted weak type” for some
localized trilinear forms. We will study them in the second subsection.
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2.1 Reduction to the study of discrete models.

First of all, we define and recall the time-frequency tools (see for example
[27]) :

Definition 2.1. A tile is a rectangle (i.e. a product of two intervals) I × ω
of area one. A tri-tile s is a rectangle s = Is × ωs of bounded area, which
contains three tiles si = Isi

× ωsi
for i = 1, 2, 3 such that

∀i, j ∈ {1, 2, 3}, Isi
= Is and i 6= j =⇒ ωsi

∩ ωsj
= ∅.

A set {I}I∈I of real intervals is called a grid if for all k ∈ Z
∑

I∈I
2k−1≤|I|≤2k+1

1I . 1R, (2.1)

where the implicit constant is independent of k and of the grid. So a grid
has the same structure than the dyadic grid.
Let Q be a set of tri-tiles. It is called a collection if

• {Is, s ∈ Q} is a grid,

• J := {ωs, s ∈ Q}
⋃3

i=1 {ωsi
, s ∈ Q} is a grid,

• ωsi
( ̟ ∈ J =⇒ ∀ j ∈ {1, 2, 3}, ωsj

⊂ ̟.

Now we can define the wave packet for a tile.

Definition 2.2. Let Φ be a smooth function such that

‖Φ‖2 = 1 and supp(Φ̂) ⊂ [−1/2, 1/2].

For P = I × ω a tile, we set

ΦP (x) := |I|−1/2Φ

(
x − c(I)

|I|

)
e2iπxc(ω),

where for U an interval we denote c(U) its center. So ΦP is normalized in
the L2(R) space, concentrated in space around I and its spectrum is exactly
contained in ω.

8



Nowadays it is well known (see for example [5] and [6]) that the operator Tσ

of Theorem 1.1 admits a decomposition :

Tσ(f, g)(x) :=
∑

u=(u1,u2,u3)∈Z3

(1 + |u|2)−N
∑

s∈Su

|Is|
−1/2ǫs(u)〈(τu1

φ)s1
, f〉〈(τu2

φ)s2
, g〉(τu3

φ)s3
(x), (2.2)

where Su is a collection of tri-tiles depending on u, (ǫs(u))s∈Su
are bounded

reals and N is an integer as large as we want. We write τv for the translation
operator : τv(f)(x) = f(x−v). The coefficients ǫs(u) are uniformly bounded
with respect to the parameter u and the implicit constant in (2.1) (for the
definition of a grid) is bounded by the estimates of the symbol σ.
By using the assumption that σ is supported in {(α, β), |α − β| ≥ |I|−1}, we
have the very important property

∀u ∈ Z3, ∀s ∈ Su, |ωs| & |I|−1 (which is equivalent to |Is| . |I|). (2.3)

So Theorem 1.1 is a consequence of the following one :

Theorem 2.3. Let S be a collection of tri-tiles satisfying the property (2.3),
(ǫs)s∈S bounded reals and (φi)i=1,2,3 smooth functions whose the spectrum is
contained in [−1/2, 1/2]. We denote TS the bilinear operator defined by

TS(f, g)(x) :=
∑

s∈S

|Is|
−1/2ǫs〈φ

1
s1

, f〉〈φ2
s2

, g〉φ3
s3

(x).

For the exponents (p, q, r) of Theorem 1.1 and for all δ ≥ 1, we have the local
estimate

(∫

I

|TS(f, g)|r
)1/r

.

(∑

k≥0

2−k(1/p+δ)‖f‖p,Ck(I)

)(∑

k≥0

2−k(1/q+δ)‖g‖q,Ck(I)

)
.

In addition the implicit constant depends on the functions φi by the parame-
ters

cM(φi) := sup
x∈R

∑

0≤k≤M

(1 + |x|)M
∣∣(φi)(k)(x)

∣∣

for M = M(p, q, r, δ) a large enough integer.
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We have also to prove this result. In order to show it, we need to decompose
the functions f and g around the interval I. The interval I being fixed, we
omit it in the notation for convenience and for i ∈ N, we set the corona
Ci := Ci(I). With the property (2.3), we have the following decomposition

TS(f, g) =
∑

k1,k2≥0

T k1,k2

S,0 (f, g) +
∑

k1,k2≥0

l≤0

T k1,k2,l
S,1 (f, g) (2.4)

with

T k1,k2

S,0 (f, g)(x) :=
∑

s∈S

Is⊂2I

|Is|
−1/2ǫs〈φ

1
s1

, f1Ck1
〉〈φ2

s2
, g1Ck2

〉φ3
s3

(x)

and

T k1,k2,l
S,1 (f, g)(x) :=

∑

s∈S

Is*2I

2l|I|≤|Is|<2l+1|I|

|Is|
−1/2ǫs〈φ

1
s1

, f1Ck1
〉〈φ2

s2
, g1Ck2

〉φ3
s3

(x).

Due to the important property (2.3), we only have to consider tiles s with
|Is| ≤ |I|. The other corresponding terms (l > 0) cannot be studied as we
are going to do, according to the Heisenberg uncertainty principle.

In the next subsection, we shall prove the following theorem :

Theorem 2.4. Let (p, q, r) be exponents of Theorem 1.1. The operators T j
S,i

are continuous from Lp(R) × Lq(R) into Lr(I). For convenience, we denote
C(T j

S,i) := ‖T j
S,i‖Lp×Lq→Lr and we omit the exponents. Then these continuity

bounds satisfy

C(T k1,k2

S,0 ) . cM(φ1)cM(φ2)cM(φ3)2−δ′(k1+k2)

C(T k1,k2,l
S,1 ) . cM(φ1)cM(φ2)cM(φ3)2−δ′(|l|+k1+k2)

for any large enough real δ′, with an integer M = M(p, q, r, δ′).

We claim that Theorem 2.3 is a consequence of Theorem 2.4.
Proof of Theorem 2.3 :

10



By using Theorem 2.4 and the decomposition (2.4), we have that for all
functions f, g ∈ S(R) if r ≥ 1 then

‖TS(f, g)‖r,I .
∑

k1,k2≥0

C(T k1,k2

S,0 )‖f1Ck1
‖p‖g1Ck2

‖q +
∑

k1,k2≥0

l≤0

C(T k1,k2,l
S,1 )‖f1Ck1

‖q‖g1Ck2
‖r,

and if r < 1 then

‖TS(f, g)‖r
r,I .

∑

k1,k2≥0

C(T k1,k2

S,0 )r‖f1Ck1
‖r

p‖g1Ck2
‖r

q +
∑

k1,k2≥0

l≤0

C(T k1,k2,l
S,1 )r‖f1Ck1

‖r
p‖g1Ck2

‖r
q.

