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An algorithm is presented for the computation of the topology of a non-reduced space curve defined as the intersection of two implicit algebraic surfaces. It computes a Piecewise Linear Structure (PLS) isotopic to the original space curve.

The algorithm is designed to provide the exact result for all inputs. It's a symbolic-numeric algorithm based on subresultant computation. Simple algebraic criteria are given to certify the output of the algorithm.

The algorithm uses only one projection of the non-reduced space curve augmented with adjacency information around some "particular points" of the space curve.

The algorithm is implemented with the Mathemagix Computer Algebra System (CAS) using the SYNAPS library as a backend.

Introduction

The problem of computing the topological graph of algebraic curves plays an important role in many applications such as plotting [START_REF] Mittermaier | Plotting Algebraic Space Curves by Cluter Computing[END_REF] and sectioning in Computer Aided Geometric Design [START_REF] Bajaj | Tracing Surfaces Intersection[END_REF], [START_REF] Keyser | Efficient and Exact Manipulation of Algebraic Points and Curves[END_REF]. A wide literature exists on the computation of the topology of plane curves ( [START_REF] Gonzalez-Vega | Efficient topology determination of implicitly defined algebraic plane curves[END_REF], [START_REF] Gatellier | Computing the topology of three-dimensional algebraic curves[END_REF], [START_REF] Grandine | A new approach to the surface intersection problem[END_REF], [START_REF] Owen | Intersection of general implicit surfaces[END_REF], [START_REF] Eigenwillig | Fast and Exact Geometric Analysis of Real Algebraic Plane Curves[END_REF], [START_REF] Kahoui | Topology of real algebraic space curves[END_REF] and [START_REF] Hong | An Efficient Method for Analyzing The Topology of Plane Real Algebraic Curves[END_REF]). The problem of computing the topology of space curves has been less investigated. In [START_REF] Alcazár | Computation of the Topology of Algebraic Space Curves[END_REF], Alcázar and Sendra give a symbolic-numeric algorithm for reduced space curves using subresultant and GCD computations of approximated polynomials. If their approach gives good practical results however it doesn't give a rigorous proof that a sufficient precision is selected for all inputs in the computation of GCD of approximated polynomials. In [START_REF] Owen | Intersection of general implicit surfaces[END_REF], Owen, Rockwood and Alyn give a numerical algorithm for reduced space curve using subdivision method. Their algorithm has a good complexity but the topology around the singularities of the space curve is not certified. We also mention the work in [START_REF] Gatellier | Computing the topology of three-dimensional algebraic curves[END_REF], where two projections of a reduced space curve are used, and where the connection algorithm is valid under genericity conditions.

To our knowledge, the general problem of computing the topology of non-reduced space curves is not investigated in the algorithmic point of view despite its significance in the problem of computing the topology of a real algebraic surface.

We present a certified algorithm that computes the topology of non-reduced algebraic space curves. We compute the topology of a plane projection of the space curve and then we lift the computed topology on the space. The topology of the projected curve is computed using a classical sweeping algorithm (see [START_REF] Grandine | A new approach to the surface intersection problem[END_REF], [START_REF] Gonzalez-Vega | Efficient topology determination of implicitly defined algebraic plane curves[END_REF]). For the computation of the topology of a plane algebraic curve, we present an efficient generic test that certifies the output of the algorithm in [START_REF] Gonzalez-Vega | Efficient topology determination of implicitly defined algebraic plane curves[END_REF] .

For space curves, we introduce the notion of pseudo-generic position. A space curve is said to be in pseudo-generic position with respect to the (x, y)-plane if and only if almost every point of its projection on the (x, y)-plane has only one geometric inverse-image. A simple algebraic criterion is given to certify the pseudo-genericity of the position of a space curve. From a theoretical point of view, the use of the notion of curve in pseudo-generic position gives us a rational parametrization of the space curve. The use of this rational parametrization allows us to lift the topology computed after projection without any supplementary effort. From a practical point of view, the use of the rational parametrization of the space curve makes the lifting faster, avoiding numerical problems.

We need to distinguish two kinds of singularities on the projected curve. A certified algorithm is given to do so. Unlike previous approaches, our algorithm uses only one projection of the space curve and works for non-reduced space curves. We therefore avoid the cost of the second projection used by previous approaches. In the next section we describe the fundamental algebraic tools that we use in this paper. In Section 2, we present our contribution to certify the algorithm for computing the topology of a plane algebraic curve. Our algorithm itself is introduced in Section 3. We report on our implementation and experiments in section 4.

SUBRESULTANTS

Let P1, P2 ∈ É[X, Y, Z] and CÊ := {(x, y, z) ∈ Ê 3 | P1(x, y, z) = P2(x, y, z) = 0} be the intersection of the vanishing sets of P1 and P2. Our curve analysis needs to compute a plane projection of CÊ. Subresultant sequences are a suitable tool to do it. For the reader's convenience, we recall their definition and relevant properties. For all the results of this section, we refer to [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF], for proofs.

Let A be a integral domain. Let P = p i=0 aiX i and Q = q i=0 biX i be two polynomials with coefficients in A. We shall always assume ap = 0, bq = 0 and p q.

