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Abstract

The present investigation deals with the dynamics of a two-degrees-of-freedom system which
consists of a main linear oscillator and a strongly nonlinear absorber with small mass. The
nonlinear oscillator has a softening hysteretic characteristic represented by a Bouc-Wen model.
The periodic solutions of this system are studied and their calculation is performed through an
averaging procedure. The study of nonlinear modes and their stability shows, under specific
conditions, the existence of localization which is responsible for a passive irreversible energy
transfer from the linear oscillator to the nonlinear one. The dissipative effect of the nonlinearity
appears to play an important role in the energy transfer phenomenon and some design criteria
can be drawn regarding this parameter among others to optimize this energy transfer. The
free transient response is investigated and it is shown that the energy transfer appears when
the energy input is sufficient in accordance with the predictions from the nonlinear modes.
Finally, the steady-state forced response of the system is investigated. When the input of
energy is sufficient, the resonant response (close to nonlinear modes) experiences localization of
the vibrations in the nonlinear absorber and jump phenomena.

Keywords: Hysteresis, nonlinear energy sinks, non-linear modes, averaging method

1 Introduction

Vibration control of mechanical systems is of permanent interest in the field of engineering and
research. Dissipation or absorption of the unwanted and often dangerous vibratory energy can be
achieved by various ways, using passive or active devices, dissipative materials, coatings, visco-
elastic materials, tuned mass dampers or friction . . .

Recently, the interest for nonlinear absorbers kept growing. In particular, several works on
vibration control through the use of a small passive strongly nonlinear device have been presented.
The concept of energy pumping, that is a passive irreversible one-way energy transfer from a main
(linear) structure to a strongly nonlinear (non-linearizable) attachment, was introduced and devel-
oped [1, 2, 3]. Results on discrete [2, 4] and continuous systems [3] were presented and in most of
studies, the nonlinear absorber consisted in an essential cubic nonlinearity. Several methodologies
where investigated and developed to study this phenomenon. The use of asymptotic techniques to
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find approximate solutions was addressed in several works; Vakakis et al. [2] used an averaging
method, Gendelman et al. [4] used a multiple scale method, Mikhlin and Reshetnikova [3] used an
expansion method in combining with a Mathieu equation comparison to investigate the stability of
periodic solutions. . . Moreover Vakakis and Rand [5] proposed a method to derive exact solutions for
systems with cubic nonlinearities based on the use of elliptic functions. Experimental results were
also presented [6, 7] in which the nonlinear device is made of a geometric nonlinearity. Applications
have been proposed in shock isolation or in civil engineering.

A common result to explain this phenomenon is that, under specific conditions, some localiza-
tion of the vibratory can occur leading to an irreversible passive transfer of the energy from the
linear structure to the absorber. This result was demonstrated using the stability of the periodic
solutions; Vakakis [8, 1] provided a theoretical background on the subject studying periodic orbits
of the associated Hamiltonian system. Several authors, including Vakakis et al. [2] or Mikhlin and
Reshetnikova [3] used the concept of Nonlinear Normal Modes (NNM) and their stability to explain
this result. The concept of nonlinear normal modes was first introduced by Rosenberg [9] and has
been the subject of many investigations in the past years. Several authors [10, 11] demonstrated
that the use of NNM in studying the dynamics of nonlinear (and in particular strongly nonlinear)
systems has interesting applications both in free and forced responses. Beside this concept, the ef-
fect of localisation of the vibratory energy and motion confinement due to strong nonlinearity was
also addressed in several investigations (see Bendiksen [12] for a good review on the subject). A
main feature of such phenomena is that they are more energy-dependent than frequency-dependent
and a direct consequence is that the energy sinks are efficient in a quite wide range of frequency
which contrasts with typical linear tuned dampers.

In this paper, we focus on a two degrees-of-freedom system, involving a nonlinear absorber with
an hysteretic characteristic. Hysteretic nonlinearity requires some particular modelling and the
one which is used in this study is the Bouc-Wen differential model [13, 14]. A detailed description
of the model is addressed in section 2. In section 3, an asymptotic method for the study of
periodic responses is used. It consists of a two variables expansion combined with an averaging
procedure The nonlinear modes and their stability, are first studied in section 4 and numerical
results are discussed to highlight to energy pumping phenomenon. A parametric study emphasize
the importance of the dissipation rate of the non-linear absorber and some design criteria are found.
Results on transient response show a correct prediction from the nonlinear modes. In section 6,
the behaviour of the system in forced response (harmonic excitation) is then addressed and it is
shown that, in accordance with the modal prediction, the system experiences some localization
phenomenon along with jump phenomena.