The case r ≥ 1.
With the estimate of C(T k1,k2

S,0 ) and C(T k1,k2,l
S,1 ) given by Theorem 2.4, we

obtain

‖TS(f, g)‖r,I

.
∑

k1,k2≥0

2−δ′(k1+k2)‖f1Ck1
‖p‖g1Ck2

‖q+

∑

k1,k2≥0

l≤0

2−δ′(k1+k2+|l|)‖f1Ck1
‖p‖g1Ck2

‖q

.
∑

k1,k2≥0

2−δ′(k1+k2)‖f1Ck1
‖p‖g1Ck2

‖q.

Hence by using that δ′ is as large as we want, we can conclude.

The case r ≤ 1.
We have

‖TS(f, g)‖r
r,I

.
∑

k1,k2≥0

2−rδ′(k1+k2)‖f1Ck1
‖r

p‖g1Ck2
‖r

q+

∑

k1,k2≥0

l≤0

2−rδ′(k1+k2+|l|)‖f1Ck1
‖r

p‖g1Ck2
‖r

q

.
∑

k1,k2≥0

2−rδ′(k1+k2)‖f1Ck1
‖r

p‖g1Ck2
‖r

q.

11



By using Hölder’s inequality and ρ > 0 such that p−1 + ρ, q−1 + ρ < 1, we
obtain :

‖TS(f, g)‖r,I .
(∑

k1≥0

2−k1p(δ′−1)(ρ+1/p)‖f1Ck1
‖p

p

)1/p(∑

k2≥0

2−k2q(δ′−1)(ρ+1/q)‖g1Ck2
‖q

q

)1/q

.

(∑

k1≥0

2−k1(δ′−1)(ρ+1/p)‖f1Ck1
‖p

)(∑

k2≥0

2−k2(δ′−1)(ρ+1/q)‖g1Ck2
‖q

)
.

This corresponds to the desired result (the real δ′ being as large as we want).
So Theorem 2.3 is proved in the two cases. ⊓⊔

We have also reduced the proof of Theorem 1.1 (for our particular symbol
σ) to the proof of Theorem 2.4.We will prove it in the next subsection.

2.2 Proof of Theorem 2.4.

By using “duality”, to prove Theorem 2.4, we have to estimate the trilinear
form defined on S(R) × S(R) × S(R) by

Λj
i (f1, f2, f3) := 〈T j

S,i(f1, f2), f31I〉 (2.5)

=
∑

s∈Q
j
i

|Is|
−1/2ǫs〈φ

1
s1

, f11Ck1
〉〈φ2

s2
, f21Ck2

〉〈φ3
s3

, f31I〉,

where Q
j
i is a collection of tri-tiles, depending on T j

S,i. We need to define

usual tools of time-frequency analysis.

Definition 2.5. We have already defined the tri-tiles. For j ∈ {1, 2, 3} an
index and t ∈ S a tri-tile, a collection T of tri-tiles is called a j-tree with top
t if

∀ s ∈ T, Is ⊂ It and ωtj ⊂ ωsj
.

Then we set IT := It the time-interval of the tree T. A collection T of
tri-tiles is called a tree if there exists an index j ∈ {1, 2, 3} such that T is a
j-tree. For T a j-tree, we define the size of the function fj over this tree by

sizej(T) :=

(
1

|IT|

∑

s∈T

∣∣∣〈fj , φ
j
sj
〉
∣∣∣
2
)1/2

.

12



For Q a collection of tri-tiles, we define the global size by :

size∗j (Q) = sup
T⊂Q

T=k−tree
k 6=j

sizek(T).

The quantity |IT|
1/2sizej(T) corresponds to the norm of the function fj in

the space L2, after having restricted it on the tree T in the time-frequency
space.
We recall the (abstract) Proposition 6.5 of [27] (where we use Lemma 6.7 of
[27] to estimate the quantities ˜energyj) :

Proposition 2.6. Let (θj)1≤j≤3 be three exponents of [0, 1[ satisfying

θ1 + θ2 + θ3 = 1.

Then there exists a constant C = C(θi) such that for all collection Q of
tri-tiles, we have :

∣∣∣∣∣
∑

s∈Q

1

|Is|1/2

3∏

i=1

〈φi
si
, fi〉

∣∣∣∣∣ ≤ C
3∏

i=1

size∗i (Q)θi‖fi‖
1−θi

2 .

This result is the main idea of this time-frequency analysis. To prove it, we
use a stopping-time argument in order to build an ”orthogonal” covering of
the time-frequency space with trees of Q.

Now we recall the notion of restricted weak type for trilinear forms :

Definition 2.7. For E a borelian set of R, we write :

F (E) := {f ∈ S(R), ∀x ∈ R, |f(x)| ≤ 1E(x)} .

Let Λ be a trilinear form, defined on S(R) × S(R) × S(R). Let p1, p2, p3

be exponents of R∗, possiblynegative. We say that Λ is of restricted weak
type (p1, p2, p3) if there exists a constant C such that for all measurable sets
E1, E2, E3 of finite measure, we can find a substantial subset E ′

β ⊂ Eβ (i.e.
|E ′

β| ≥ |Eβ|/2) for β ∈ {1, 2, 3} with

∀ fβ ∈ F (E ′
β), |Λ(f1, f2, f3)| ≤ C

3∏

β=1

|Eβ|
1/pβ (2.6)

and E ′
β = Eβ if pβ > 0. The best constant in (2.6) is called the bound of

restricted type and will be denoted by C(Λ).
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By the real interpolation theory for trilinear forms of restricted weak type
(Lemmas 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 of [26]), Theorem 2.4 is a conse-
quence of the following result (which is a stronger continuity result) :

Theorem 2.8. Let p1, p2, p3 be non vanishing reals such that

1

p1

+
1

p2

+
1

p3

= 1

and there exists a unique index α ∈ {1, 2, 3} with −1/2 < p−1
α < 0 and

1/2 < p−1
β < 1 for β 6= α. Then the trilinear forms Λj

i (defined by (2.5)) are
of restricted weak type (p1, p2, p3). In addition the bounds of restricted type
C(Λj

i ) satisfy

C(Λk1,k2

0 ) . cM(φ1)cM(φ2)cM(φ3)2−δ′(k1+k2)

C(Λk1,k2,l
1 ) . cM(φ1)cM(φ2)cM(φ3)2−δ′(|l|+k1+k2)

for any real δ′ ≥ 1 with M = M(δ′, pi) a large enough integer.

Proof : The exponents (pβ)β and the index α ∈ {1, 2, 3} are fixed for
the proof. Let E1, E2 and E3 measurable sets of finite measure. First we
construct the substantial subset E ′

α ⊂ Eα. Denote

U :=
3⋃

i=1

{
x ∈ R, MHL(1Ei

)(x) > η
|Ei|

|Eα|

}
.