Let Èr(A) be the set of polynomials in A[X] of degree not exceeding r, always, with the basis (as an A-module) 1, X, . . . , X r . If r < 0, we set Èr(A) = 0 by convention, and we will identify an element S = s0 + . . . + srX r of Èr(A) with the row vector (s0, . . . , sr).

Let k be an integer such that 0 k q, and let Ψ k :

È q-k-1 (A) × È p-k-1 (A) → È p+q-k-1 (A) be the A-linear map defined by Ψ k (U , V ) = P U +QV , with M k (P, Q) the (p + q -k) × (p + q -k) matrix of Ψ k .
As we write vectors as row vectors, we have 

M k (P, Q) =           a0 
         
That is M0(P, Q) is the classical Sylvester matrix associated to P, Q. To be coherent with the degree of polynomials, we will attach index i -1 to the i th column of M k (P, Q), so the indices of the columns go from 0 to p + qk -1.

Definition 1 For j p+q-k-1 and 0 k q, let sr k,j be the determinant of the submatrix of M k (P, Q) formed by the last p + q -2k -1 columns, the column of index j and all the (p + q -2k) rows. The polynomial Sr k (P, Q) = sr k,0 + . . . + sr k,k X k is the k th sub-GCD of P and Q, and its leading term sr k,k (sometimes noted sr k ) is the k th subresultant of P and Q. So, it follows that Sr0(P, Q) = sr0 is the usual resultant of P and Q.

Remark 1

1. For k < j p + qk -1, we have sr k,j = 0, because it is the determinant of a matrix with two equal columns.

2. If q < p, we have Srq = (bq) p-q-1 Q and srq = (bq) p-q .

The following proposition will justify the name of sub-GCD given to the polynomial Sr k .

Proposition 1 Let d be the degree of the GCD of P and Q (d is defined because A is an integral domain, so we may compute the GCD over the quotient field of A). Let k be an integer such that k d.

1. The following assertions are equivalent:

a) k < d; b) Sr k = 0; c) sr k = 0.
2. sr d = 0 and Sr d is the GCD of P and Q.

Theorem 1 Fundamental property of subresultants

The first polynomial Sr k associated to P and Q with sr k = 0 is the greatest common divisor of P and Q.

We will often call (Sri)i the subresultant sequence associated to P and Q and (sri,j)i,j the sequence of their subresultants coefficients. We will denote by lcoefX (f ) the leading coefficient of the polynomial f with respect to the variable X.

Theorem 2 Specialization property of subresultants Let P1, P2 ∈ A[Y, Z] and (Sri(Y, Z) )i be their subresultant sequence with respect to Z. Then for any α ∈ A with: degZ (P (Y, Z)) = degZ (P (α, Z)); degZ (Q(Y, Z)) = degZ (Q(α, Z)), (Sri(α, Z) )i is the subresultant sequence of the polynomials P (α, Z) and Q(α, Z).

TOPOLOGY OF A PLANE ALGEBRAIC CURVE

Let f ∈ É[X, Y ] be a square free polynomial and C(f

) := {(α, β) ∈ Ê 2 , f (α, β) = 0} (1) 
be the real algebraic curve associated to f . We want to compute the topology of C(f ).

For curves in generic position, computing its critical fibers and one regular fiber between two critical ones is sufficient to obtain the topology using a sweeping algorithm (see [START_REF] Gonzalez-Vega | Efficient topology determination of implicitly defined algebraic plane curves[END_REF]). But for a good computational behaviour, it is essential to certify the genericity of the position of the curve.

We propose an effective test allowing to certify the computation and connection, in a deterministic way. This is an important tool in order to address the case of space curves. Now, let us introduce the definitions of generic position, critical, singular and regular points.

Definition 2 Let f ∈ É[X, Y ] be a square free polynomial and C(f ) = {(α, β) ∈ Ê 2 : f (α, β) = 0} be the curve defined by f. A point (α, β) ∈ C(f ) is called: • a x-critical point if ∂Y f (α, β) = 0, • a singular point if ∂X f (α, β) = ∂Y f (α, β) = 0, • a regular point if ∂X f (α, β) = 0 or ∂Y f (α, β) = 0.
With these definitions we can describe the generic conditions required for plane curves.

Definition 3 Let f ∈ É[X, Y ] be a square free polynomial and C(f ) = {(α, β) ∈ Ê 2 : f (α, β) = 0} be the curve de- fined by f. Let Nx(α) := #{β ∈ Ê, such that (α, β) is a x-critical point of C(f ) } . C(f ) is in generic position for the x-direction, if: 1. ∀α ∈ , Nx(α) 1,
2. There is no asymptotic direction of C(f ) parallel to the y-axis.

This notion of genericity also appears in [START_REF] Eigenwillig | Fast and Exact Geometric Analysis of Real Algebraic Plane Curves[END_REF] and in a slightly more restrictive form in [START_REF] Kahoui | Topology of real algebraic space curves[END_REF]. Previous approaches succeed if genericity conditions are satisfied, but they do not guarantee to reject the curve if they are not; i.e, it does not decide genericity. So for some input curves the computed topology might not be exact.