2 Model description

A system of two oscillators linearly connected is considered. The main oscillator, with mass M ,
represents an approximation to some continuous elastic system; the small one, with mass m, is the
absorber and is strongly nonlinear. The coupling is assumed to be weak. Also, the system remains
technologically realistic since the mass ratio about 2% for the numerical applications.

The motion of this system is governed by the following system of nonlinear equations:

ẍ(t) + λ0ẋ(t) + ω2
0x(t) + ǫ0 (x(t) − v(t)) = f(t) (1a)
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v̈(t) + λ1v̇(t) + r(v̇(t), t) + ǫ1 (v(t) − x(t)) = 0 (1b)

where x and v are respectively the displacements of the main mass and of the absorber, λ0 and λ1

are damping ratios, ω0 is the natural angular frequency of the linear (uncoupled) oscillator, f(t)
represents an external forcing and ǫ0 and ǫ1 are coupling ratios such that:

ǫ0

ǫ1
=
m

M
(2)

The term r represents a nonlinear and hysteretic restoring force which means that it depends
of the history of the non-linear motion.

Various kind of systems experience hysteretic behaviours in dynamics; some systems inelastic or
with memory may have a restoring force dependent of the history of the deformation, some other,
such as rubber or cable isolator are design to dissipate the vibratory energy in the hysteretic loop.
The Bouc-Wen differential model, originally proposed by Bouc [13] and reviewed by Wen [14], is
one of the most used phenomenological model of hysteresis in mechanics. It is also used for system
identification of hysteretic systems. The hysteretic force r(t) is based on the displacement v(t) time
history and is given by the following differential equation :

ṙ(t) = Av̇(t) − ν
(

β|v̇(t)||r(t)|n−1r(t) − γv̇(t)|r(t)|n
)

(3)

where A, ν, β, γ and n are the loop parameters of the Bouc-Wen model. A proper choice of
these parameter allows to describe a wide range of hysteresis loops, with softening or hardening
behaviour, different levels of nonlinearity, with various intermediate states possibilities (smooth or
bilinear). In what follows, the parameter n is set to 1.

3 Asymptotic analysis

In this section, we will use an averaging method to derive the periodic solutions of a nonlinear
system such as system (1). Let’s consider the following general dynamical problem:

z̈(t) + g (ż, z, t) = 0 (4)

in which z is a displacement vector and the term g includes along with linear (stiffness) terms, any
nonlinear term and excitations.

We seek a solution of (4) in the following form:

z(t) = z(τ, η) = a(η) cos(τ + ϕ(η)) (5)

where the amplitude a and phase ϕ are slowly varying quantities (time scale η) with respect to
the fast time scale τ . This transformation from the displacement dependent variables (one variable
respectively) to the amplitudes and phases dependent variables (two variables respectively) allows
us to impose an additional condition. It is usual to choose that the velocity has a similar form to
the linear case:

ż =
dz(τ, η)

dt
= −

dτ

dt
a(η) sin(τ + ϕ(η)) (6)
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The time scale τ can then be interpreted as the time scale of the periodic motion whereas, the time
scale η represents a perturbation time scale. Also, in equation (6), the term:

dτ

dt
= ω (7)

represents an angular-frequency-like ”variable” assumed to be constant in time. However, this
angular frequency ω can be amplitude-dependent and a priori unknown as in the case of nonlinear
modes (see section 4) or not as in the case of steady-state forced response where it corresponds to
the excitation frequency (see section 6).

Equation (6) now becomes:

ż = −ωa(η) sin(τ + ϕ(η)) (8)

Differentiating (5) with respect to time and equating the result with (8), we find:

a′ cos(τ + ϕ) − aϕ′ sin(τ + ϕ) = 0 (9)

where .′ denotes derivatives with respect to the slow time scale η.
We have obtained the first equation governing the evolution of the slow flow variables a and ϕ.