By using Hardy-Littlewood’s Theorem, there exists a numerical constant η
such that

|U | ≤ |Eα|/2.

We set also E ′
α = Eα \ U . It is interesting to note that the set E ′

α does not
depend on the form Λj

i . Now we fix the functions fβ ∈ F (E ′
β) for β ∈ {1, 2, 3}

and we shall prove the inequality (2.6). The proof is divided in three parts :
in the first step we use general estimates for collections of tri-tiles, in the
second step we will use specific estimates adapted to the above collections of
tri-tiles and then we will conclude in the third step.

First step : A general estimate.
Let P an “abstract” collection of tri-tiles, then for k ≥ 0 we set Pk the
following sub-collection

Pk :=

{
s ∈ P, 2k ≤ 1 +

d(Is, U
c)

|Is|
< 2k+1

}
.

14



These collections form a partition of P : P =
⊔

k≥0 Pk.For each k ≥ 0, we
can apply Proposition 2.6 to the collection Q = Pk. So for any choice of
exponents 0 < θ1, θ2, θ3 < 1 with

3∑

β=1

θβ = 1,

we obtain

Λ(Pk) :=

∣∣∣∣∣
∑

s∈Pk

|Is|
−1/2ǫs

3∏

β=1

〈fβ, φβ
sβ
〉

∣∣∣∣∣ .
3∏

β=1

(size∗β(Pk))
θβ‖fβ‖

1−θβ

2 .

In order to estimate the quantities size∗β(Pk), we recall Lemma 7.8 of [26] :

Lemma 2.9. For all integer N as large as we want, there exists a constant
C = C(N) such that for all collection Q of tri-tiles, for all β ∈ {1, 2, 3}, we
have :

size∗β(Q) ≤ C sup
s∈Q

1

|Is|

∫

R

(
1 +

d(x, Is)

|Is|

)−N

|fβ(x)|dx.

Then for Q = Pk, by using the definition of the sets U and E ′
α, we have :

∀β 6= α size∗β(Pk) . 2k |Eβ|

|Eα|
and size∗α(Pk) . 2−Nk. (2.7)

As fβ belongs to F (Eβ), we have ‖fβ‖2 ≤ |Eβ|
1/2. So for 0 < ǫ < 1 and N

an integer as large as we want, we get :

Λ(Pk) .
∏

β 6=α

(
2k |Eβ |

|Eα|

)θβ(1−ǫ)

|Eβ|
(1−θβ)/22Nkθα(1−ǫ)|Eα|

(1−θα)/2
3∏

β=1

(size∗β(Pk))
θβǫ

. 2−k

[∏

β 6=α

|Eβ|
(1+θβ)/2−ǫθβ |Eα|

(θα−1)/2+ǫ(1−θα)

][
3∏

β=1

(size∗β(Pk))
θβǫ

]
.

By definition of size∗β , Pk is a sub-collection of P so

∀β ∈ {1, 2, 3}, size∗β(Pk) ≤ size∗β(P).
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We can also compute the sum over k ≥ 0 and we obtain

Λ(P ) :=

∣∣∣∣∣
∑

s∈P

|Is|
−1/2ǫs

3∏

β=1

〈fβ, φβ
sβ
〉

∣∣∣∣∣ ≤
∑

k≥0

Pk

.

[∏

β 6=α

|Eβ|
(1+θβ)/2−ǫθβ |Eα|

(θα−1)/2+ǫ(1−θα)

][
3∏

β=1

(size∗β(P))θβǫ

]
. (2.8)

The first term is “good”, according to the wished global continuity. In the

next step, we will use an other estimate of the quantities size∗β , which will

be adapted to our specific trilinear forms Λj
i and which allow us to obtain

the desired decays.

Second step : Use of the specificity of our trilinear forms Λj
i .

First case : the forms Λj
1.

In this case, we use an other decomposition :

Λk1,k2,l
1 (f1, f2, f3) ≤

∑

I0*2I

2l−1|I|≤|I0|≤2l+1|I|

Λk1,k2,l
1 (I0)(f1, f2, f3)

where I0 is an interval of R and

Λk1,k2,l
1 (I0)(f1, f2, f3) :=

∑

s∈S

Is=I0

|Is|
−1/2ǫs〈f11Ck1

, φ1
s1
〉〈f21Ck2

, φ2
s2
〉〈1If3, φ

3
s3
〉.

Let I0 be fixed and denote 2l = |I0|/|I|. The collection of tri-tiles associated
to Λk1,k2,l

1 (I0) is also
P := {s ∈ S, Is = I0}

For all s ∈ P, (by using f3 ∈ F (E ′
3)) we have

1

|Is|

∫

I

|f3(x)|

(
1 +

d(x, Is)

|Is|

)−N

dx ≤
1

|Is|

∫

I

(
1 +

d(x, Is)

|Is|

)−N

dx

≤
|I|

|I0|

(
1 +

d(I, I0)

|I0|

)−N

.
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Then Lemma 2.9 gives us

size∗3(P) . 2−l

(
1 +

d(I, I0)

|I0|

)−N

.

By the same reasoning, we obtain for f1 ∈ F (E ′
1) and s ∈ P

1

|Is|

∫

Ck1

|f1(x)|

(
1 +

d(x, I0)

|Is|

)−N

dx ≤
1

|I0|

∫

Ck1

(
1 +

d(x, I0)

|I0|

)−N

dx

≤ 2k1−l

(
1 +

d(Ck1
, I0)

|I0|

)−N

.

And so we get

size∗1(P) . 2k1−l

(
1 +

d(Ck1
, I0)

|I0|

)−N

.

Likely, we have

size∗2(P) . 2k2−l

(
1 +

d(Ck2
, I0)

|I0|

)−N

.

With θ1 + θ2 + θ3 = 1 and Lemma 2.9, we can estimate :

size∗1(P)θ1size∗2(P)θ2size∗3(P)θ3 . 2θ1k1+θ2k2−lA(I0), (2.9)

where A(I0) is the product of three terms

A(I0) :=
(

1 +
d(I, I0)

|I0|

)−Nθ3
(

1 +
d(Ck1

, I0)

|I0|

)−Nθ1
(

1 +
d(Ck2

, I0)

|I0|

)−Nθ2

.

We are going to get four different estimates for A(I0).
To keep the information about the position of I0, we first have

A(I0) ≤

(
1 +

d(I, I0)

|I0|

)−Nθ3

. (2.10)

By using d(I, I0) + d(Ck1
, I0) & d(I, Ck1

) & 2k1|I| ≃ 2k1−l|I0| and the fact
that 2l ≤ 1, we obtain :

A(I0) .
(
1 + 2k1−l

)−N min{θ1,θ3}
. 2−k1N min{θ1,θ3} (2.11)
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and likely
A(I0) . 2−k2N min{θ2,θ3}. (2.12)

As I0 * 2I and 2l ≤ 1 then d(I0, I) ≥ |I| hence

(
1 +

d(I, I0)

|I0|

)−N

.

