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Scanning Gate Microscopy of a Nanostructure where Electrons Interact

Axel Freyn, Ioannis Kleftogiannis,∗ and Jean-Louis Pichard
Service de Physique de l’État Condensé (CNRS URA 2464),

DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

Two dimensional electron gases created in semiconductor heterostructures are contacted via a
nanostructure. The density is locally changed by a charged tip which can be moved in the vicinity
of the nanostructure. Scanning gate microscopy consists in making images giving the quantum
conductance of this setup as a function of the tip position. From those images, we show that the
strength of electron-electron interactions inside the nanostructure can be measured.

PACS numbers: 07.79.-v,71.10.-w,72.10.-d,73.23.-b

Semiconductor nanostructures based on two dimen-
sional electron gases (2DEGs) have been extensively
studied, with the expectation of developing future de-
vices for sensing, information processing and quantum
computation. However, fundamental aspects of electron-
electron interactions have been neglected till now in low
temperature scanning gate microscopy (SGM) of such
nanostructures. Those aspects are studied in this let-
ter, assuming a SGM setup (FIG. 1) which was used in
Refs. [1, 2], the nanosystem being a quantum point con-
tact (QPC) which exhibits conductance plateaus multi-
ple of gq = 2e2/h as the contact is progressively closed.
The quantum conductance g is measured between the
two ohmic contacts and the effect of the charged tip of
an AFM cantilever upon g is studied as a function of
the tip position. The negatively charged tip capacitively
couples with the 2DEG, creating a depletion region that
scatters the electrons. For g ≈ gq, the charged tip can re-
duce [2] g by a significant fraction δg, which falls off with
distance rT from the QPC. Moreover, fringes spaced by
λF /2, half the Fermi wave length, can be seen in the
experimental images giving δg as a function of the tip
position. Very small distances rT were not scanned in
Ref. [1, 2], but this was done [3] later, giving extra ring
structures inside the QPC if g is biased between the con-
ductance plateaus. Though many features of the SGM
images can be described by theories [4, 5] neglecting the
many body effects inside the QPC, we will show that sig-
natures of these effects should be observed in the vicinity
of the QPC. Therefore, from the SGM images, one can
detect if the electrons interact inside the QPC. Two main
signatures of the interaction have been identified: fringes
of enhanced magnitude, falling off as 1/r2

T near the QPC,
before falling off as 1/rT far from the QPC, and a phase
shift of the fringes between these two regions. An almost
closed QPC, around the 0.7gq conductance anomaly [6],
should be a relevant interacting nanosystem to study.
However, our theory is more general and applies to any
nanosystem inside which electrons interact.

SGM consists in scanning the tip around the nanosys-
tem and in making images of δg = g − g0, g (g0) being
the conductance with (without) tip. Without interac-
tion, the nanosystem transmission is independent of the

U?
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FIG. 1: Scheme of a SGM setup: Two 2DEGs are connected
via a nanostructure (red). The negatively (positively) charged
tip creates a small depletion (accumulation) region (•) which
scatters electrons in the right 2DEG. By scanning the tip and
measuring the quantum conductance g between the 2 ohmic
contacts, one can detect the interaction U acting inside the
nanostructure.

tip position, and the SGM images reveal the interferences
of electrons which are transmitted by the nanosystem and
elastically backscattered by the tip through the nanosys-
tem. If the transmitted and backscattered flows inter-
act inside the nanosystem, the interferences become more
subtle, because the effective nanosystem transmission de-
pends on the tip position. The origin of this interaction
effect is easy to explain [7, 8, 9] if one uses the Hartree-
Fock (HF) approximation. The tip induces Friedel os-
cillations of the electron density, which can modify the
density inside the nanosystem. As one moves the tip, this
changes the Hartree corrections of the nanosystem and its
effective transmission, while a related effect characterizes
also the Fock corrections [7, 8, 9]. For a non interacting
nanosystem, the SGM images depend only on quantum
interferences occurring at the Fermi Energy EF . For an
interacting nanosystem, this is no longer true, as the HF
corrections, and hence the effective nanosystem transmis-
sion, depend on interferences taking place at all energies
below EF .