The second one can be obtained by first differentiating (8) with respect to t, which yields:

z̈ = −ωa′ sin(τ + ϕ) − ωaϕ′ cos(τ + ϕ) − ω2a cos(τ + ϕ) (10)

and substituting z̈ into (4):

−ωa′ sin(τ + ϕ) − ωaϕ′ cos(τ + ϕ) − ω2a cos(τ + ϕ) + g(a cos(τ + ϕ),−ωa sin(τ + ϕ)) = 0 (11)

Finally, solving equations (9) and (11) for slow flow variables variations a′ and ϕ′ we have the
following system:

a′ =
sin(τ + ϕ)

ω

(

G(a, ϕ, τ) − ω2a cos(τ + ϕ)
)

(12a)

aϕ′ =
cos(τ + ϕ)

ω

(

G(a, ϕ, τ) − ω2a cos(τ + ϕ)
)

(12b)

where G(a, ϕ) is obtained by substituting z and ż in g.
The system (12) is now in standard form and can be averaged over the fast time scales τ with

the slow flow variables a and ϕ being taken as constants.

a′ =
1

ω

1

2π

∫ 2π

0
G(a, ϕ, ψ) sin ψdψ (13a)

aϕ′ =
1

ω

[

1

2π

∫ 2π

0
G(a, ϕ, ψ) cos ψdψ −

ω2

2
a

]

(13b)

The averaged problem defined by the differential system (13) provides approximate solutions with
the particular form defined by (5). The approximation is made on the form of the nonlinear terms
in g which are assumed (due to averaging) to be proportional to the harmonic functions cosψ and
sinψ.
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This formalism will be used in the following section to derive particular solutions to different
problems, including free vibrations or forced vibrations, by substituting the proper function g in
equations (13).

In the system subject of this paper, the general term g(z, ż, t) includes, along with linear terms,
nonlinear dissipative terms defined by the differential Bouc-Wen model. As these terms are difficult
to average in close form, we have used a numeric approach. However, in order to proceed with the
analytical calculations, we introduce a similar notation to equation (5) for the averaged nonlinear
restoring force r of the Bouc-Wen model. The resulting amplitude ar and phase ϕr are derived
numerically by substituting v(t) = av cos(τ + ϕv) in relation (3) and performing an averaging on
the fast time scale (as in equation (13)):

are
iϕr =

1

2π

∫ 2π

0
r(v̇, t)e−iψdψ (14)

This step introduce no additional approximation or simplification to the averaging procedure of
equation (13). Details on the variations of the averaged hysteretic restoring force with the non-
linear displacement v are provided in section 4.3 where the equivalent stiffness and damping are
studied.

4 Non-linear modes

In section, we perform a modal analysis of the system (1) unforced and undamped. Modal studies
of non-linear systems are numerous in the literature [9, 11, 10, 15, 16] and the theoretical concept of
non-linear modes is found to provide interesting dynamical descriptions as well as a valuable design
tool. The derivation of non-linear modes is first performed analytically. To do so, we first apply
the averaging method described in section 3 to the initial equations of motion (1) (without forcing
and damping); then, the study of the fixed points of the resulting system leads to the definition
of an eigenvalue problem. In a second time, numerical results are presented for several types of
Bouc-Wen hysteretic restoring forces and to possibility of localization phenomenon and possible
energy pumping are demonstrated.

4.1 Free vibrations analysis – Non-linear modes

The free vibrations problem of the two degrees of freedom system is defined by:

ẍ(t) + ω2
0x(t) + ǫ0 (x(t) − v(t)) = 0 (15a)

v̈(t) + r(v̇(t), t) + ǫ1 (v(t) − x(t)) = 0 (15b)

Using the averaging method described in section 3, the two displacements variables take the
form of (5), ie:

x = ax(η) cos(τ + ϕx(η)) (16a)

and

v = av(η) cos(τ + ϕv(η)) (16b)
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where τ = ωt, and ω is the angular frequency of the oscillations.
The term G(a, ϕ, τ) in equations (12) can be simply derived and introduced in equations (13),

which leads to:

2ωa′x = −ǫ0av sin(ϕx − ϕv) (17a)