(
|I0|

|I|

)N

.

So we get

A(I0) .

(
|I0|

|I|

)Nθ3

. 2lNθ3. (2.13)

Taking the geometric mean of (2.10),(2.11), (2.12) and (2.13) (with an other
exponent N which is as large as we want), we obtain :

A(I0) . 2−(k1+k2+|l|)N

(
1 +

d(I, I0)

|I0|

)−N

. (2.14)

With the help of (2.8) and (2.9), we finally estimate
∣∣∣Λk1,k2,l

1 (f1, f2, f3)
∣∣∣ .

∑

I0

∣∣∣Λk1,k2,l
1 (I0)(f1, f2, f3)

∣∣∣

.
∑

I0

[∏

β 6=α

|Eβ|
(1+θβ)/2−ǫθβ |Eα|

(θα−1)/2+ǫ(1−θα)

]
2ǫ(k1+k2+|l|)A(I0).

The sum over the interval I0 is bounded with |I0| = 2l|I| by (2.14). For N a
large enough exponent (not exactly the same), we have

∣∣∣Λk1,k2,l
1 (f1, f2, f3)

∣∣∣ .
[∏

β 6=α

|Eβ|
(1+θβ)/2−ǫθβ |Eα|

(θα−1)/2+ǫ(1−θα)

]
C̃(Λk1,k2,l

1 ),

with

C̃(Λk1,k2,l
1 ) := 2−Nǫ(k1+k2+|l|). (2.15)

Second case : the forms Λj
0.

We use the same principle. We are interested by

Λk1,k2

0 (f1, f2, f3) :=
∑

s∈S

Is⊂2I

|Is|
−1/2ǫs〈f11Ck1

, φ1
s1
〉〈f21Ck2

, φ2
s2
〉〈f3, φ

3
s3
〉.
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So now we choose the collection

P := {s ∈ S, Is ⊂ 2I}.

For all s ∈ P,
1

|Is|

∫

I

(
1 +

d(x, Is)

|Is|

)−N

dx ≤ 1

and so with Lemma 2.9 we have

size∗3(P) . 1.

For f1, we use that

1

|Is|

∫

Ck1

(
1 +

d(x, Is)

|Is|

)−N

dx .

(
1 +

d(Ck1
, I)

|I|

)−(N−2)

to conclude that
size∗1(P) . 2−k1(N−2).

By the same argument for f2, we have

size∗2(P) . 2−k2(N−2).

In this case, we can also estimate (with N an other large enough integer)

size∗1(P)θ1size∗2(P)θ2size∗3(P)θ3 ≤ 2−(k1+k2)Nǫ.

With (2.8), we finally obtain

Λk1,k2

0 (f1, f2, f3) .

[∏

β 6=α

|Eβ|
(1+θβ)/2−ǫθβ |Eα|

(θα−1)/2+ǫ(1−θα)

]
C̃(Λk1,k2

0 ),

with
C̃(Λk1,k2

0 ) := 2−N(k1+k2)ǫ. (2.16)

Third step : End of the proof.
For the trilinear form Λj

i , we have obtain a bound C = C̃(Λj
i ) such that for

all functions fβ ∈ F (E ′
β) we have

∣∣Λj
i (f1, f2, f3)

∣∣ . C̃(Λj
i )

[∏

β 6=α

|Eβ|
(1+θβ)/2−ǫθβ |Eα|

(θα−1)/2+ǫ(1−θα)

]
.
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Let (pβ)β be the exponents of Theorem 2.8. Then we shall show that we can
find (θ1, θ2, θ3) and ǫ > 0 such that

∀β 6= α (1 + θβ)/2− ǫθβ =
1

pβ
and (θα − 1)/2 + ǫ(1− θα) =

1

pα
.

Let γ > 0 be a real satisfying

∀β 6= α

∣∣∣∣
1

2
−

1

pβ

∣∣∣∣ <
1

2 + γ
.

This is possible because 1 < pβ < 2 for β 6= α. We begin to choose θα ∈]0, 1[
such that

1 > θα > max

{
θ0

α :=
pα + (2 + γ)

pα
, 0

}

and

min

{
−1

2 + γ
=

1

pα(1 − θ0
α)

,
1

pα

}
>

1

pα(1 − θα)
>

−1

2
.

This is possible because pα is negative and satisfies

1

pα
> −

1

2
.

Then we get ǫ by

ǫ :=
1

2
+

1

pα(1 − θα)
∈]0,

1

2
[⊂]0, 1[.

We now define θβ for β 6= α by

θβ :=

1
pβ

− 1
2

1
2
− ǫ

.

We have 1 < pβ < 2 and 0 < ǫ < 1/2, so 0 < θβ and

0 < θβ =

1
pβ

− 1
2

−1
pα(1−θα)

<

1
2+γ

1
2+γ

= 1.

Consequently, we have solved the system of equations for the exponents.
With this choice, we obtain

∀f1 ∈ F (E ′
1), f2 ∈ F (E ′

2), f3 ∈ F (E ′
3), Λj

i (f1, f2, f3) . C̃(Λj
i )

3∏

β=1

|Ei|
1/pβ ,
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where C̃(Λj
i ) are defined in (2.15) and (2.16). So Λj

i is of restricted weak
type and we have the following estimate about C(Λj

i ) :

C(Λj
i ) . C̃(Λj

i ).

In addition the parameter N in (2.15) and (2.16) is as large as we want, and
we have also obtained the desired estimates on C(Λj

i ). ⊓⊔

The proof of Theorem 2.8 is now completed. By using the concept of “re-
stricted weak type”, we can have a “stronger” result than Theorem 1.1 :

Theorem 2.10. Let T, p, q, r be an operator and exponents of Theorem 1.1.
Then for all δ ≥ 1, there exist a constant C = C(p, q, r, δ) (independent on the
interval I) such that for all sets E3 of finite measure, there exists a substantial
subset E ′

3 ⊂ E3 satisfying that for all functions f ∈ S(R), g ∈ S(R) and
h ∈ F (E ′

3) we have

|〈T (f, g), h1I〉| ≤

C

(∑

k≥0

2−k(1/p+δ)‖f12kI‖p

)(∑

k≥0

2−k(1/q+δ)‖g12kI‖q

)
|E3|

1/r′ .

When r > 1, this result is stronger than Theorem 1.1 but less practicable.
We now prove it because it will be useful in the sequel.
Proof : The proof is exactly the same as the previous one, so we shall only
explain the modifications. We always study the trilinear form

Λ(f, g, h) := 〈T (f, g), h1I〉.