A change of coordinates such that lcoefY (f ) ∈ É * is suf- ficient to place C(f ) in a position such that any asymptotic direction is not parallel to the y-axis. It remains to find an efficient way to verify the first condition. This follows from the next propositions. We refer to [START_REF] Gonzalez-Vega | Efficient topology determination of implicitly defined algebraic plane curves[END_REF], for proofs.

Proposition 2 Let f ∈ É [X, Y ] be a square free polyno- mial with lcoefY (f ) ∈ É * , ResY (f, ∂Y f ) be the resultant
with respect to Y of the polynomials f , ∂Y f and { α1, . . . , α l } be the set of the roots of ResY (f, ∂Y f ) in .

Then

C(f ) is in generic position if and only if ∀i ∈ {1, . . . , l}, gcd (f (αi, Y ), ∂Y f (αi, Y )) has at most one root. Let f ∈ É [X, Y ] be a square free polynomial with lcoef Y (f ) ∈ É * and d := deg Y (f ).
We denote by Sri(X, Y ) the i th subresultant polynomial of f and ∂Y f and sri,j(X) the coefficient of Y j in Sri(X, Y ). We define inductively the following polynomials: Φ0(X) = sr0,0(X) gcd(sr0,0(X), sr ′ 0,0 (X))

; ∀i ∈ {1, . . . , d -1}, Φi(X) = gcd(Φi-1(X), sri,i (X)) and Γi(X)

= Φ i-1 (X) Φ i (X) . Proposition 3 1. Φ0(X) = d-1 i=1 Γi(X) and ∀i, j ∈ {1, . . . , d -1}, i = j =⇒ gcd(Γi(X), Γj(X)) = 1; 2. Let k ∈ {1, . . . , d -1}, α ∈ . Γ k (α) = 0 if and only if gcd(f (α, Y ), ∂Y f (α, Y )) = Sr k (α, Y ); 3. {(α, β) ∈ Ê 2 : f (α, β) = ∂Y f (α, β) = 0} = d-1 k=1 {(α, β) ∈ Ê 2 : Γ k (α) = Sr k (α, β) = 0}.
In the following theorem, we give an effective and efficient algebraic test to certify the genericity of the position of a curve with respect to a given direction.

Theorem 3 Let f ∈ É [X, Y ] be a square free polynomial such that degY (f) = d, lcoefY (f ) ∈ É * . Then C(f ) is in generic position for the projection on the x axis if and only if ∀k ∈ {1, . . . , d -1}, ∀i ∈ {0, . . . , k -1}, k(k -i) sr k,i (X) sr k,k (X) -(i + 1) sr k,k-1 (X) sr k,i+1 (X) = 0 mod Γ k (X). Proof. Assume that C(f ) is in generic position and let α ∈ be a root of Γ k (X). According to Proposition 3 (2.) gcd(f (α, Y ), ∂Y f (α, Y )) = Sr k (α, Y ) = k j=0 sr k,j (α)Y j . According to Proposition 2, Sr k (α, Y ) has an only root β(α) = - sr k,k (α) k sr k,k-1 (α) , so Sr k (α, Y ) = sr k,k (α)(Y -β) k . Binomial Newton formula gives Sr k (α, Y ) = sr k,k (α)(Y -β) k = sr k,k (α) k i=0 k i (-β) k-i Y i . So by identification ∀k ∈ {1, . . . , d -1}, ∀i ∈ {0, . . . , k -1} and ∀α ∈ such that Γ k (α) = 0, k(k -i) sr k,i (α) sr k,k (α) -(i + 1) sr k,k-1 (α) sr k,i+1 (α) = 0. It is to say that ∀k ∈ {1, . . . , d -1}, ∀i ∈ {0, . . . , k -1}, k(k -i) sr k,i (X) sr k,k (X) -(i + 1) sr k,k-1 (X) sr k,i+1 (X) = 0 mod Γ k (X). Conversely, let α be a root of Γ k (X) such that k(k -i) sr k,i (α) sr k,k (α) -(i + 1) sr k,k-1 (α) sr k,i+1 (α) = 0.
With the same argument used in the first part of this proof we obtain

gcd (f (α, Y ), ∂Y f (α, Y )) = Sr k (α, Y ) = k j=0 sr k,j (α)Y j = sr k,k (α)(Y -β) k (2) with β = - sr k,k-1(α) k sr k,k(α) . (3) 
Then we conclude that gcd(f (α, Y ), ∂Y f (α, Y )) has only one distinct root and, according to Proposition 2, C(f ) is in generic position.

Remark 2 Theorem 3 shows that it is possible to check with certainty if a plane algebraic curve is in generic position or not. If not, we can put it in generic position by a basis change.

In fact, it is well known that there is only a finite number of bad changes of coordinates of the form X := X + λY , Y := Y , such that if C(f ) is not in generic position then the transformed curve remains in a non-generic position. This number of bad cases is bounded by c 2 , where c is the number of distinct x-critical points of C(f ) [START_REF] Gonzalez-Vega | Efficient topology determination of implicitly defined algebraic plane curves[END_REF].