2ωa′v = ǫ1ax sin(ϕx − ϕv) −
1

m
ar sin(ϕr − ϕv) (17b)

2ωaxϕ
′

x = (ω2
0 + ǫ0 − ω2)ax − ǫ0av cos(ϕx − ϕv) (17c)

2ωavϕ
′

v = (ǫ1 − ω2)av − ǫ1ax cos(ϕx − ϕv) +
1

m
ar cos(ϕr − ϕv) (17d)

As the system (17) is in standard first-order form, we can study its fixed points by making
all time derivatives zero (left hand side). Then one obtains a system of nonlinear equations (with
amplitudes aj and phases ϕj along with the angular frequency ω as unknowns) which can be
interpreted as a non-linear eigenvalue problem to find an approximation of the non-linear modes.

However, from the first equation of system (17), one can notice that the fixed points necessary
verify,

ϕx − ϕv = 0 mod (π) (18)

Carrying this result in the second equation, one finds that

ar sin(ϕv − ϕr) = 0 (19)

which is absurd because first ar cannot be zero and second because the hysteretic and dissipative
characteristics of the nonlinearity impose a non-zero phase difference between the restoring force r
and the displacement v.

In order to avoid this, the general form of the solutions (given by equations (5) or (16)) needs
to be adapted. The formalism was inspired by the complex mode definition for linear systems and
is given by:

z(τ, η) = c(η)e−ζη cos(τ + ϕ(η)) (20)

where ζ represents the modal damping and c is the new amplitude variable. The exponential decay
allows a proper modelling of the dissipative aspect of the motion and can be related with a complex
natural frequency (by analogy with linear complex modes),

λ = −ζ ± iω (21)

It was also assumed that this exponential decay is slowly varying.
Now, introducing the formalism of complex modes, defined by equation (20), in system (17)

and noting ai(η) = ci(η)e
−ζη for i = x, v, one obtains:

c′x = ζcx −
ǫ0

2ω
cv sin(ϕx − ϕv) (22a)
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c′v = ζcv +
ǫ1

2ω
cx sin(ϕx − ϕv) +

1

2ω
cr sin(ϕv − ϕr) (22b)

cxϕ
′

x =
ω2

0 + ǫ0 − ω2

2ω
cx −

ǫ0

2ω
cv cos(ϕx − ϕv) (22c)

cvϕ
′

v =
ǫ1 − ω2

2ω
cv −

ǫ1

2ω
cx cos(ϕx − ϕv) +

1

2ω
cr cos(ϕv − ϕr) (22d)

It should be noticed that along with the assumptions made on the form of the displacements,
equation (20), the nonlinear term ar(η) is assumed to have the same exponential decay that the
displacement. This assumption can be justified by looking at the expression of the averaged nonlin-
ear term. In equation (14), if we substitute for v̇ the new complex form (20), the exponential decay
is reported outside the summation symbol and as a consequence, equation (14) can be updated
with the complex form defined by (20).

If we finally combine equations (22c) and (22d) and introduce the phase difference variables
ϕij = ϕi − ϕj , with i, j = x, v or r, we obtain the following system:

c′x = ζcx −
ǫ0

2ω
cv sinϕxv (23a)

c′v = ζcv +
ǫ1

2ω
cx sinϕxv +

1

2ω
cr sinϕvr (23b)

cxcvϕ
′

xv =
ω2

0 + ǫ0 − ǫ1

2ω
cxcv −

1

2ω

(

ǫ0c
2
v − ǫ1c

2
x

)

cosϕxv −
1

2ω
cr cosϕvr (23c)

This unforced system is in (averaged) standard form and its fixed points are the main approxi-
mation of the nonlinear modes.

Along with this, we have to introduce an additional relation between the coordinates in order
to normalize the modes. To do so, we define H the global energy of the system by:

H = T + U −Wd (24)

where T , U are respectively the global kinetic and potential energies of the system; Wd is the energy
dissipated by the hysteretic force during one cycle of the motion.

Also note that, if the non-linear modes can be approximated by the fixed points of equa-
tions (23), these will depend on the value of the angular frequency ω which is an unknown of the
free dynamical problem. This angular frequency ω, which represents the eigenfrequency of the
modes, is determined using the additionnal energy relation (24).