The principle for the detection of the interaction U
via SGM can be simply explained in one dimension,
the nanosystem being coupled to semi-infinite chains. If
U = 0, the transmitted flow interfers with the flow re-
flected by the tip, giving rise to Fabry-Pérot oscillations
which do not decay as rT → ∞. Hence the conductance
g of the nanosystem in series with the tip exhibits oscil-
lations which do not decay. If U 6= 0, the nanosystem
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HF-corrections are modified by the Friedel oscillations
induced by the tip inside the nanosystem. This gives an
additional effect for g, which decays as the Friedel os-
cillations causing it (1/rT -decay in 1d, with oscillations
of period λF /2). Measuring g as a function of the tip
position, one gets oscillations of period λF /2 in the two
cases, but their decays are different and allow to measure
the interaction strength U inside the nanosystem.

Interactions in 1d chains give rise to a Luttinger-
Tomonaga liquid and cannot be neglected. It is neces-
sary to take 2d strips of sufficient electron density (factor
rs < 1) for neglecting interaction outside the nanosys-
tem. The effect of the tip becomes more subtle with 2d
strips: First, the Friedel oscillations decreasing as 1/rd

in d dimensions, the effect of the tip upon the nanosys-
tem transmission has a faster decay, unless focusing ef-
fects take place. Second, the non interacting limit be-
comes more complicated. The probability for an elec-
tron of energy EF to reach the tip, and to be reflected
through the nanosystem also decays as rT → ∞. Assum-
ing isotropy, the probabilities of these two events should
decay as 1/rT , giving a total 1/r2

T decay for δg. But
isotropy is not a realistic assumption for SGM setups.
The transmission can be strongly focused, making the
effect of the tip a function of the angle θT . Spectacu-
lar focusing effects have been observed [1] using a QPC:
The effect of the tip is mainly focused around θT ≈ 0 or
±π/4, depending if g0 ≈ gq or 2gq.

For studying SGM with 2d strips more precisely, we
use a simple model sketched in FIG. 2 (upper left), as-
suming spin polarized electrons (spinless fermions). The
Hamiltonian reads H = Hnano + Hstrips + HT .

Hnano = VG

1
∑

x=0

nx,0− td(c
†
0,0c1,0 +H.c.)+Un0,0n1,0 (1)

describes a nanosystem with two sites of energy VG and
of hopping term td. We assume that VG can be varied by
an external gate. A repulsion of strength U acts between
these two sites. cx,y (c†x,y) is the annihilation (creation)

operator at site x, y, and nx,y = c†x,ycx,y.

Hstrips = −th
∑

x,y

(c+
x,ycx,y+1 + c+

x,ycx+1,y + H.c.) (2)

describes the strips and their couplings to the nanosys-
tem. The left (right) strip occupies the sites with −Ly ≤
y ≤ Ly and −∞ ≤ x ≤ 0 (1 ≤ x ≤ ∞), if ones excepts
the two nanosystem sites. We assume hard wall bound-
aries in the y-direction. th = 1 sets the energy scale.
HT = VT nxT ,yT

describes the effect of a tip located above
a site of coordinates (xT > 1, yT ) = rT (cos θT , sin θT ).