TOPOLOGY OF IMPLICIT THREE DI-MENSIONAL ALGEBRAIC CURVES

Description of the problem

Let P1, P2 ∈ É[X, Y, Z] and CÊ := {(x, y, z) ∈ Ê 3 : P1(x, y, z) = P2(x, y, z) = 0} (4)
be the intersection of the surfaces defined by P1 = 0 and P2 = 0. We assume that gcd(P1, P2) = 1 so that CÊ is a space curve. Our goal is to analyze the geometry of CÊ in the following sense: We want to compute a piecewise linear graph of Ê 3 isotopic to the original space curve.

Our method allows to use a new sweeping algorithm using only one projection of the space curve.

To make the lifting possible using only one projection, a new definition of generic position for space curves and an algebraic characterization of it are given. We will also need to distinguish the "apparent singularities" and the "real singularities". A certified algorithm is given to distinguish these two kinds of singularities.

For the lifting phase, using the new notion of curve in pseudogeneric position, we give an algorithm that computes a rational parametrization of the space curve. The use of this rational parametrization allows us to lift the topology of the projected curve without any supplementary computation.

Genericity conditions for space curves

Let Πz : (x, y, z) ∈ Ê 3 → (x, y) ∈ Ê 2 . We still denote Πz = Πz|C Ê . Let D = Πz(CÊ) ⊂ Ê 2 be the curve obtained by projection of CÊ.

We assume that deg Let m be the minimum of deg Z (P1) and deg Z (P2). The following theorems give us an effective way to test if a curve is in pseudo-generic position or not.

Theorem 4 Let (Srj(X, Y, Z)) j∈{0,...,m} be the subresultant sequence and (srj(X, Y )) j∈{0,...m} be the principal subresultant coefficient sequence. Let (∆i(X, Y )) i∈{1,...,m} be the sequence of É[X, Y ] defined by the following relations

• ∆0(X, Y ) = 1; Θ0(X, Y ) = h(X, Y ); • For i ∈ {1, ..., m}, Θi(X, Y ) = gcd(Θi-1(X, Y ), sri(X, Y )), ∆i(X, Y ) = Θ i-1 (X,Y ) Θ i (X,Y ) .
For i ∈ {1, . . . , m}, let C(∆i) := (x, y) ∈ Ê 2 |∆i(x, y) = 0 } and C(h

) := {(x, y) ∈ Ê 2 |h(x, y) = 0} then 1. h(X, Y ) = m i=1 ∆i(X, Y ), 2. C(h) = m i=1 C(∆i),
3. CÊ is in pseudo-generic position with respect to the (x, y)plane if and only if ∀i ∈ {1, . . . , m}, ∀(x, y) ∈ 2 such that sri(x, y) = 0 and ∆i(x, y) = 0, we have

Sri(x, y, Z) = sri,i(x, y) Z + sr i,i-1 (x,y) i sr i,i (x,y) i . Proof. 1. By definition, ∀i ∈ {1, . . . , m}, ∆i(X, Y ) = Θ i-1 (X,Y ) Θ i (X,Y ) . So by a trivial induction m i=1 ∆i(X, Y ) = Θ0(X, Y ) Θm(X, Y ) . deg Z (P1) = deg(P1) and deg Z (P2) = deg(P2) imply srm(X, Y ) ∈ É * (see Remark 1). So Θm(X, Y ) = gcd(Θm-1(X, Y ), srm(X, Y ) )= 1, then m i=1 ∆i(X, Y ) = Θ0(X, Y ) = h(X, Y ). 2. Knowing that h(X, Y ) = m i=1
∆i(X, Y ), so it is clear that

C(h) = m i=1
C(∆i).

3. Assume that CÊ is in pseudo-generic position with respect to the (x, y)-plane. Let i ∈ {1, . . . , m} and (α, β) ∈ 2 such that sri(α, β) = 0 and ∆i(α, β) = 0. Then ∆i(X, Y )

= Θ i-1 (X,Y ) Θ i (X,Y ) =⇒ Θi-1(α, β) = 0. Knowing that Θi-1(X, Y ) = gcd(Θi-2(X, Y ), sri-1(X, Y )), so it exists d1, d2 ∈ É[X, Y ] such that Θi-2(X, Y ) = d1(X, Y )Θi-1(X, Y ) and sri-1(X, Y ) = d2(X, Y )Θi-1(X, Y ).
In this way, Θi-1(α, β) = 0 =⇒ Θi-2(α, β) = 0 and sri-1(α, β) = 0. By using the same arguments, Θi-2(α, β) = 0 =⇒ Θi-3(α, β) = 0 and sri-2(α, β) = 0. By repeating the same argument, we show sri-1(α, β) = . . . = sr0(α, β) = 0. Because sri(α, β) = 0, then the fundamental theorem of subresultant gives gcd((P1(α, β, Z), P2(α, β, Z)) = Sri(α, β, Z) = i j=0 sri,i-j (α, β)Z i-j . Knowing that CÊ is in pseudogeneric position with respect to the (x, y)-plane and ∆i(α, β) = 0 then the polynomial Sri(α, β, Z) has only one distinct root which can be written -

sr i,i-1 (α,β)
i sr i,i-1 (α,β) depending on the relation between coefficients and roots of a polynomial. So Sri(α,