This formalism introduces the notion of complex nonlinear modes which correspond (as in the
linear domain) to special solutions of the free vibrations problem where the system’s degrees of
freedom oscillate with the same frequency but, in contrast with non-linear normal modes, with
a phase difference between them. The dissipative terms introduce a phase difference between the
coordinates and a modal damping ζ which, as the natural frequencies and deformed shapes depends
on the system’s energy. It may also be note that, in contrast with classical nonlinear normal modes,
these complex modes as defined here are not necessary normal to the iso-energetic curves. With
this complex modal description, one can handle the dissipative effects of the nonlinearity directly
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without any assumption regarding their importance. This particular feature will be used in the
following numerical applications to determine design rules on the dissipation rates. This is a major
concern, in engineering applications, when dealing with very weakly damped (linear) structure; in
these situations, the nonlinear oscillator has to ensure the resonance capture phenomenon as well
as the dissipation of the vibratory energy.

4.2 Stability

The stability of the nonlinear modes can be determined using the system (23), which is in standard
form, and studying the eigenvalues of the Jacobian matrix DzF (z0,M) at the equilibrium points.

DzF (z0,M) =






























ζ −
ǫ0

2ω
sinϕxv −

ǫ0

2ω
cv cosϕxv

ǫ1

2ω
sinϕxv ζ +

1

2ω

∂(cr sinϕvr)

∂cv

ǫ1

2ω
cx cosϕxv

+
1

2ω

∂(cr sinϕvr)

∂ϕxv

ω2
0 + ǫ0 − ǫ1

2ω
cv +

ǫ1

ω
cx cosϕxv

ω2
0 + ǫ0 − ǫ1

2ω
cv −

ǫ0

ω
cv cosϕxv

−
1

2ω

∂cr cosϕvr
∂cv

1

2ω

(

ǫ0c
2
v − ǫ1c

2
x

)

sinϕxv

−
1

2ω

∂(cr cosϕvr)

∂ϕxv































(25)

4.3 Numerical results, localization and energy pumping

The hysteretic Bouc-Wen model is quite versatile and a large variety of hysteretic loops can be
modelled. In this study, we focused on the class of softening hysteretic nonlinearity (i.e. γ = −0.5 6

0 for example in equation (3)) and we particularly investigated the influence of the (nonlinear)
dissipation due to hysteresis. As an example, let’s consider the two hysteretic loops depicted
in figures 1 and 2 and their equivalent stiffness and damping (first harmonic). Both of these
examples feature a strongly nonlinear behaviour. Their equivalent stiffness are quite similar as
opposed to their equivalent damping. Actually as the loop area (which is directly related to the
energy dissipation) of the second example is larger, its equivalent damping is consequently more
important.

In this section, some numerical results on the nonlinear modes on these two representative
examples are presented. The nonlinear complex modes are derived by numerically solving the fixed
points problem defined by system (23) along with the energy relationship given in equation (24)
which aims at finding the unknown eigenfrequency ω and at normalizing the modes. Since our
motivation is to investigated the vibration control of weakly damped structures, the main oscillator
is assumed to be conservative and the only source of dissipation is the absorber.

Example 1.

We first study the case of a weakly dissipative hysteretic cycle which build using the Bouc-Wen
parameters β = 10−3 and γ = −0.5. The modal quantities are depicted in figures 3. The modal
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Figure 1: Example n°1 - γ = 10−3; (a) hysteretic cycle, (b) equivalent stiffness and damping.

amplitudes of the linear and nonlinear degrees of freedom, cx and cv, natural frequency ω, and
modal damping ζ are plotted versus the global energy H of the system.

There are two main branches (in solid and dashed lines) and an unstable region appears in
the solid line branch symbolized by crosses. We can discriminate several regions with distinct
dynamical behaviours:

Low energies region: in the solid line branch, the motion appears to be nearly localized in
the linear oscillator which modal curve is a straight line: the nonlinear system’s behaviour is
linearizable. Note that, in this region, the natural frequency of the linear oscillator is constant.
The dashed line branch shows, on the other hand, a prominent motion in the absorber and a
decreasing natural frequency due to the softening characteristic of the nonlinearity.