FIG. 2 (upper right) shows how one can use SGM for
detecting U in the 1d limit of our model (Ly = 0). The
chains are half-filled (EF = 0), and the conductance g
of the nanosystem in series with a tip is given as a func-
tion of rT . If U = 0, g exhibits even-odd oscillations
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FIG. 2: Upper left: Used SGM setup: 2 strips of width
2Ly + 1 (here Ly = 2) are connected via a nanosystem (2
sites �, hopping td and potentials VG). The repulsion U acts
only inside the nanosystem. The charged tip gives rise to
a potential VT (•) at a distance rT from the nanosystem.
Upper right: SGM measure using 1d chains (Ly = 0) at half-
filling (kF = π/2), giving the conductance g of the nanosys-
tem (VG = −U/2 and td = 0.1) in series with a tip (VT = 2)
as a function of rT . Fits 0.024 + 0.016 cos(πrT ) (solid line)
and 0.066 + 0.132/rT + (0.043 + 0.014/rT ) cos(πrT ) (dashed
line). Lower left: Conductance g0 without tip (VT = 0) as a
function of VG for 2d strips (2Ly + 1 = 301). EF = −3.57
(kF = 0.668), td = 0.1 and different values of U . Lower right:
g as a function of rT , showing a 1/rT -decay of δg when U = 0.
θT = 0, td = 0.1, VG = −2.187, VT = −2, EF = −3.57 and
2Ly + 1 = 301. Solid line: 0.133 + 0.110 cos(2kF rT − 1.2)/rT .

of constant amplitude, while these oscillations fall off as
1/rT near the nanosystem if U 6= 0. When Ly = 0, the
HF corrections can be obtained using an extrapolation
method [7, 8, 9]. When Ly is large, using self-energies
becomes more efficient for calculating the HF corrections
and the conductance g. Hereafter, we summarize the
used method for calculating the SGM images.

In the Landauer approach to transport, it is convenient
to separate the measured system, the leads and their cou-
plings. All the sites x, y for which 0 ≤ x ≤ xT define the
measured system (nanosystem + tip) of Hamiltonian HS .
All the sites for which −∞ < x ≤ −1 (xT + 1 ≤ x < ∞)
define the left (right) lead of width 2Ly + 1. The system
and the leads are coupled by hopping terms of amplitude
th. In the zero temperature limit, the Landauer conduc-
tance g (in units of e2/h for spinless fermions) reads [10]

g = trace
[

Γ(L)〈0|Ga
S |xT 〉Γ

(R)〈xT |G
r
S |0〉

]

E=EF

. (3)

Gr,a
S =

[

z − HS − ΣT − ΣHF
]−1

, (4)

are the retarded (z = E + iη) and advanced (z = E − iη)
Green’s functions of the measured system at an energy
E, η → 0+. ΣT = ΣL +ΣR. 〈x1|G

r,a
S |x2〉 are (2Ly +1)×
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(2Ly + 1) matrices giving the elements of Gr,a
S evaluated

between the sites x1, y and x2, y
′. The expressions of the

(2Ly +1)× (2Ly +1) matrices ΣL,R and ΓL,R induced by
coupling the measured system to the left (L) and right
(R) leads can be found in the literature [10].

Since the electrons interact only inside the nanosystem,
the HF self-energy ΣHF is a matrix with only 4 non zero
matrix-elements ΣHF

i,j = 〈i, 0|ΣHF|j, 0〉 where i, j = 0, 1.
The diagonal elements give the 2 Hartree self-energies
ΣH

i,i, i = 0,1 while the off-diagonal elements give the

Fock self-energy ΣF
0,1 = ΣF

1,0. To calculate the HF self-
energies, one needs only the Green’s function inside the
nanosystem (2 × 2 matrix gnano), which depends on the
self-energies σL (σR(VT )) describing the effect of coupling
the left strip (right strip with the tip) to the nanosystem

site 0 = (0, 0) (1 = (1, 0)). If GL,R
strip are the Green’s func-

tions of the left (right) strips excluding the 2 nanosystem
sites, one gets

σL,R =
∑

I,J

〈I|GL,R
strip|J〉. (5)

I and J label the 3 sites (2, 0), (1, 1) and (1,−1) directly
coupled to 1 for σR ≡ σ1 ((−1, 0), (0, 1) and (0,−1) cou-
pled to 0 for σL ≡ σ0). σ1 is a function of the tip posi-
tion which we calculate using recursive Green’s function
(RGF) algorithm (see Ref. [5] and references therein).