β, Z) = m j=0 sr,i,i-j (α, β)Z i-j = sri,i(α, β) Z + sr i,i-1 (α,β) i sr i,i-1 (α,β) i .
Conversely, assume that ∀i ∈ {1, . . . , m}, ∀(x, y) ∈ 2 such that sri(x, y) = 0 and ∆i(x, y) = 0, we have

Sri(x, y, Z) = m j=0 sr,i,i-j(x, y)Z i-j = sri,i(x, y) Z + sr i,i-1 (x,y) i sr i,i-1 (x,y) i .
Let O be an irreductible component of Πz(C ). Then there exists i ∈ {1, . . . , m} such that O ⊂ C(∆i). Let (α, β) be a point of O, such that ∆i(α, β) = 0 and sri(α, β) = 0. Now if we define γ := -sr i,i-1 (α,β) i sr i,i (α,β) , we obtain that Sri(α, β, γ) = 0, then (α, β, γ) is the only point of C with (α, β) as projection. So CÊ is in pseudo-generic position with respect to the (x, y)-plane.

The following proposition is a corollary of the third result of the previous theorem. If CÊ is in pseudo-generic position with respect to the (x, y)-plane, it gives a rational parametrization for the regular points of CÊ.

Proposition 4 Assume that CÊ is in pseudo-generic position with respect to the (x, y)-plane and let (α, β, γ) ∈ CÊ such that sri(α, β) = 0 and ∆i(α, β) = 0. Then,

γ := - sri,i-1(α, β) i sri,i(α, β) . ( 5 
)
Remark 3 By construction, the parametrization given in Proposition 4 is valid when sri,i(α, β) = 0. If sri,i(α, β) = 0 then either ∆j(α, β) = 0 for some j > i or (α, β) is a xcritical point of C(∆i) (see section 3.3).

The following theorem gives an algebraic test to certify the pseudo-genericity of the position of a space curve with respect to a given plane. )

Sri(α, β, Z) = i j=0 sr,i,i-j (α, β)Z i-j = sri,i(α, β) Z + sr i,i-1 (α,β) i sr i,i-1 (α,β) i . Let γ := - sr i,i-1 (α,β) i sr i,i-1 (α,β) , then Sri(α, β, Z) = i j=0 sr,i,i-j(α, β)Z i-j = sri,i(α, β) (Z -γ) i .
Using the binomial Newton formula we obtain Sri(α, β, Z)

= i j=0 sr,i,i-j (α, β)Z i-j = sri,i(α, β) i j=0 i j (-γ) i-j Z j . So by identification, it comes that ∀i ∈ {1, . . . , m -1}, ∀j ∈ {0, . . . , i -1}, i(i-j) sri,j(α, β) sri,i(α, β)-(i+j) sri,i-1(α, β) sri,j+1(α, β) = 0, ∀(α, β), ∆i(α, β) = 0.
The reciprocal uses the same arguments.

Remark 4 Theorem 5 shows that it is possible to check with certainty if a space algebraic curve is in pseudo-generic position or not. If it is not, we can put it in pseudo-generic position by a change of coordinates. In fact, there is only a finite number of bad changes of coordinates of the form X := X + λZ; Y := Y + µZ; Z := Z, with λ, µ ∈ É * such that if CÊ is not in pseudo-generic position then the transformed curve remains in a non-pseudogeneric position [START_REF] Alcazár | Computation of the Topology of Algebraic Space Curves[END_REF].

Let us introduce the definitions of generic position, critical, singular, regular points, apparent singularity and real singularity for a space algebraic curve.

Definition 5 Let M (X, Y, Z) be the 2×3 Jacobian matrix with rows (∂XP1, ∂Y P1, ∂ZP1) and (∂X P2, ∂Y P2, ∂ZP2).

• A point p∈ CÊ is regular (or smooth) if the rank of M (p) is 2.

• A point p∈ CÊ which is not regular is called singular.

• A point p = (α, β, γ) ∈ CÊ is x-critical (or critical for the projection on the x-axis) if the curve CÊ is tangent at this point to a plane parallel to the (y,z)-plane. The corresponding α is called a x-critical value. We call:

1. Apparent singularities: the singularities of the projected curve D = Πz(CÊ) with at least two points as inverseimages (see figure 1).

2. Real singularities: the singularities of the projected curve D = Πz(CÊ) with exactly one point as inverse-image (see figure 1).

Definition 7 [Generic position]

The curve CÊ is in generic position with respect to the (x, y)-plane if and only if 1. CÊ is in pseudo-generic position with respect to the (x, y)plane,

2. D = Πz(CÊ) is in generic position (as a plane algebraic curve) with respect to the x-direction, 3. any apparent singularity of D = Πz(CÊ) is a node.

This notion of genericity also appears in a slightly more restrictive form in [START_REF] Alcazár | Computation of the Topology of Algebraic Space Curves[END_REF]. The aim of the next section is to give an algorithm to certify the third point of the previous definition of generic position. We give also in this section an effective way to distinguish the real singularities from the apparent ones.

Distinguish real singularities and apparent singularities

In this section, we suppose that CÊ is in pseudo-generic position and D = Πz(CÊ) is in generic position as a plane algebraic curve.