In the section 2.1 we have seen that the study of Λ can be reduced to the
study of the following model sum

Λ(f, g, h) =
∑

s∈S

|Is|
−1/2ǫs〈φs1

, f〉〈φs2
, g〉〈φs3

, h1I〉,

where S is a general collection of tri-tiles. Then we have decomposed this
sum with (2.4) by :

Λ(f, g, h) =
∑

k1,k2≥0

Λk1,k2

0 (f, g, h) +
∑

k1,k2≥0

l≤0

Λk1,k2,l
1 (f, g, h).
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By Theorem 2.4, we have shown that the trilinear forms Λj
i are of restricted

weak type (p, q, r′) and we have obtained estimates on their bounds. The
construction of the substantial subset E ′

α = E ′
3 does not depend on the

trilinear form Λj
i , so we can deduce that our trilinear form Λ is always of

restricted weak type. Also for measurable sets E1, E2, E3 of finite measure,
there exists a substantial subset E ′

3 ⊂ E3 such that for all functions f ∈
F (E1), g ∈ F (E2) and h ∈ F (E ′

3) we have :

|Λ(f, g, h)| . |E3|
1/r′

[ ∑

k1,k2≥0

2−δ′(k1+k2) |E1 ∩ Ck1
|1/p |E2 ∩ Ck2

|1/q

]
.

Here δ′ is an exponent as large as we want. Over each corona, by using the
real interpolation on the exponents p and q (so r is fixed), we obtain also the
desired result. ⊓⊔

Having obtained our main result for the x-independent symbols, we will
extend our result for maximal operators and for x-dependent symbols in the
next section.

3 More general bilinear operators.

Let us name our “off-diagonal” estimates for convenience.

Definition 3.1. Let T be an operator (maybe non bilinear) acting from
S(R) × S(R) into S ′(R). For 0 < p, q, r ≤ ∞ exponents such that

1

r
=

1

p
+

1

q
,

we say that T satisfies “off-diagonal” estimates at the scale L and at the order
δ, in short T ∈ OL,δ(L

p×Lq, Lr), if there exists a constant C = C(p, q, r, L, δ)
such that for all functions f, g ∈ S(R) and all interval I of length |I| = L,
we have

‖T (f, g)‖r,I ≤ C

[∑

k≥0

2−k(δ+1/p)‖f‖p,2k+1I

][∑

k≥0

2−k(δ+1/q)‖g‖q,2k+1I

]
. (3.1)
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Remark 3.2. Equivalently, an operator T satisfies “off-diagonal” at the scale
L and at the order δ if there exists a constant C = C(p, q, r, L, δ) with for all
functions f, g ∈ S(R) and all interval I of length |I| = L, we have

‖T (f, g)‖r,I ≤ C

[∑

k≥0

2−k(δ+1/p)‖f‖p,Ck(I)

][∑

k≥0

2−k(δ+1/q)‖g‖q,Ck(I)

]
.

This is a better way to describe the “off-diagonal” decay of an operator T
and these properties can been describe as in Corollary 1.2.

First we generalize the previous result for maximal operators.

3.1 “Off-diagonal” estimates for maximal bilinear op-

erators.

We have the three following theorems :

Theorem 3.3. Let ∆ be a nondegenerate line in the frequency plane. Let
1 < p, q ≤ ∞ be exponents such that

0 <
1

r
=

1

q
+

1

p
<

3

2
.

For all δ ≥ 1, L > 0, for all symbol σ supported in {(α, β), d((α, β), ∆) ≥
L−1} satisfying

∀b, c ≥ 0
∣∣∂b

α∂c
βσ(α, β)

∣∣ . |d((α, β), ∆)|−b−c

and for all smooth function φ, which is equal to 1 around 0, the maximal
bilinear operator

Tmax(f, g)(x) := sup
r>0

∣∣∣∣
∫

eix(α+β)f̂(α)ĝ(β)σ(α, β)
[
1 − φ(r(α − β))

]
dαdβ

∣∣∣∣
(3.2)

satisfies “off-diagonal” estimates at the scale L and at the order δ : Tmax ∈
OL,δ(L

p×Lq, Lr). In addition the implicit constant can be uniformly bounded
in L > 0.

Theorem 3.4. For the same exponents, we have the same continuities for
the maximal bilinear operator (at the scale L) :

ML(f, g)(x) := sup
0<r≤L

1

r

∫

|t|≤r

|f(x − t)g(x + t)| dt.
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Theorem 3.5. Let K be a kernel on R satisfying the Hörmander’s condi-
tions, then the maximal bilinear operator

TL
max(f, g)(x) := sup

0<ǫ<r<L

∣∣∣∣
∫

ǫ≤|y|≤r

f(x − y)g(x + y)K(y)dy

∣∣∣∣ (3.3)

verifies the same local estimates : TL
max ∈ OL,δ(L

p×Lq, Lr) (for the exponents
p, q, r of Theorem 3.3).

Proof : The proof of these three Theorem is a shake between the proof
of our Theorem 1.1 and an additional maximality argument. The maximal
truncation in the physical space (Theorems 3.4 and 3.5) is a little more
complex than the maximal truncation in the frequency space (Theorem 3.3).
So we deal with the two last theorems and just explain the modifications to
prove them. The maximal version of the different arguments have first shown
in [18] by M. Lacey and then improved in [12] by C. Demeter, T. Tao and
C. Thiele. In these articles, the authors study the behaviour of the maximal
averages (like Theorem 3.4). The remark 1.6 of [12] specifies the similarity
between the operators of Theorem 3.4 and 3.5. So in fact our three previous
theorems are an illustration of the same ideas, we will not detail.
The subsection 2.1 is based on the decomposition of the bilinear operator by
discrete models. For our maximal operators, the same reduction is shown in
[12] (Theorem 4.4) and the important condition (2.3) for the tiles are always
satisfied. Then the maximal version of Proposition 2.6 is written in [12] too
(there is a new factor in the different inequalities but it is not important). We
have exactly the same version of Lemma 2.9 for maximal bilinear operators
(see Proposition 6.2 of [12]). Using these few technical modifications, we
can compute our proof of Theorem 1.1 and obtain its maximal versions :
Theorems 3.3,3.4 and 3.5. ⊓⊔

3.2 Proof of Theorem 1.1 for x-dependent symbols.

In this subsection, we prove the “off-diagonal” estimates of Theorem 1.1 in
the case where the symbol σ depends on the spatial variable x and also we
complete the proof of our main result.