gnano being given by (g−1
nano)i,i = z − VG − σi − ΣHF

i,i

and (g−1
nano)i,j6=i = td − ΣHF

i,j for z = E + iη, the HF
self-energies are the self-consistent solution of 3 coupled
integral equations:

ΣH
0,0 = −U

π
ℑ

∫ EF

−∞
(gnano(E))1,1dE (6)

ΣH
1,1 = −U

π
ℑ

∫ EF

−∞
(gnano(E))0,0dE (7)

ΣF
0,1 = U

π
ℑ

∫ EF

−∞
(gnano(E))0,1dE. (8)

The numerical calculations involve successive steps:
Eqs. (6-8) are integrated using Cauchy theorem and tak-
ing a semi-circle centered at (EF − 4)/2 in the upper
part of the complex plane. The integration is done using
the Gauss–Kronrod algorithm. This requires to calcu-
late gnano (and therefore σi) for 87 complex energies z
on the semi-circle, before determining the self-consistent
solutions of Eqs. (6-8) recursively. In the presence of the
tip in the right strip (VT 6= 0), 〈I|GR

strip|J〉 giving σ1 are

calculated using RGF algorithm. Once the matrix ΣHF

is obtained, one gets g (Eq. 3) using RGF algorithm to
calculate 〈0|Ga

S(EF )|xT 〉 and 〈xT |G
r
S(EF )|0〉 in the pres-

ence of the tip.
For having negligible lattice effects and SGM images

characteristic of the continuum limit, we consider a low
filling factor ν ≈ 1/25 in the 2d strips, corresponding to
a Fermi energy (momentum) EF = −3.57 (kF = 0.668).
Moreover, we take small values of the nanosystem hop-
ping td, in order to increase [8, 9] the effect of the tip

c

λF

d

0 25 50

a b

−0.2 0 0.2−1 0 1

FIG. 3: Images obtained by scanning the tip (VT = −2) on
the right strip for EF = −3.57, td = 0.01 and strips of width
2Ly + 1 = 301. VG = −2.870 (−2.187) is chosen such that
g0(VG) = 0.188 (0.0014) is maximum for U = 1.7 (U = 0).
The Fermi wave length λF and the scale are given in FIG. (c)
and (d) respectively. Relative corrections δg/g0 for U = 0
(FIG. a) and U = 1.7 (FIG. b). Relative corrections δΣF/ΣF

0

(FIG. c) and δΣH/ΣH

0 (FIG. d) of the Fock and Hartree self-
energy (left nanosystem site) for U = 1.7. δΣ = Σ − Σ0, Σ0

characterizing the setup without tip (VT = 0). ΣF

0 = −0.120.
ΣH

0 = 0.529.

upon the nanosystem transmission. FIG. 2 (lower left)
gives g0 as a function of VG for increasing values of U .
When td is small, the double peak structure of g0(VG)
characteristic of a nanosystem with two sites merges [9]
to form a single peak. Hereafter, we will always deter-
mine the value V0(U) of VG for which g0(VG) is maxi-
mum (FIG. 2 lower left), and the SGM images will be
always studied at VG = V0(U). FIG. 3 (a) gives δg/g0

(δg = g(VT = −2) − g0) as a function of the tip position
(xT , yT ) when U = 0. One can see that δg decays as rT

increases, the image exhibiting fringes spaced by λF /2.
The decay depends on the angle θT . For θT = 0, one can
see in FIG. 2 (lower right) that δg falls off as 1/rT , and
not as 1/r2

T (isotropic assumption). The data are fitted
by a function

F (rT ) =
a1 cos(2kF rT + δ1)

rT

+
a2 cos(2kF rT + δ2)

r2
T

, (9)

which contains 4 adjustable parameters a1, δ1, a2 and δ2.
The cos(2kF rT + δ) terms give fringes spaced by λF /2.
The 1/rT term turns out to describe g(rT ) without inter-
action. This is shown in FIG. 2 (lower right), a function
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FIG. 4: θT = 0, EF = −3.57, U = 1.7, 2Ly + 1 = 301 and
td = 0.01, VG chosen such that g0(VG) is maximum for the
considered values of U and td. FIG. a: 1/r2