Let (Γj(X)) j∈{1,...,n} be the sequence of Γ polynomials associated to the plane curve D and (βj(X)) j∈{1,...,n} be the sequence of associated rational parametrization (see (3) ). Let (Srj(X, Y, Z)) j∈{0,...,m} be the subresultant sequence as-

sociated to P1, P2 ∈ É[X, Y, Z]. For any (k, i) ∈ {1, . . . , m}× {0, . . . , k -1 } let, R k,i (X, Y ) be the polynomial k(k-i) sr k,i (X, Y ) sr k,k (X, Y )-(i+1) sr k,k-1 (X, Y ) sr k,i+1 (X, Y ). Lemma 1 Let (a, b) ∈ Ê 2 such that sr k,k (a, b) = 0, the polynomial Sr k (a, b, Z) = k i=0 sr k,i (a, b)Z i ∈ Ê[Z] has one and only one root if and only if ∀i ∈ {0, . . . , k-1 } R k,i (a, b) = 0.
For any j ∈ {1, . . . , n } we define the sequences (u k (X)) k∈{1,...,j} and (v k (X)) k∈{2,...,j} by u1(X) := gcd(Γj (X), sr1,1(X, βj (X))),

u k (X) := gcd(sr k,k (X, βj (X)), u k-1 (X)) v k (X) := quo(u k-1 (X), u k (X)). For k ∈ {2, . . . , j} and i ∈ {0, k -1}, we define (w k,i (X)) by w k,0 (X) := v k (X), w k,i+1 (X) := gcd(R k,i (X, βj (X)), w k,i (X)).
Theorem 6 For any j ∈ {1, . . . , n } , let (Γ j,k (X) ) k∈{1,...,j} and (χ j,k (X) ) be the sequences defined by the following relations Γj,1(X) = quo(Γj(X), u1(X)) and Γ j,k (X) := w k,k (X). χ j,k (X) := quo(w k,0 (X), Γ j,k (X)).

1. For any root α of Γ j,k (X), the x-critical fiber (α, βj (α))

contain only the point (α, βj (α), γj(α)) with γj(α) := -

sr k,k-1 (α,β j (α))
k sr k,k (α,β j (α)) , so (α, βj (α)) is a real singularity.

2. For any root α of χ j,k (X), (α, βj(α)) is an apparent singularity.

3. CÊ is in generic position if and only if for any (j, k) ∈ {2, . . . , n} × {2, . . . j} χ j,k (X) = 1.

Proof. 1. Let α be a root of Γ j,k (X) := w k,k (X) = gcd(R k,k-1 (X, βj (X)), w k,k-1 (X)). Then w k,k-1 (α) = R k,k-1 (α, βj (α)) = 0. w k,k-1 (X) := gcd(R k,k-2 (X, βj (X)), w k,k-2 (X)), so w k,k-2 (α) = R k,k-2 (α, βj (α)) = 0.
By induction, using the same argument, it comes that for i from 0 to (k -1),

w k,i (α) = R k,i (α, βj (α)) = 0. w k,0 (X) := v k (X), so v k (α) = 0. Knowing that v k (X) := quo(u k-1 (X), u k (X)); u k (X) and u k-1 (X) are square free, then u k-1 (α) = 0 and u k (α) = 0. Knowing that u k (X) = gcd(sr k,k (X, βj (X)), u k-1 (X)), then sr k,k (α, βj (α)) = 0. u k-1 (X) = gcd(sr k-1,k-1 (X, βj(X)), u k-2 (X)) and u k-1 (α) = 0, so sr k-1,k-1 (α, βj (α)) = u k-2 (α) = 0.
By induction, using the same argument, it comes that for i from 0 to k -1 sri,i(α, βj (α)) = 0. For i from 0 to k -1 sri,i(α, βj (α)) = 0 and sr k,k (α, βj (α)) = 0, so by the fundamental theorem of subresultants, gcd(P1(α,

βj (α), Z), P2(α, βj (α), Z)) = Sr k (α, βj (α), Z) = k i=0 sr k,i (α, βj (α))Z i . Knowing that gcd(P1(α, βj (α), Z), P2(α, βj (α), Z)) = Sr k (α, βj (α), Z) = k i=0 sr k,i (α, βj (α) 
)Z i and for i from 0 to (k -1), R k,i (α, βj (α)) = 0 then by the previous lemma the polynomial gcd(P1(α, βj(α), Z), P2(α, βj (α), Z) have only one root γj (α) := -

sr k,k-1 (α,β j (α))
k×sr k,k (α,β j (α)) .