High energies region: there, the situation is quite reversed, the solid line branch shows a strong
localization in the nonlinear oscillator with a decreasing natural frequency; and the dashed
line branch displays a prominent motion in the linear system.

Intermediate energy region: between the previous asymptotic states, the system experiences
a bifurcation phenomenon of its modes. When the global energy increases, the motion of
the linear oscillator jumps from a high to a low level; on the other hand, the motion of the
nonlinear oscillator jumps from low to high level. Note that this phenomenon appears when
the nonlinear natural frequency joins the linear one, the system of two coupled oscillators
enters an internal resonance [17].
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Figure 2: Example n°2 - γ = 0.5; (a) hysteretic cycle, (b) equivalent stiffness and damping.

Example 2.

The second example involves an hysteretic nonlinearity with a rather high level of dissipation (see
figures 2) which contrasts with the first example where the damping ratio was quite small.

The modal quantities are represented in figures 4. There are several differences in this example
with reference to the previous one. First note that there is no instability region and no internal
resonance. Then the modal damping curve is quite different from the previous example since the
dashed line branch reach higher values of damping especially in the region where the two frequency
curves could interact. In effect, figure 2 shows a particular feature of this nonlinearity which is
that the level of nonlinearity (in this case, the drop of stiffness) is directly related to the level
of damping. As a consequence, a too high value of nonlinear damping can inhibit the resonance
capture and no energy pumping occurs and two oscillators behave quite independently.

This comparison clearly shows this importance of the level of dissipation in the nonlinearity on
the efficiency of the energy pumping phenomenon. However, remember that, in the energy pumping
phenomenon, as the vibratory energy gets transferred to the absorber it has to be dissipated. The
optimal absorber would then be the one with the highest damping ratio allowing the resonance
capture to take place and leading a fast energy dissipation. Example 2 displays a case where a high
dissipation rate inhibits the energy transfer whereas example 1 shows an optimal design, in term of
dissipation, which ensures that both the energy transfer and the energy dissipation are achieved.

5 Transient free response

In this section, we provide examples of transient free responses which highlight the energy pumping
phenomenon and underline the efficiency of the previous modal analysis predictions. We focus
on the first example nonlinearity (γ = 10−3) which appears to be more efficient according to the
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Figure 3: Example 1: Nonlinear modes: (—, - - -), stable; (-x-x-), unstable.
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Figure 4: Example 2: Nonlinear modes
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non-linear modes predictions. The exact system of equations (1) (with f(t) = 0) was used with the
Bouc-Wen restoring force defined by equation (3); we impose the initial following initial conditions:

ẋ(0) =

√

2H0

M
, x(0) = 0, v̇(0) = 0 and v(0) = 0 (26)

where H0 is the initial energy of the system. These initial conditions simulate an impact on the main
mass. The results of two simulations with different initial energy input are depicted in figures 5
to 8. Beside from the displacements x and v history, the history of the instantaneous frequency
is also plotted for both oscillators. The instantaneous frequency was calculated using an Hilbert
transform [18].
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Figure 5: Transient response for H0 = 15 – Linear oscillator; (a) time history, (b) instantaneous
frequency.
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Figure 6: Transient response for H0 = 15 – Absorber; (a) time history, (b) instantaneous frequency.

For H0 = 15 (figures 5 and 6), the input of energy is smaller than the bifurcation characteristic
level. Hence, as predicted by the nonlinear modes (see figure 3) and in accordance with the initial
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Figure 7: Transient response for H0 = 60 – Linear oscillator; (a) time history, (b) instantaneous
frequency.
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Figure 8: Transient response for H0 = 60 – Absorber; (a) time history, (b) instantaneous frequency.

conditions, only the solid line branch of the modes is realizable. This means that the vibratory
energy remains in the main oscillator: no energy pumping occurs.

For H0 = 60 (figures 7 and 8), the initial energy is greater than the critical bifurcation level.
As a consequence, the dashed line branch in figures 3 is feasible. The energy is rapidly transferred
from the main mass to the absorber. To confirm the predictions of the nonlinear modes, we can
watch the history of the instantaneous frequency: in the early moments (after a short transient
period), the instantaneous frequencies from the linear and nonlinear oscillator join, then (as the
global energy decreases) both of them increase. This is in accordance with the evolution of the
nonlinear natural frequencies of the modes.