T decay of the Fock
self-energy ΣF

0,1 (◦) as a function of rT . Solid line: −0.115 +
2.379 cos(2kF rT + 0.765)/r2

T . FIG. b: δg (g0 = 0.177) as
a function of rT (◦). Fit F (rT ) with a1 = −0.676, a2 =
−7.605, δ1 = 1.664 and δ2 = 0.120 (solid line). Taking a2 = 0
in F (rT ) (dashed line) fails to describe δg below rT ≈ 30.
FIG. c: Parameters of F (rT ) fitting δg as a function of td

when U = 1.7. FIG. d: Parameters of F (rT ) fitting δg as a
function of U when td = 0.02.

F (rT ) with only two non zero parameters a1 and δ1 fit-
ting δg(rT ) when U = 0. When U 6= 0, assuming Friedel
oscillations decaying as cos(2kF rT + δ)/r2

T in 2d leads,
a second term a2 cos(2kF rT + δ2)/r2

T must be added to
F (rT ) to describe the effect of the tip upon g occurring
via the HF self-energies.

When U = 1.7 and td = 0.01, FIGs. 3 (c and d) show
the effect of the tip upon the HF self-energies ΣHF. The
images show fringes spaced by λF /2 which fall off as
1/r2

T , as expected since they are driven by 2d Friedel os-
cillations. The 1/r2

T decay of the Fock term ΣF is shown
in FIG. 4 (a). We have obtained a similar decay for
the 2 Hartree terms. FIG. 3 (b) gives the corresponding
SGM image of the conductance g. Near the nanosystem,
the effect of the tip upon ΣHF is important and yields
a 1/r2

T decay of δg(rT ). Far from the nanosystem, the
effect of the tip upon ΣHF is negligible and we expect
that δg(rT ) falls off as when U = 0 (1/rT decay). As
rT increases, a crossover from a decay described by the
term a2 cos(2kF rT + δ2)/r2

T of F (rT ) towards a decay
described by a1 cos(2kF rT + δ1)/rT takes place. This is
shown in FIG. 4 (b), where one needs to take a2 6= 0 for
describing g(rT ) for rt ≤ 30. This crossover is also char-
acterized by a phase shift of the fringes (δ2 6= δ1), which
can be seen in FIG. 4 (b). In order to find this crossover,
we have studied how the 4 parameters of F (rT ) depend
on td (FIG. 4 (c)) and on U (FIG. 4 (d)), taking always
for VG the value where g0(VG) is maximum. For having a

1/r2
T decay which persists in a large domain around the

nanosystem, one needs |a2| ≫ |a1|. This occurs when td
is small (FIG. 4 (c)) and U > 1 (FIG. 4 (d)).

In summary, neglecting electron-electron interactions
and disorder in the strips, we have shown that the SGM
images allow to measure the strength of electron-electron
interactions inside the nanosystem. From zero tempera-
ture transport measurements, one can detect a 1/r2

T de-
cay around the nanosystem, and via a2(U), the value of U
characteristic of the nanosystem can be determined. For
observing this 1/r2

T decay, one needs (i) interaction inside
the nanosystem (dot or QPC of low electron density), (ii)
large density oscillations around the tip (VT large), and
(iii) that those oscillations modify the density inside the
nanosystem (rT and td small, strongly coupled nanosys-
tem and adjusted gate potential VG). In our model, tak-
ing g0 ≈ 1 limits the interaction effect upon the SGM
images, since g cannot exceed its limit g = 1. If one
uses a QPC, we expect for similar reasons that biasing
g0 on the conductance plateaus makes this effect less fa-
vorable, the fluctuations of the density being limited by
transverse quantization. It could explain why the ring
structures found in Ref. [3] near the QPC are only seen
between the conductance plateaus.
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