2. Let α be a root of the polynomial χ j,k (X) := quo(w k,0 (X), Γ j,k (X)). Then w k,0 (α) = 0 and Γ j,k (α) = w k,k (α) = 0 because w k,0 (X) and Γ j,k (X) are square free. For i from 0 to k -1, knowing that w k,i+1 (X) := gcd(R k,i (X, βj(X)), w k,i (X)), w k,0 (α) = 0 and w k,k (α) = 0, then it exist i ∈ {0, . . . , k-1 } such that R k,i (α, βj(α)) = 0. So by the previous lemma the polynomial Sr k (α, βj(α), Z) = k i=0 sr k,i (α, βj (α))Z i has at least two distinct roots. By definition w k,0 (X) := v k (X), so v k (α) = 0. Knowing that v k (X) := quo(u k-1 (X), u k (X)); u k (X) and u k-1 (X) are squarefree, then u k-1 (α) = 0 and u k (α) = 0. u k-1 (α) = 0, u k (α) = 0 and u k (X) = gcd(sr k,k (X, βj (X)), u k-1 (X)) imply sr k,k (α, βj(α)) = 0. u k-1 (X) = gcd(sr k-1,k-1 (X, βj (X)), u k-2 (X)) and u k-1 (α) = 0 imply sr k-1,k-1 (α, βj (α)) = u k-2 (α) = 0. By induction, using the same argument it comes that for i from 0 to (k -1) sri,i(α, βj(α)) = 0. For i from 0 to (k -1) sri,i(α, βj (α)) = 0 and sr k,k (α, βj(α)) = 0, so by the fundamental theorem of subresultants gcd(P1(α, βj (α), Z), P2(α, βj (α), Z)) = Sr k (α, βj (α), Z) = k i=0 sr k,i (α, βj (α))Z i . gcd(P1(α, βj (α), Z), P2(α, βj (α), Z)) = Sr k (α, βj (α), Z) and Sr k (α, βj (α), Z) has at least two distinct roots imply that (α, βj (α)) is an apparent singularity. 

Lifting and connection phase

In this section, we suppose that CÊ is in generic position that means that CÊ is in pseudo-generic position, D = Πz(CÊ) is in generic position as a plane algebraic curve and any apparent singularity of D = Πz(CÊ) is a node.

To compute the topology of CÊ we first compute the topology of its projection on the (x, y)-plane and in second we lift the computed topology.

As mentioned in section 2, to compute the topology of a plane algebraic curve in generic position, we need to compute its critical fibers and one regular fiber between two critical ones. So to obtain the topology of CÊ we just need to lift the critical and regular fibers of D = Πz(CÊ).

Here after we explain how this lifting can be done without any supplementary computation for the regular fibers and the real critical fibers. And for the special case of the apparent singular fibers, we present a new approach for the lifting and the connections.

Lifting of the regular points of D = Πz(CÊ)

The lifting of the regular fibers of D = Πz(CÊ) is done by using the rational parametrizations given in Proposition 4.

Lifting of the real singularities of D = Πz(CÊ)

The lifting of the real singularities of D = Πz(CÊ) is done by using the rational parametrizations given by 1. of Theorem 6. For a space curve in pseudo-generic position, the connections between real singularities and regular points are exactly those obtained on the projected curve using Grandine's sweeping algorithm [START_REF] Gonzalez-Vega | Efficient topology determination of implicitly defined algebraic plane curves[END_REF] (see figure 2).

Connection between real singularities and regular points

Lifting of the apparent singularities

The lifting of the topology around an apparent singularity is a little more complex. Above an apparent singularity of D = Πz(CÊ) we have firstly to compute the z-coordinates and secondly to decide which of the two branches pass over the other (see figure 3). We solve these problems by analyzing the situation at an apparent singularity. 

sr i,i-1 (a,b) i sr i,i (a,b) . So the func- tion (x, y) -→ Zi := - sr i,i-1 (x,y)
i sr i,i (x,y) gives the z-coordinate of any (a, b, c) ∈ CÊ such that ∆i(a, b) = 0 and sri,i(a, b) = 0. ∆i(α, β) = 0 but sri,i(α, β) = 0, so the function Zi is not defined on (α, β). The solution comes from the fact that the function Zi is continuously extensible on (α, β). Let u1 be the slope of the tangent line of C(∆i) at (α, β) and t ∈ Ê * . Let γi(t) := Zi(α, β + tu1) = -sr i,i-1 (α,β+tu 1 ) i sr i,i (α,β+tu 1 ) . Knowing that the algebraic curve CÊ hasn't any discontinuity, it comes lim t→0 + γi(t) = lim t→0 -γi(t) = γ1. By the same arguments, if we denote u2 the slope of the tangent line of C(∆j) at (α, β) and γj(t) := Zj(α, β + tu2) = sr j,j-1 (α,β+tu 2 ) j sr j,j (α,β+tu 2 ) , then lim t→0 + γj(t) = lim t→0 -γj(t) = γ2. The values u1, u2, γ1 and γ2 are computed using Taylor formulas and certified numerical approximations. Now it remains to decide which of the two branches pass over the other. This problem is equivalent to the problem of deciding the connection around an apparent singularity. Let (a, b1, c1) and (a, b2, c2) the regular points that we have to connect to (α, β, γ1) and (α, β, γ2). The question is which of the points (a, b1, c1) and (a, b2, c2) will be connected to (α, β, γ1) and the other to (α, β, γ2) (see figure 3)? In [START_REF] Alcazár | Computation of the Topology of Algebraic Space Curves[END_REF] Alcázar and Sendra give a solution using a second projection of the space curve but it costs a computation of a Sturm Habicht sequence of P1 and P2. Our solution does not use any supplementary computation. It comes from the fact that γ1 is associated to u1 and γ2 to u2. Knowing that u1 is the slope of the tangent line of C(∆i) at (α, β) and u2 the slope of the tangent line of C(∆j ) at (α, β), so (α, β, γ1) will be connected to (a, b1, c1) if (a, b1) is on the branch associated to u1. If (a, b1) is not on the branch associated to u1, then (a, b1) is on the branch associated to u2, so (α, β, γ2) will be connected to (a, b1, c1) (see figure 4).