14



6 Steady-State Forced Response

This final part is dedicated to forced resonance phenomena. We were, in particular, interested in
periodically forced regimes. In contrast with transient phenomena, in steady-state forced vibration,
failures generally occur because of high cycle fatigue effects. Therefore, control of forced vibrations
is of primary importance in many fields of mechanical engineering. It will be demonstrated that
the energy pumping phenomenon can achieve this control function.

6.1 Derivation of periodic solutions

We consider an harmonic excitation, f(t) = P cosωt in the system (1). The derivation of periodic
solution uses the averaging procedure of section 3, in which the two displacements variables take
the form of (5), ie:

x(τ, η) = ax(η) cos(τ + ϕx(η)) and v(τ, η) = av(η) cos(τ + ϕv(η)) (27)

where τ = ωt.
The term G(a, ϕ, τ) in equations (12) and (13) is respectively for x and v:

Gx(ax, ϕx, τ) = −λ0ωax sin(τ + ϕx) + ω2
0ax cos(τ + ϕx) − ǫ0av cos(τ + ϕv) − P cos τ (28a)

Gv(av , ϕv, τ) = −λ1ωav sin(τ+ϕv)+ω
2
1av cos(τ+ϕv)−ǫ1ax sin(τ+ϕx)+ar(av , ϕv) cos(τ+ϕr(av , ϕv))

(28b)

Then applying the relations (13) to the present example, one obtains:

a′x = −
ǫ0

2ω
av sin(ϕx − ϕv) −

λ0

2
ax −

P

2ω
sinϕx (29a)

a′v =
ǫ1

2ω
ax sin(ϕx − ϕv) −

λ1

2
av +

1

2ω
ar sin(ϕv − ϕr) (29b)

axϕ
′

x =
ω2

0 − ω2

2ω
−
ǫ0

2ω
av cos(ϕx − ϕv) −

P

2ω
cosϕx (29c)

avϕ
′

v =
ω2

1 − ω2

2ω
−
ǫ1

2ω
ax cos(ϕx − ϕv) +

1

2ω
ar cos(ϕv − ϕr) (29d)

As for the free response, the fixed points of system (29) are to the main approximation to the forced
response. Next, these forced response will be investigated for several values of load amplitude P .

6.2 Numerical results

The following results were obtained by numerically solving the nonlinear system (29) using Newton-
like solver combine with an arc-length continuation method [19]. We used the first example Bouc-
Wen hysteretic cycle (γ = 10−3, figure 2).
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Figure 9: Forced response – Low energy: (——), nonlinear response, (− · −·), linear response (no
absorber), (−−−), backbone curves

The nonlinear frequency response are compared with the frequency responses of the linear
system alone; the backbone curves have also been represented in order to see how the prediction of
the nonlinear modes are in accordance with the forced response.

In the first example (figure 9), the forcing level is quite small and we can see in both the linear
and nonlinear oscillator have a linearizable behaviour.

As the level of the excitation is increased, the system’s behaviour differs from the linear case and
several interesting phenomena appear. An example of nonlinear response is plotted in figure 10.
In this case, the vibratory energy is strongly localized in the nonlinear oscillator (absorber) in the
vicinity of the resonance peak. The absorber appears to be efficient. One can also notices that
the nonlinear response remains quite close to the backbone curves which attests the quality of the
prediction of the nonlinear modes.

7 Conclusions

The results of an investigation on the dynamics of a small nonlinear oscillator weakly coupled with
a linear oscillator were presented. This investigation focused on hysteretic nonlinearity using a
Bouc-Wen differential model. It was shown that the absorber can act as an energy sink when it is
properly designed; in particular it appears that the level of nonlinearity and the level of damping
are important factor for the efficiency of the device. In order to derive approximate solutions
to the nonlinear problem, an averaging strategy was used. Investigations of the free and forced
responses are presented and, in both cases, it appears that when the energy of the system is
sufficient some localization of the vibratory energy in the nonlinear absorber appears. With the
examples presented in this paper, we have seen that the nonlinear modes were representative of the
behaviour of nonlinear dissipative system in free response as in forced response.
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