Theorem 3.6. Let ∆ be an nondegenerate line of the frequencial space. Let
σ ∈ C∞(R3) be a symbol satisfying : ∀a, b, c ≥ 0

∣∣∂a
x∂

b
α∂c

βσ(x, α, β)
∣∣ . (1 + d((α, β), ∆))−b−c .
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Then the bilinear operator Tσ (defined on S(R) × S(R) by (1.2)) verifies
T ∈ O1,δ(L

p × Lq, Lr) for any δ ≥ 0 and any exponents p, q, r such that

0 <
1

r
=

1

p
+

1

q
<

3

2
and 1 < p, q ≤ ∞.

Our assumptions for the symbol corresponds to the class BS1,0
θ of [2] where

the angle θ ∈] − π/2, π/2[\{0,−π/4} is given by the line ∆ :

∆ := {(α, β), β = tan(θ)α} .

For convenience, we will deal in the proof only with the case θ = π/4. The
important fact is that the singular quantity β− tan(θ)α does not correspond
to the quantity α + β, which appears in the exponential term of (1.2). The
limit and particular case θ = −π/4 is studied in [2].
Proof :

The proof is quite technical. We will also assume that r ≥ 1 (which allows
us to simplify a few arguments). Then we will explain in Remark 3.7 how
modify the proof to obtain the same result when r < 1.
So we fix an interval I of length |I| = 1. We use a decomposition of the
symbol σ. Let Φ be a smooth function on R such that

|x| ≤ 1 =⇒ φ(x) = 1 and supp(φ) ⊂ [−2, 2].

We have also

σ(x, α, β) = σ(x, α, β)[1 − Φ(α − β)] + σ(x, α, β)Φ(α, β)

:= σ∞(x, α, β) + σ0(x, α, β).

1−) The case of the symbol σ∞.
We have an operator associated to this symbol :

T∞(f, g)(x) :=

∫

R2

eix(α+β)f̂(α)ĝ(β)σ(x, α, β)[1− Φ(α − β)]dαdβ,

which can been written

T∞(f, g)(x) = Ux(f, g)(x),

with U defined by

Uy(f, g)(x) :=

∫

R2

eix(α+β)f̂(α)ĝ(β)σ(y, α, β)[1− Φ(α − β)]dαdβ.
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By using the Sobolev’s imbedding W 1,r(I) →֒ L∞(I) (because r ≥ 1), we get

∀x ∈ I, |T∞(f, g)(x)| ≤ ‖Uy(f, g)(x)‖∞,y∈I .

1∑

k=0

‖∂k
yUy(f, g)(x)1I(y)‖r,dy.

Then by integrating for x ∈ I and using Fubini’s Theorem, we obtain

‖T∞(f, g)‖r,I .

1∑

k=0

∥∥∥
∥∥∂k

y Uy(f, g)
∥∥

r,I

∥∥∥
r,I,dy

.

We can fix k ∈ {0, 1} and y ∈ I. Then we have

∥∥∂k
y Uy(f, g)

∥∥
r,dx

. ‖V (f, g)‖r,I ,

where V is the bilinear operator defined by

V (f, g)(x) :=

∫

R2

eix(α+β)f̂(α)ĝ(β)∂k
yσ(y, α, β)[1− Φ(α − β)]dαdβ.

So V = Tτ is the bilinear operator associated to the x-independent symbol

τ(α, β) := ∂k
y σ(y, α, β)[1− Φ(α − β)].

From the assumptions about σ, the symbol τ satisfies : for all b, c ≥ 0

∣∣∂b
α∂c

βτ(α, β)
∣∣ . |α − β|−n−p .

In addition τ is supported in the domain : {|α− β| ≥ 1}. We can also apply
Theorem 1.1 proved in section 2 for x-independent symbol. For all δ ≥ 1, we
have an “off-diagonal” estimate at the scale 1 :

‖V (f, g)‖r,I .

(∑

k1≥0

2−k1(1/p+δ)‖f‖p,2k1I

)(∑

k2≥0

2−k2(1/q+δ)‖g‖q,2k2I

)
.

All theses estimates are uniform with respect to k ∈ {0, 1} and y ∈ I, so we
get

‖T∞(f, g)‖r,I .

(∑

k1≥0

2−k1(1/p+δ)‖f‖p,2k1I

)(∑

k2≥0

2−k2(1/q+δ)‖g‖q,2k2I

)
.

(3.4)
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So we have shown the desired estimates for this first term.
2−) The case of the symbol σ0.
The associated operator is given by

T 0(f, g)(x) :=

∫

R2

eix(α+β)f̂(α)ĝ(β)σ(x, α, β)Φ(α, β)dαdβ.

We use the same arguments as for the first point. So we have to study the
operator V defined by

V (f, g)(x) :=

∫

R2

eix(α+β)f̂(α)ĝ(β)∂k
yσ(y, α, β)Φ(α − β)dαdβ.

The parameters k ∈ {0, 1} and y ∈ I are fixed. The symbol associated to
this operator is supported on {(α, β), |α − β| ≤ 2}. That is why, we use
modulations to move this support.

V (f, g)(x) =

∫

R2

eix(α+β)f̂(α + 3)ĝ(β − 3)∂k
yσ(y, α + 3, β − 3)Φ(α − β + 6)dαdβ

=

∫

R2

eix(α+β)ê3i.f(α)ê−3i.g(β)∂k
yσ(y, α + 3, β − 3)Φ(α − β + 6)dαdβ.

Also V is now the bilinear operator, applied to the functions e3i.f and e−3i.g,
whose (x-independent) symbol

τ(α, β) := ∂k
y σ(y, α + 3, β − 3)Φ(α − β + 6).

is supported on

{(α, β), |α − β + 6| ≤ 2} ⊂ {(α, β), 1 ≤ |α − β| ≤ 8}

and satisfies

∀b, c ≥ 0,
∣∣∂b

α∂c
βτ(α, β)

∣∣ . max
0≤j≤b

max
0≤i≤c

(1 + |α − β + 6|)−i−j
11≤|α−β|≤8

. 11≤|α−β|≤8

. 11≤|α−β|≤8 |α − β|−b−c .

Also we can again use Theorem 1.1 (proved in Section 2 for x-independent
symbol) and we obtain :

‖V (f, g)‖r,I .

(∑

k1≥0

2−k1(1/p+δ)‖f‖p,I

)(∑

k2≥0

2−k2(1/q+δ)‖g‖q,I

)
.

We have also finished the proof. ⊓⊔
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Remark 3.7. In this remark, we want to explain how modify the previous
proof when r < 1. When we want to study bilinear operators with r < 1,
we have to use the associated trilinear form and the concept of ”restricted
weak type” (defined in Definition 2.7). These two arguments allow us to get
round the lack of the triangular inequality in the space Lr. Let

Λ(f, g, h) := 〈T (f, g), h〉.

We have

Λ(f, g, h) =

∫

R

∫

R2

eix(α+β)σ(x, α, β)f̂(α)ĝ(β)h(x)dαdβdx.