Remark 5 For a curve in generic position any apparent singularity is a node, so the slopes at an apparent singularity Curve P1(x, y, z) P2(x, y, z) Time (s) 1

x 2 + y 2 + z 2 -1 x 2y 2z + 1 0.032 2

x 2 + y 2 + z 2 -1 x 3 + 3x 2 z + 3xz are always distinct that is to say u1 = u2.

IMPLEMENTATION, EXPERIMENTS

A preliminary implementation of our method has been written using the Computer Algebra System Mathemagix. Results are visualized using the Axel1 algebraic geometric modeler which allows the manipulation of geometric objects with algebraic representation such as implicit or parametric curves or surfaces.

Since existing methods have no publicly available implementations, table 5 only reports our experiments, performed on an Intel(R) Core machine clocked at 2GHz with 1GB RAM. 

  Z (P1) = deg(P1) and deg Z (P2) = deg(P2) (by a basis change, these conditions are always satisfied). Let h(X, Y ) be the squarefree part of ResZ(P1, P2) ∈ É[X, Y ]. With the above notation and assumptions we have the following "geometric" equality, Πz(CÊ) = C(h). Definition 4 [Pseudo-generic position] Let C := (x, y, z) ∈ 3 |P1(x, y, z) = P2(x, y, z) = 0 . The curve CÊ is in pseudo-generic position with respect to the (x, y)-plane if and only if almost every point of Πz(C ) has only one geometric inverse-image, i.e. generically, if (α, β) ∈ Πz(C ), then Π -1 z (α, β) consists in one point possibly multiple.

Theorem 5

 5 Let (Srj (X, Y, Z)) j∈{0,...,m} be the subresultants sequence associated to P1(X, Y, Z) and P2(X, Y, Z) and (∆i(X, Y )) i∈{1,...,m} be the sequence of É[X, Y ] previously defined. The curve CÊ is in pseudo-generic position with respect to the (x, y)-plane if and only if ∀i ∈ {1, . . . , m -1}, ∀j ∈ {0, . . . , i -1}, i(ij) sri,j(X, Y ) sri,i(X, Y ) -(j + 1) sri,i-1(X, Y ) sri,j+1(X, Y ) = 0 mod ∆i(X, Y ).Proof. Assume CÊ be in pseudo-generic position. Let i ∈ {1, . . . , m -1}, j ∈ {0, . . . , i -1}, (α, β) ∈ Ê 2 such that ∆i(α, β) = 0. If sri,i(α, β) = 0, then sri,i-1(α, β) = 0, consequently i(j + 1) sri,j+1(α, β) sri,i(α, β)-(i-j) sri,i-1(α, β) sri,j(α, β) = 0. If sri,i(α, β) = 0, then according to Theorem 4 (3.

Figure 1 :

 1 Figure 1: Apparent and real singularities.

Figure 2 :

 2 Figure 2: Connection between real singularities and regular points.

  According to Theorem 4 (2.), D = Πz(CÊ) = m i=1 C(∆i), so an apparent singularity is a cross point of a branch of C(∆i) and a branch of C(∆j) with i, j ∈ {1, . . . , m}. So we have the following proposition. Proposition 5 If (α, β) is an apparent singularity of D such that ∆i(α, β) = ∆j(α, β) = 0, then the degree of the polynomial gcd(P1(α, β, Z), P2(α, β, Z)) ∈ Ê[Z] will be (i + j). Let (α, β) be an apparent singularity of D such that ∆i(α, β) = ∆j (α, β) = 0 and γ1, γ2 the corresponding zcoordinates. So by Proposition 5 and Proposition 1 sr0,0(α, β) = . . . = sri,i(α, β) = . . . = srj,j(α, β) = . . . . = sri+j-1,i+j-1(α, β) = 0. By Proposition 4, for any (a, b, c) ∈ CÊ such that ∆i(a, b) = 0 and sri,i(a, b) = 0 we have c = -

Figure 3 :

 3 Figure 3: Lifting of an apparent singularity.

Figure 4 :

 4 Figure 4: Connection above an apparent singularity.

2 + z 3 + y 3 - 875 Figure 5 :

 2338755 Figure 5: Running time of experimentations.

Figure 6 :

 6 Figure 6: Computed topology of curve 2 of table 5.

Figure 7 :

 7 Figure 7: Computed topology of curve 7 of table 5.

3 .

 3 CÊ is in generic position if and only if any apparent singularity of D = Πz(CÊ) is a node. Knowing that the apparent singularities of D which are nodes are exactly those with a root of χ1,2(X) as x-coordinate, so CÊ is in generic position if and only if for any (j, k) ∈ {2, . . . , n} × {2, . . . , j}, χ j,k (X) = 1.
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