We use the same decomposition of σ, getting the trilinear forms Λ∞ and
Λ0. Let us study first Λ∞ and fix an interval I of length |I| = 1. We take
a function h ∈ S(R), which is supported on I. We use again the Sobolev
imbedding W 1,1(I) →֒ L∞(I). By writing

|Λ∞(f, g, h)| ≤

∫

R
‖Uy(f, g)(x)1I(y)‖∞,I,dy |h(x)|1I(x)dx.

We can also obtain

|Λ∞(f, g, h)| .

∫

I

∫

I

|Uy(f, g)(x)| |h(x)| dxdy+

∫

I

∫

I

|∂yUy(f, g)(x)| |h(x)| dxdy.

Then when y ∈ I and k ∈ {0, 1} are fixed, we find again the quantities

∫

I

∣∣∂k
y Uy(f, g)(x)

∣∣ |h(x)| dx.

Now the bilinear operator ∂k
yUy is associated to an x-independent symbol,

which verifies the good assumptions. We can also use Theorem 2.10 in order
to obtain the wished estimates (3.4) in a “restricted weak type sense” for the
exponent r. We produce the same modifications to study Λ0. By noticing
that the way to construct the substantial subset (in the definition of restricted
weak type) does not depend on the trilinear form, we can deduce that the
trilinear form Λ satisfies (3.4) in a “restricted weak type sense” too. Then
we use interpolation on the exponent r, to obtain exactly (3.4), which allows
us to conclude.
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4 Continuities for bilinear operators, satisfy-

ing “off-diagonal” estimates.

Recall that in the linear case, by using the maximal sharp function, we
can prove weighted continuities for linear operator with the Muckenhoupt’s
weights. In the bilinear case, we do not have a good substitute to the max-
imal sharp function. That is why we shall use the previous “off-diagonal”
estimates to obtain weighted global continuities on Lebesgue spaces and in
particular prove Theorem 1.3.

We first want to give an application of these off-diagonal estimates. Recall
that in the previous sections, we have proved that our bilinear operators
(and maximal bilinear operators) satisfy these “off-diagonal” estimates at
any order. The time-frequency analysis does not work for functions in the
L∞ space. So we don’t know if our operators T are bounded from L∞×L∞ in
BMO. However these local estimates give a weak result about the behavior
of T (f, g) when the two functions f and g belong to L∞.

Proposition 4.1. Let f, g be two functions of L1(R) ∩ L∞(R) and fix 1 <
r < ∞. If there exist L > 0, δ ≥ 1 and p, q > 1 such that an operator
T ∈ Oδ,L(Lp × Lq, Lr), then we have

lim sup
|I|→∞

(
1

|I|

∫

I

|T (f, g)|r
)1/r

. ‖f‖∞‖g‖∞.

Here we take the limit when I is an interval with |I| → ∞ and the implicit
constant does not depend on the two functions f and g and on the parameter
L.

Proof : We set Ii := [iL, (i + 1)L[ for all i ∈ Z. Then for I with |I| >> L,
we get ∫

I

|T (f, g)|r ≤
∑

i∈Z
Ii∩I 6=∅

∫

Ii

|T (f, g)|r.

However the number of index i which appears in the sum is bounded by
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|I|/L, so by using the local estimate we get
∫

I

|T (f, g)|r .
∑

i∈Z
Ii∩I 6=∅

L

|Ii|

∫

Ii

|T (f, g)|r

.
∑

i∈Z
Ii∩I 6=∅

L‖f‖r
∞‖g‖r

∞

. |I|‖f‖r
∞‖g‖r

∞.

The second inequality is due to the fact that :

|Ii|
1/r‖T (f, g)‖r,Ii

.

[
inf
x∈Ii

MHL(f)(x)

] [
inf
x∈Ii

MHL(g)(x)

]
. ‖f‖∞‖g‖∞.

So we obtain (
1

|I|

∫

I

|Tmax(f, g)|r
)1/r

. ‖f‖∞‖g‖∞,

uniformly with L for |I| large enough. ⊓⊔

Let us now define our weights.

Definition 4.2. Let θ > 0 and l > 0 be fixed. We set that a nonnegative
function ω belongs to the class Pθ(l) if there exists a constant C such that
for all interval I of length |I| = l and for all integer k ≥ 0, we have

2−kθ sup
x∈I

ω(x) ≤ C inf
2kI

ω(x). (4.1)

So we claim that a function ω ∈ Pθ(l) seems to be likely a polynomial function
whose the degree is less than θ and it is almost constant at the scale l. We
show in the following example that these classes are not empty.

Example 1. For all θ > 0 and α ∈ [0, θ[, the functions

x → 1, x → (1 + |x|)α and x → (1 + |x|)−α

belong to the class Pθ(1). The proof is easy and left to the reader.

Remark 4.3. In fact, it is easy to prove that a weight ω belongs to the class
Pθ(l) if and only if there exists a constant C such that

∀x, y ∈ R, ω(x) ≤ C

(
1 +

|x − y|

l

)θ

ω(y).

We cannot compare these weights with the Muckenhoupt’s weights, because
for ω ∈ Pθ(l) we have informations only at the scale l.
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We have the following result :

Theorem 4.4. Let T be a bilinear operator and 0 < p, q, r < ∞ be exponents
satisfying

1

r
=

1

p
+

1

q
and 1 ≤ p, q.

For δ > 0 and l > 0, if T satisfies “off-diagonal” estimates at the order δ and
at the scale l, then for all ω ∈ Pθ(l) with 0 ≤ θ < δ max{r, 1}, the operator
T is continuous from Lp(ω) × Lq(ω) in Lr(ω).

Proof : To check this, recall that for all interval I of length |I| = l,

(∫

I

|T (f, g)|r
)1/r

.

(∑

k≥0

2−k(1/p+δ)‖f‖p,2kI

)(∑

k≥0

2−k(1/q+δ)‖g‖q,2kI

)
.

(4.2)
So we decompose the whole space R with the disjoint intervals Ii defined by
Ii = [il, (i + 1)l[ for i ∈ Z. So we have

‖T (f, g)‖r,wdx =
∥∥∥‖T (f, g)‖r,wdx,Ii

∥∥∥
r,i∈Z

.

Let i ∈ Z be fixed, we use (4.1) and (4.2) to obtain

‖T (f, g)‖r,wdx,Ii
≤ ‖w‖1/r

∞,Ii
‖T (f, g)‖r,Ii

. ‖w‖
1/r
∞,Ii

(∑

k≥0

2−k(1/p+δ)‖f‖p,2kIi

)(∑

k≥0

2−k(1/q+δ)‖g‖q,2kIi

)

We estimate the first sum with

‖w‖
1/p
∞,Ii

(∑

k≥0

2−k(1/p+δ)‖f‖p,2kIi

)
.

(∑

k≥0

2−k(1/p+δ) ‖w‖
1/p
∞,Ii

‖f‖p,2kIi

)

.

(∑

k≥0

2−k(1/p+δ)2kθ/p inf
2kIi

ω1/p‖f‖p,2kIi

)

.

(∑

k≥0

2−k(1/p+δ−θ/p)‖f‖p,wdx,2kIi

)
.
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The second term is studied by the same way. By summing over i ∈ Z, we
get

‖T (f, g)‖r,wdx .∥∥∥∥∥

(∑

k≥0

2−k(1/p+δ−θ/p)‖f‖p,wdx,2kIi

)(∑

k≥0

2−k(1/q+δ−θ/q)‖g‖q,wdx,2kIi

)∥∥∥∥∥
r,i∈Z

.

With the help of Hölder’s and Minkowski’s inequalities, we get

‖T (f, g)‖r,wdx .

(∑

k≥0

2−k(1/p+δ−θ/p)
∥∥‖f‖p,wdx,2kIi

∥∥
p,i∈Z

)

(∑

k≥0

2−k(1/q+δ−θ/q)
∥∥‖g‖q,wdx,2kIi

∥∥
q,i∈Z

)
.

However the collection of sets (2kIi)i is a 2k-covering, so

‖T (f, g)‖r,wdx .

(∑

k≥0

2−k(δ−θ/p)‖f‖p,wdx

)(∑

k≥0

2−k(δ−θ/q)‖g‖q,wdx

)
.

Then we conclude with the fact that p, q > 1 hence

max

{
θ

p
,
θ

q

}
≤

{
θ
r

< δ if r ≥ 1
θ < δ if r ≤ 1

.

⊓⊔

Remark 4.5. From the fact that the weight ω(x) = 1 belongs to the class
Pθ(L), we have also proved that the operators of Theorem 1.1 and the max-
imal operators of Theorems 3.3,3.4, 3.5 are bounded in classical Lebesgue
spaces.

We complete this result by the following proposition in Sobolev spaces.

Definition 4.6. Let ω be a weight on R. For all m ≥ 0 and p ∈]1,∞[, we set
W m,p(ω) for the Sobolev space on R with the weight ω, defined as the set of

distributions f ∈ S ′(R) such that Jm(f) ∈ Lp(ω), where Jm := (Id − ∆)m/2.
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Proposition 4.7. Let ∆ be a nondegenerate line, ω be a weight in ∪θ≥0Pθ(1)
and σ ∈ C∞(R3) be a symbol satisfying

∀a, b, c ≥ 0,
∣∣∂a

x∂
b
α∂c

βσ(x, α, β)
∣∣ . (1 + d((α, β), ∆))−b−c .

Let p, q, r be exponents satisfying

0 <
1

r
=

1

p
+

1

q
<

3

2
and 1 < p, q ≤ ∞.

Then the bilinear operator Tσ (defined on S(R) × S(R) by (1.2)) satisfies :
for all integer n ≥ 0

∀f, g ∈ S(R),
∥∥D(n)Tσ(f, g)

∥∥
Lr(ω)

.
∑

0≤i,j≤n

i+j≤n

‖D(i)f‖Lp(ω)‖D
(j)g‖Lq(ω).

(4.3)
Here we write D(i) for the derivative operator of order i. Also Tσ is contin-
uous from W m,p(ω) × W m,q(ω) in W m,r(ω) for all real m ≥ 0.

Proof : Let us begin to prove (4.3). The two functions f and g are smooth
so we can differentiate the integral defining Tσ(f, g). It is also easy to check
that

D(1)Tσ(f, g) = Tσ(D(1)f, g) + Tσ(f, D(1)g) + T∂xσ(f, g).

Then for higher orders, we get

D(n)Tσ(f, g) =
∑

0≤i,j,k≤n

i+j+k=n

T∂k
xσ(D

(i)f, D(j)g).

By using the previous Theorems 1.1 and 4.4, we obtain (4.3). We can also
deduce a weaker estimate :

∀f, g ∈ S(R),
∥∥D(n)Tσ(f, g)

∥∥
r,ω

. ‖f‖W n,p(ω)‖g‖W n,q(ω).

By density (see Lemma 4.8), the operator Tσ can be continuously extended
from W n,p(ω) × W n,q(ω) into W n,r(ω). Then we will use interpolation to
extend this result when n is not an integer. The exponents p, q, r are fixed
and we study the bilinear operator Tσ. We have shown that Tσ is continuous
from W n,p(ω)×W n,q(ω) into W n,r(ω), for all integer n. By using the bilinear
interpolation (with Lemme 4.8) 1 on n, we finish the proof. ⊓⊔

1The theory of the multilinear interpolation is studied in the chapter 4 of [24] for the
real interpolation and in Theorem 4.4.1 of [3] for the complex interpolation.
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Lemma 4.8. For all weight ω ∈ ∪θ≥0Pθ(1), all exponent 1 < p < ∞ and all
real s ≥ 0, the space S(R) is a dense subspace in W s,p(ω). In addition, the
collection of Sobolev spaces (W s,p(ω))s≥0 form an interpolation scale.

Proof : Let ω be a fixed weight in ∪θ≥0Pθ(1). We have seen in Remark
4.3 that ω has a polynomial growth. Due to the fact that Js(S(R)) = S(R),

we have the inclusion S(R) ⊂ W s,p(ω). Recall that Js := (Id − ∆)s/2. In
addition, we have that Lp(ω) ⊂ S ′(R), so we can compute the operator J−s

on the space Lp(ω). We finally obtain that Js is an automorphism from
W s,p(ω) to Lp(ω) and an isomorphism on S(R). As S(R) is dense in Lp(ω),
we get the density of S(R) into the Sobolev space W s,p(ω).
For the interpolation claim, we omit the details. The classical proof for
complex interpolation with ω = 1 can easily been extended to the general
case. ⊓⊔

Remark 4.9. From the fact that the weight ω(x) = 1 belongs to the class
Pθ(1), we have also proved that the operators of Theorem 1.3 satisfy an
Hölder’s inequality in Sobolev spaces.

Remark 4.10. Also with the notation of [2], we have proved continuities
for all the operators associated to symbols σ ∈ BS0

1,0;θ. In addition, we
have described the action of these operators on Sobolev spaces. This is an
interesting improvement of this article and it incite us to obtain new results
in order to continue the construction of a bilinear pseudodifferential calculus.
We will do it in a next paper [4] by introducing new larger symbolic classes
of bilinear symbols of order (m1, m2).
About continuities in Lebesgue spaces, a question is still open : what about
the class BS0

ρ,δ;θ (defined in [2]) ?
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